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1. Introduction

There has been a great deal of work in recent years on evolution equations which contain

memory terms. The most interesting situation occurs for wave propagation in elastic materials.

One starts with a model which conserves energy and then modifies it by including a memory

term which produces damping (viscoelasticity). John Nohel has been a major figure in these

studies and the results are summarized in his book with Hrusa and Renardy [7].

The present paper is concerned with a closely related but slightly different idea. Here we

maintain an energy conserving equation but produce damping through boundary conditions.

Let us describe the problem and then we will indicate why it is of interest.

We deal with one-dimensional longitudinal motions of a bar which has uniform cross

section but may be inhomogeneous. The basic balance law, in the absence of body forces, is,

p uM = ax (1.1)

where p is density, u displacement and a stress. The specific problem we consider is this:

iThis work was supported by the National Science Foundation under Grant DMS-8800795.



p(x) uu(x,t) = (Kx)ux(x,t))x 0 < x < L

u(x,O) = ut(x,O) = 0

u(O,t) = tft), u(L)ux(L,t) = flu^L,.)]

Here, <p and $ are given and $ denotes a functional of the history

u*(L,r) = u(L,t - r).

The differential equation in P ( ^ ) is energy conserving. We seek conditions on # so

that the boundary conditions at x = L produces dissipation, that is damping. This means,

roughly, that if, <p and ip tend to zero as t tends to infinity so should u. (See Remark 2.3).

These ideas are also described in [2] and [8].

Let us motivate the above problem. Suppose the bar is actually semi-infinite, 0 < x < ©

but is inhomogeneous with cr(x,t) = /x(x)u (x,t). It starts from rest2 with a prescribed

displacement at the left end, x = 0. The total problem is then like P(y>,̂ ) on 0 < x. There

is no second boundary condition but the solution needs to be outgoing. Suppose we are only

interested in a finite interval 0 < x < L. Then one could (in theory) solve the equation on

x > L and obtain a relation between the stress at x = L and the displacement at x = L.

This relation will have the history form in P((p}tp). We carry out this calculation in Section

4. Since energy is flowing off to infinity we expect to have damping on (0,L) and this can

come only from the boundary condition at x = L.

A second idea is this. Suppose the bar is composite with an abrupt charge at x = L. Let

o(x,t) = /i(x)ux(x,t), 0 < x < L and suppose the portion x > L is homogeneous but

2This merely for ease of exposition.



viscoelastic. Once again one could solve on x > L to obtain a relation between <j(L,t) and

the history u (L,«). Since both u and a are continuous across x = L this yields a problem

of the form P(<p,ip). This case is also treated in Section 4.

The final notion is what really prompted this study, the idea of approximate boundary

conditions. This is a numerical device. Even if one knew what the functional $ was, P(y>,̂ )

would be difficult to handle numerically because of the time non—locality. What we seek are

approximate functional which are more localized in time to use instead of #. This idea has

been pursued for wave scattering problems in exterior regions by many authors, starting with

Engquist and Majda [4], [5].

In [1] the authors studied the application of this method to the semi—infinite bar problem.

It serves as a very simple model problem. The main difficulty is to devise approximate

conditions which preserve the dissipativity. We discuss this in Section 5 examining some

possible approximations and giving some partial results on their validity.

In Section 2 we discuss dissipativity of the boundary function & We first give conditions

in the time domain and show how they produce damping. In Section 3 we give alternate

conditions in the frequency domain. These are conditions which are familiar in viscoelatstic

theory and they are the ones most useful in the applications.

2. Dissipative boundary conditions

The functional # in P(y>,̂ ) will be assumed to have the form,

where k*C denotes convolution. We make the following hypotheses:

a>0, k = ko + k, k ^ O , k € L^O,*)



There is 7 > 0 such that for any T > 0 and any

rp rn

h (k*0 (tMt)dt > 7 / C(t)2dt. (H2)
0 0

Hypotheses (IL) and (H2) yield the following estimate if £(0) — 0:

