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Abstract

An agent can invest in a high—yield bond and a low—yield bond, holding either long or

short positions in either asset. Any movement of money between these two assets incurs a

transaction cost proportional to the size of the transaction. The low—yield bond is liquid in the

sense that wealth invested in this bond can be consumed directly without a transaction cost;

wealth invested in the high—yield bond can be consumed only by first moving it into the

low—yield bond.
The problem of optimal consumption and investment on an infinite planning horizon is

solved for a class of utility functions larger than the class of power functions.



1. Introduction.

This paper studies the optimal consumption and investment behavior for a single agent

who attempts to maximize his life—time discounted utility of consumption. The utility

function for consumption is not necessarily a power function. The assets available to the agent

are two bonds, whose interest rates are two different constants r and R with 0 < r < R.

Thus, the prices of the low- and high-yield bonds, denoted by P0(t) and Pi(t), respectively,

evolve according to the differential equations

dPo(t) = r P0(t)dt, (1.1)

(1.2)

In our model, the agent's position consists of his holdings in both bonds, which he can

adjust. He must also choose at each time t > 0 an instantaneous consumption rate Ct > 0.

This consumption reduces the wealth held in the low-yield bond, which is the "liquid11 asset.

The interesting feature here is the market friction. First, there are transaction costs,

which we assume to depend on the type of the transaction and to be proportional to the size of

the transaction. Second, the agent is allowed to hold a short position in one of the bonds, but

his position vector must remain in the solvency region defined in Section 2. The above frictions

are necessary for a viable model. Without them, borrowing from the low—yield bond to invest

in the high—yield bond would present an arbitrage opportunity.

We will study this problem by solving explicitly the associated Bellman equation, which

turns out to be a first-order nonlinear free boundary problem. The free boundary divides the

solvency region into two parts. In one part, the agent should jump to the free boundary by

trading low—yield bond for high—yield bond. In the other part, the agent should not trade, but

should consume. In the latter part, the optimal position process follows a trajectory to the

boundary of the solvency region, and then moves along this boundary. If the agent's utility for

consumption is a power function, i.e., of the form U(c) = - cp for some p G (0,1) the free



boundary is linear and is explicitly determined, as are the values of positions on and below the

free boundary (see equation (13.16)). In particular, the dependence on the model parameters of

these values is exhibited in a closed, albeit complicated, form. This permits a comparison of

the merits of different risk—free investment opportunities at interest rates above the rate