C (t) 5[C*]dt = -«/TC(t)2dt - /\c(t)C(t)dt - /
0 0 0 0

C(t)2dt-lkf(T). (2.2)
0

For technical convenience we will assume that the functions (p and ip have derivatives

x 2we make a preliminary transformation. Let vQ(x) = (1 — r) and for any solution u of

of all orders, continuous on t > 0, and vanishing when t = 0. It is easier to state our results if

make a preliminary transformation. Let vQ(x) = (1 —

#) put w = u — »̂VQ. Then w satisfies the problem,

p wu = (/*wx)x + f, 0 < x < L

w(x,0) = wt(x,0) = 0

w(0,t) = 0, fil) wY(L,t) = ^ ( L , •)] +
xv

where,

-p<pvQ. (2.3)



We will need the following hypotheses:

£ * e ^((O,*) : L2(0,L)) n L2((O,ao) : L2(0,L))

^ j ) e L2(o,co) j < k.

For (f,^) satisfying (HA we set,

= .MII j nL? ((M: L2(0iL)) + ngi4 (OiB) ; L2(0iL) \iM
(2.4)

For the functions w we introduce the norms,

j=0 "^J L2(0,L) j=0 di3 \(0,L)

[wi (*))2dt-
0

(2.5)

All of our theorems hold under hypotheses (EL) and (IL). They are stated for solutions

w of P(f,̂ >) but, from (2.3), they are easily translated into theorems about solutions u of

>,̂ »). The first two results are energy estimates:



Th2.1. There is a constant M > 0 such that for any (f,^) satisfying (Hg)k,

S ||^W(L,.)||2 < Ml|(f,V)||2 VTe(0,co). (2.6)
j=o aJ L2(O,T)" k

2.2. If k = 0 there is a constant N > 0 such that for any (f,y?) satisfying

2 VTe(0,o,). (2.7)
k

From these theorems we obtain immediately two decay results:

2.3. Eoiany. (f,^) satisfying (Hg)^

wt(L,t)—»0 as t—KD. (2.8)

2.4. If k^ = 0 then hi any (f,^) satisfying (Hg) r

w(x,t) —̂  0 as t —i o V x e (0,L). (2.9)

Proof of Th 2.3. ByTh2.1 wt(L,t) and wu(L,t) both belong to L2(0,a>) from which (2.8)

follows.

Proof of Th 2.4. By Th 2.2 the maps t —»||w(-,t)||H /Q Lv and t —»||w t(-,t)||H ,Q L^ are

both in L2(O,OD). Hence ||w(-,t)||H coL)""'0 ^ * ~ M D a n d (2-9) f o l l o w s s i n c e w(0,t) = 0.

Remark 2.1. We are not sure of the status of decay of solutions if k > 0. Notice that, in this
CO

case, Th 2.3 says only that the velocity at x = L goes to zero as t tends to infinity. In the



examples of Section 4 we will have k = 0 so that we get the strong decay result (2.9). When
00

we deal with the approximate condition in Section 5, however, it will not always be true that

k = 0. We comment further there. We suspect there is decay even if k ^ 0.

Remark 2.2. Th 2.4 admits on extension to the case of approach to steady state. Suppose

k = 0 and consider P(y>,0) when
GO

fpm + *(t). (2.10)

Let ii(x) be the solution of the problem,

(/ra')' = 0 0 < x < L

(2.11)

u(0) = <*, /z(L)u'(L) = 0.
00

If u is the corresponding solution of P(y>,0) put v = u — u. Then one readily checks that v

is a solution of P($,^) where

T
k(t-r)dr)u(L) = - K(t)u(L). (2.12)

It will be seen in Section 3 how to insure that k and k are in L2(O,oo). It is then easy to see

that if one suitably restricts $ in (2.10) one can apply Th 2.4 to conclude that v(x,t) —» 0 as

t » OD.
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Proof of Th 2.1. We multiply the equation in P(f,^) by w. and integrate by parts to obtain,

L L

fn ̂ wtt ~(^x) K*1*0 x

</ 0"vMw

w+fdx.t

Now integrate with respect to t from 0 to T and use (2.2):

L T
(pw2

t (x,T) + /xwx(x,T))dx + 7/ wJ(L,t)dt

T T L T
wt(L,t) V<t)dt + / / w tfdxdt<3/ w?(L,t)dt

00 M)

dt + /T ( / L I W.2(*,t)dx)1/2

•'o •'O ^ * p
(2.11)

Put,

j

then (2.11) yields,



T T
wJ(L,t)dt < C + / rfOCW^dt. (2.12)

0

From (2.12) we obtain,

T T
wJ(L,t)dt < 2C + i / *(t)dt

0

and this yields (2.6) for k = 0.

In order to obtain the higher k estimates we simply differentiate the problem P(f,V»)

with respect to t. The vanishing of the derivatives of (p at t = 0 implies, by (2.3), that the

t derivatives of f vanish at t = 0 and hence, by the differential equation in P(f,^), the

vanishing of the derivatives of w at t = 0. Since the derivatives of ^ also vanish at

t = 0 we have, by (2.11),

Thus ^ w isa solution of P(^-»f ,^') and we can apply the estimate (2.7) for k = 0, for

j = 1,... k to obtain (2.7).

Proof of Th 2.2. Put,

Z[w](t) = / g(x)wx(x,t)wt(x,t)dx

where g is to be chosen, subject to g(0) = 0. We have,
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0 - tx pii

5/ g(wtLdx + JZJQ t x ./0

= J g(L)wJ(L,t)

1 - L

When k = 0 we have,
0D '

T
^T(/<L)wx(L,t))2dt = / (<*wt(L,t) + K*wt(L,.)(t))

We have also for any G > 0,

f |

L2(0,T)>-

(2.14)

JT f wx(x,t)f(x,t)dx < € | |w(.,t)| | | i (0>L) + ^ | |g^ | |^ (o ) L ) - (2-15)



We choose g so that g'(x) > 0 and

small that,

11

> 0 on 0 < x < L and we choose e so

with 8 > 0. Now integrate (2.13) from 0 to T and use (2.14) - (2.16) to obtain the

estimate

Z[w](T)

From Th (2.17) and the hypotheses on f the right side of (2.17) is bounded independently of

T. We see also that Th 2.1 implies that Z[w](T) is similarly bounded. Hence we obtain (2.7)

for k = 0. Once again we can obtain the higher order estimates by successive differentiation

with respect to t.

Remark 2.3. The use of the functional Z[w] was suggested by Professor J. Lagnese.

3. Frequency Domain Methods

For any function <p we write (p(s) = Jf [^](s), s = £ + i?/, for its Laplace transform

whenever it exists. We put II = {s : f > 0}. The functions we study will have transforms

which belong to a space we call A. A = set of all functions (p : fl -» C such that
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(p e C^J(n), !p analytic in n, (p real on 77 = 0

ip(s) = ^ s " 1 + ^ s ~ 2 + 0(s~3), <p'(s) = - ^ s ~ 2 + 0(s3)

(3.1)

y" (s) = 0(s ) as s -»ao.

Lemma 3.1. Suppose <p satisfies the following conditions

(pec(2\o,w), tVk^ e L^o,*) j = 0,1,2, k = 0,1,2.

Then <g has a transform (p G A.

Proof: We have !p(s) = f e <p(t)dt. This is well defined and continuous in II and is
'0

analytic in fi. We have

1 + ip{0)s~2 + s~2 f^

We have further £A-"(s) = f e"8*^l)JtJ^p(t)dt and the estimates in (3.1) follow.
^0

Lemma 3.2. Suppose (jp e A and

<p(t) = (2*)- 1 / + e ^ y<i77)d77. (3.2)
— QD

Then (p € C^^o.oo) n L1(o,aD) with y<0) = ^0, y<0) = <py
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Proof: Let *k(t) = tke *. Then £k(s) = (k - l)!(s + 1) k . We have then

Hs) = <PQ Xo + (<PX ~ VQ)^ + V where #{s) = 0(s~3). Then (3.2) yields

- <pQ)te *

—00

with ^ ^ C^Oju). Thus tp G C^^OJOD), <p(0) = ^0, y<0) = tpr Next we integrate (3.2) twice

by parts to obtain,

27ft — oo

It follows that V{t) = 0(t ) as t -> co hence ^ e L^O,©). The following result is established

in [10].

Lemma 3.3 Suppose k has a transform k e A. Given any T > 0 and any £ 6 C[0,T] put

£T(t) = C(t), 0 < t < T, CT(t) = 0 t > T. Then

C(t)(k * OWdt = | / He k(i,) | CT(V) 12d7?. (3.3)

where (̂77) is the Fourier transform of £m.

The non—local boundary condition in P(<p,V0 can be formally transformed to yield the

relation,
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r(x,s) = 3(s)u(L,s) + fts). (3.4)

# is actually a distribution and if it has the form (2.1),

#(s) = -as + k(s) = -as + k^s"1 + k(s). (3.5)

We want to establish conditions on the transform which will guarantee that # has the

form (2.1) and satisfies (EL) and (BL). Let us do the formal calculations first and then we

will state the theorem.

We assume that #(s) has the form,

#(s) = -as + 0 + f (s), a > 0, (3.6)

where f e A. We rewrite this formula as,

#(s) = - s ( a + k s " + k(s))
(D

k =-(/J+f(0)) = -5(0) (3.7)
0D

- r(s) = $(0) -

Let us study k(s). If ff€C2(n) then k e C2(fl\{0}). Since &(0)-&(s) vanishes at

s = 0, k will still be once differentiable at s = 0 if k'(s) is defined by its limit at s = 0. If,

in addition, £e C^(ir) then k 6 C^2\f). If r 6 A one can readily check that k satisfies

the appropriate behavior at infinity so that k € A. Thus for (3.6) with & 6 C ^ 3 \ T ) , r e A

and &(0) < 0 we will have SIC*] = ~^" I" + (k * O(*)l ^^ k(4) = K + k^> K - °'
k G L 1 ( O , O D ) .
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We have, from (3.7),

a + Re k(ir?) = - i m y11//. (3.8)

For large 77, (3.8) and (3.6) yield

a + Re k(if7) = a + 0(i) as r; -»oo. (3.9)

For small r\ (3.8) yields,

a + Re k(i?7) = - 4 ' (0) + 0(»7) as r\ -»0. (3.10)

Suppose we impose the conditions,

-sign rj Im S(i7/) > 0 for all 77 ̂  0, ^(O) < 0

(3.11)

Then from (3.8) - (3.11) we see that there is a 7 > 0 such that

a + Re k (irj) > 7 for all rj. (3.12)

By Lemma (3.3), (3.12) implies (H2). We summarize our result.

Th3.1. Suppose the transform ^ of the non-local boundary conditions has the form (3.6)

with & e C^\TT) and 3 satisfies the conditions,



16

5(0) < 0, #'(()) < 0, -sign 7} Im 5(i^) > 0 for all rj # 0.

(3.13)

Then tf has the form (2.1) with (H1) and (H2) satisfied.

Remark 3.1. The importance of the behavior of #(s) when s is small was suggested by the

work in [3].

4. Exact Dissipative Boundary Conditions

Example 1. Composite elastic—viscoelatstic bar.

This example is suggested by [9]. We suppose our bar is elastic, but inhomogeneous, on

0 < x < L so that u satisfies the differential equation in P(^,^). Suppose that the portion

x > L is viscoelastic but homogeneous. This means that, for x > L,

(4-1)

/>0utt(x,t) = o-x(x,t).

If we Laplace transform we obtain,

a(x,s) = sa(s)(x,s)

/?0s
2ii(x,s) = sa^u^fos).

(4.2)

We want the solution u to be outgoing in x > L which means we want u(x,s) to tend

to zero as s -> x. From (4.2) we obtain the relations,
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ti(x,s) = e"T<s)(x " L)u(L,s) (4.3)

o(L,s) = -sa(s) T(S)U(L,S) := S(s)u(L,s)

where T(S) = v />os/a(s). We give conditions which guarantee that # in (4.3) satisfies the

hypotheses of Th 3.1.

The conditions on a in (4.1) are dictated by viscoelastidty theory. Typical hypotheses,

which we will adopt are,

a(t) e C^O,*) , ( - 1 ) ^ % ) > 0 j = 0,1,2

(4.4)

a(t) = am + b(t), a a ) >0 , b^ e

We will assume, in addition that t^b^ 6 Lj(0,a>) so that, according to Lemma 3.1. We also

assume t b 6 1 (̂0,00) which means that a e C ^(f).

Clearly 5eC3(5r\{0}). We have,

sa(s) = a(0) + a(0)s + 0(s~2),

TOO = j ^ (1 - \ 4 ^ - + 0(s"2)), a s s - . (4.5)
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sa(s) = a^ + sb(O) + 0(s2)

7(s) = ^ L i + o(s2) as s - 0 (4.6)
00

Equation (4.5) gives the relation (2.1) with a = -\ a(0) and /? = - ^ -zp~- Equation

(4.6) shows that 5(0) = 0. If the expansion in (4.6) is continued it will show that $ is three

times differentiate at s = 0.

It follows from results in [8] that conditions (4.4) imply,

Re a(i7/) > 0 for all 77, -nsign 77 Im a(i77) > 0 77 i 0. (4.7)

We have ${irj) = —177 vi 773.(177). It follows from (4.7) that Re Ji7]&(i7)) > 0 hence sign 77 Im

£(i77) > 0 for 77 ^ 0. From (4.6)3 we have ^ (0 ) = - | a T < 0. Thus all the conditions of Th

3.1 are satisfied.

Remark 4.1. An interesting question is what happens if the composite bar is finite and

viscoelatstic on L < x < L. We conjecture, but have not yet proved, that the resulting

non-local condition is dissipative.

Remark 4.2. A special case of the viscoelastic problem is that in which a(t) = a , that is the
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bar is elastic and homogeneous. This case was considered in [6] when the bar on 0 < x < L is

nonlinearly elastic.

Example 2 Inhomogeneous semi infinite bar.

This was the problem studied in [1]. We assume that the bar is ultimately homogeneous

i.e. p(x) = pQ a(x,t) = utux(x,t) for x > L. The outgoing condition is that

/jQUx(x,t) = —JUQPQ ux(x,t) for x > L, in particular at x = L. Thus the problem is:

/>(x)uu(x,t) = (/<(x)ux(x,t))x 0 < x < L

u(x,0) = ut(x,O) = 0 (4.7)

u(0,t) = vCt), M0ux(L,t) = - J ^ J ut(L,t)

We want to reduce this to problem P(^,^). Define U(x,s) by

p(x)s2U(Xjs) = Mx)Ux(x,s))x L < x < Lx(x,s))x

(4.8)

U(L,s) = 1, /x0Ux(L,s) = \tyQ sU(L,s).

Then the transform u of the solution of (4.7) satisfies ii(x,s) = U(x,s)u(L,s) on L < x < L.

Thus,

/i(L)ux(L,s) = ^ij^sML,*) = &(s)u(L,s). (4.9)

We will establish the following result.

Th 4.1. & as defined by (4.8), satisfies the hypotheses of Th. 3.1.
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The proof is more complicated here since we do not have an explicit formula for $. We

begin with the following result.

]jgmma4.1. Problem (4.8) has a unique solution for any s 6 ff.

Proof: To show that (4.8) has a solution for a given s it suffices to show that the only

solution if U(L,s) = 1 is replaced by U(L,s) = 0 is U(x,s) = 03. Suppose U is such a

solution. Then we have

L
(4.10)

If s = £, f > 0 one sees immediately from (4.10) that U(x,s) = 0. If s = f + i7/, £ > 0 we

X * 2p\XJ\ dx = 0, hence U(x,s) = 0. If s =
LI

taking the imaginary part of (4.10) yields U(L,i;/) = 0. Hence U (L,s) = 0 also. But

/>s2U(x,s) = (/it (x,s) hence U(x,s)) = 0.

Lemma 4.2. ^, defined by (4.9), is in

real.

for any m, is analytic in II and real for s

Proof: Suppose that one formally takes the derivative of U in (4.8) with respect to s. Then

one sees that Ug satisfies the homogeneous problem hence is zero, meaning U is analytic.

This argument can be made rigorous by taking different quotients. Similarly suppose one

differentiates in (4.8) with respect to s. Then V = U satisfies,
s

3See the appendix.
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= -2s/?U(x,s)

(4.11)

V(L,s) = 0, sV(L,s) - \ V Q U(L,s)

Once again the fact that the homogeneous problem has only the zero solution guarantees a

solution of (4.11) in fl. Again one makes this rigorous with difference quotients and one can

continue differentiating to obtain all derivatives. The reality on s real is immediate.

Lemma 4.3. $ satisfies -sign rfijfiirj) > 0 for rj i 0.

Proof: We multiply the equation in (4.8) by U(x,s) and integrate by parts, using (4.9) at

x = L. This yields,

- r ? 2 /
L

(4.12)

We cannot have U(L,i?/) = 0 for then, as above, we would have also U (L,i7/) = 0 and

hence U(x,s) = 0. The same argument shows that U(L,ir/) £ 0 and the conclusion follows by

taking the imaginary part of (4.12).

What remains is to study $ for large and small s. The large s situation was considered

in [1]. What was found was that the solution of (4.8) has a formal asymptotic expansion,

U(x,s) J0Uk(x)s"k, f (x) = \p(x)fix). (4.13)
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Formulas were given to compute the coefficients U^ recursively. Then formal

differentiation of (4.13) yields.

5(s) = //(L) U (L,s)~ - as - 0 - S avs
 k (4.14)

x h=0

The coefficients a, ft and a* are determined by values of p and fj, and their derivatives at

x = L. In particular a = iPr\V>r\ > 0.

We will review this procedure briefly in the appendix and we will also establish its

validity by the following results.

00 —lr
Lemma4.4. Put 5^(8) = - a o - £ - E a,s . Then

1N s h=0 n

This result shows that 5 has the correct behavior, for large s, to belong to A.

Let us consider the small s situation. This was not done in [1]. We seek a formal

expansion of the solution of (4.8) as a power series in s:

U(x,s) = 5 Uv(x)sk. (4.16)
h=l K

The U^ can again be determined recursively. We write down the expressions for UQ and
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= 0 UQ(L) = 1 VJJ(L) = O

(4.17)

U0(L).

One sees that Un(x) = 1, U.,(x) = —J/?n/zn f fKQ d .̂ Thus
L

s + 0(s2). (4.18)

We will again established the validity of (4.18) in the appendix.

Equation (4.18) shows that

Thus we have established all the hypotheses of Th 3.1. and we have a dissipative boundary

condition.

5. Approximate Boundary Conditions

The idea discussed in [1] is based on the formula (4.14). This idea is to truncate the

series by using the 5w of Lemma (4.4). If we translate back to the time domain these

correspond to non-local boundary conditions of the form

(5.1)
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It is clear that (5.1) does not fit the forms (2.1) since k^ is not in L^O,©). It was

shown in [1] that the use of for numerically produces exponential error growth. What was

suggested in [1] was a stabilization procedure. This amounts to replacing 3™ by a function

df-KT such that ,

= 0(s N *) as s (5.2)

but with the associated operator of^ stable. In the language of the present paper this means

we want <^N to satisfy the conditions of Th 3.1.

We illustrate the idea of [1] in the case N = 1. In order for our idea to work it is

essential that the constant /? in (4.14) be positive. The calculations in [1] shows that

Thus we must assume that the bar is such that the product pfj, is increasing. We set

(5.3)

Thus - 2(s) - ^ ( s ) = 0(s ) as s -»a> for any 6. We have

If we choose 6 > 0 so that,

S > max (5.4)
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Then (^(O) and <^(O) will both be negative. Furthermore, for TJ > 0

Im drn (177) = — ir/(a 5 jy)
1 7f + r

Thus (5.4) also insures that -sign T/ Im <^Mr}) > 0 for 77 # 0.

The choice (5.4) thus guarantees that the operator df^ associated with G/^ satisfies

(Hĵ ) and (H2) so that Th 2.1 and 2.3 apply. We see that the operator df^ is given by

(5.5)

It was observed in [1] that the boundary condition at x = L can be localized. In the transform

domain,

/<L)uv(L,s) = -(as + 0 + —^-r)u(L,s) + fts)
s +

or

(s + ^^L)ux(L,s) = [-(as + /3)(s + 6) + a j u ^ s ) + (s

Thus,

/<L)uxt(L,t) + tf/<L)ux(L,t) = -auw(L,t) - {a6 + 0)nt(L,t)

+ (ax + ^u(L.t) + jKt) + SX(t). (5.6)
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It is shown in [1] how to implement (5.6) in a Galerkin method procedure.

We note that although <*f^ satisfies (H^) and (H2) we have ^ ( 0 ) = — /? — -y- which

is not, in general, zero. Thus Th 2.3 and 2.4 do not apply. We give here an alternative

approximation. Define <%+ by

- l ( s ) = s •
, a l - 60

(s

(5.7)

- 2We have ^ ( s ) - ^ ( s ) = 0(s ) as s -»o. We also have ^ ( 0 ) = 0 and

i (0) = — a < 0. We assert that if 6 is chosen sufficiently large we will have

—sign Tj <%+ > 0 for 7i i 0. (5.8)

We have

In — a —
36 - 80)(82 -

62
(62 - j)2

= V a 06 l(
al-60)

82
+

-(v/6Y

L a - + 4(V/6)

The quantity in square brackets is bounded for all rj/S and our conclusion follows.

Relation (5.7) translates into a condition like (5.6) in the time domain. Both df and <^ have

generalizations to larger values of N but we will not write these explicitly.

Let us summarize our conclusions. The method of [1] yields a sequence of approximate
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boundary conditions # N satisfying the estimate (5.3). These satisfy the hypotheses of Th 2.1

so that if they are used in ¥(<p,ip) one has stability. They do not satisfy ^ ( 0 ) = 0 so one

does not have the dissipation result of Th 2.3. The idea used for <k^ can be extended to yield

a sequence also satisfying (5.3) but with <^N(0) = 0 so that the hypotheses of Th 2.3 are

satisfied and one obtains the decay result. All of these in the time domain can be expand in

differential forms like (5.6) but with higher order time derivatives.

We can use our results to give some indications of the validity of the approximate

boundary conditions. Suppose u ^ and v ^ are solutions of P(<p,V0 with conditions rf^

and (ft™ respectively at x = L and let u be the solution of P(^,^) with the exact

N N
condition $ at x = L. Let U = u — u^r and V = u —v^ represent errors. Thus we will
have,

, UN(x,0) = U*(x,0) = 0 0 < x < L

UN(0,t) = 0 /4L)IjN(L,t) = <^N[UN(L,. )*] + A t ) (5.9)

)x 0 < x < L VN(x,0) = VN(X,O) = 0

VN(O,t) = O /iN(L)V^(L,t) = ^ N [ V N ( L , . ) t ] + i N ( t ) (5.10)

The problems for U N and V N are both of the form P(0,^) but with different functional at

x = L. We can accordingly use Th 2.1 for U N and Th 2.2, 2.3 for V N .
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We will establish the following result in the appendix.

Lemma 5.1. For each integer N there is a constant Mj^ such that for any

C 6 cMflO,*), wjih C(0) = 0 and C 6 L2(0,»),

Suppose now that u is a solution of (4.7). Then it will be a solution of P(^,0) with

defined by (4.9). We assume ||^,0)|L exists, then Th 2.1 yields

||ut(L,-)||L (o „) < Mll W)l l 0 - J t follows from (5.9) - (5.10) that there is a constant

such that,

ll*NILN+i,
J l V

We can now apply Th 2.2, with the device of differentiating with respect to t, to obtain the

result we want.

Th5.1. Suppose ||(^,0)||n exists. Then for any integer N there is a constant LN such that,

" - VN|IHN+2«O VL fl) LI + "tt " y\"+h<0 VH ro LW " L

(5.12)

Remark 5.1. We want to comment on (5.12). It is an error estimate but not of a usual type.
NIt does not say that the errors, u — v , becomes small as N becomes large. What it does

say is that these errors become small as t becomes large. Equation (5.12) implies that
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^-T(u(-,t)-vN(O,t)| |T , n n -0 for j = 0,1, N + l a s t^a ,

| ^ ( u ( . , t ) - v N ( . , t ) ) | | H i ( 0 ) L ) - * 0 for j = 0,...N a s t , .

(5.13)

— (u(x,t) - vN(x,t)) -* 0 for each x, y = 0,...N as t->a>.

Thus increasing N makes an increasing number of time derivatives go to zero.

The above result is not too striking since both u and v11 are going to zero anyway.

What makes it more striking is the result in Remark 2.3. Thus if <p(t) is tending to cp so

that u tends to a steady state the estimates (5.11) will still hold. This is the crucial role of

the condition 5(0) = 0. We cannot draw the same conclusions for the approximatives (#%r.

Appendix Asymptotic Expansions

We consider the problem in section 3 which was,

/os2U = (/iU ) L < x < Lx x

(A.1)

U(L,s) = l, U f L , s ) = - ^

where p(L) = pQ, fj{L) = /xQ and we assume all derivatives of p are fj, are zero at x = L. In

[1] we derived an asymptotic expansion for large s. It has the form,

U(x,s) ~ e " 8 ^ S Uv(x)s~k, <f>'{x) = \p(x)ii(x), 0(L) = 0.
h=0 *

(A.2)

The functions U^ are determined recursively by the formulas,
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' ) ' U O = O UO(L) =

(A.3)
k l °-

Recall that the quantity we want is tf(s) = U (L,s). From (A.2) and (A.3) one obtains

formally,

3(s)~p(L){-s0'(L) + S U/(L)s~k]=-as-/?- E a,
1 h=0 K J k=l

s k .

(A.4)

We see that a = ^ (L) = J/7(L)/̂ (L). The other coefficients can be computed by using (A.3)

recursively to determine U£(L). In particular

0 = -

In order to prove Lemma (4.4) we need first to show that (A.2) is a valid asymptotic

expansion. Put

UN(x,s) = e - ^ x ) E U t(x)s-k

k=0 *

Then one verifies that

(A.5)

We assert that for any N one has U (L,s) = — -^ N _
U (L,s). The reason for this is that all
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TNderivatives of any of the U vanish at x = L. To see this consider the equation for UQ in

(A.2). Since 0*0')' =° at x = L we have U£(L) = 0. Differenting that equation

repeatedly we see that U;p(L) = 0 for all j. The equations (A.3) for k > 0 then show that

all derivatives vanish at x = L.

We set VN = U - UN and we have

(A.6)

VN(L,s) =

We need estimates for solutions of (A.6). These are easier if we first make a Louisville

transformation,

x __

L , 1/4
(A.7)

It is not difficult to see that this transforms (A.6) into

wN(O,s) = 0, wN(T,s) = -swN(T,s), T =
x "L MO

Consider the problem,

(A.8)



Z u -s2Z = h 0 < t < T

Z(0) = 0 Z'(L) = -sZ(L).

One verifies that the solution is,
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« J / G(t,r,s) h(r)dr

G(t,r,s)=
0 < r < t

(A.9)

Note that we have, for some M > 0,

| G(t,r,s) | < M, | Gt(t,r,s) | < M | s | for any s € ff.

Now (A.8) is equivalent to the integral equation,

(A.10)

T T
^ 8 ) = ? / 6^ : s)q(r)WN(r,s)dr + \ f G(t,r : s)FN(t)dr.

a ' o ^ ̂ o
(A.11)

Remark A.I. The equivalence of (A.8) and the integral equation (A.ll) confirms the

statement in the proof of Lemma 4.1 that uniqueness implies existence.

In view of the bound (A. 10) we see that (A.ll) can be solved by successive

approximatives for | s | sufficiently large. This shows that there is an sQ > 0 and P > 0

such that



^(°'T)
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for | s | > SQ.

(A.12)

NWe can obtain an estimate for W. by differentiating (A.11) and using (A.12). This yields,

(O,T) <-
00

If we translate (A.13) back to the original variables one obtains the result (4.15).

M 1

Proof of Lemma 5.1. Since Jif-^ differs from ^ by terms of order s as s-»oo we have,

from (A.13),

< Q | s | ~ N forlarge s.

We also have &(s) - <^N(s) = 0(s) for small s. Since the difference #- M-^ is bounded on

any compact set in fl we conclude that for some constant MJ,T,

^ f o r ^ s e L ( A 1 3 )N ( ) | . ^

It follows that for any ( 6 C^O,®), C(0) = 0, £ 6 L2(O,oo),

H
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which is (5.9)

We also comment on the small s approximation. One proceeds in a way quite similar to

the above proof. Set up the formal series and truncate to get an approximate solution U- .̂

Then the error U — U will satisfy a problem which, after Louisville transformation, is

equivalent to an integral equation which can be solved by successive approximations for s

small.
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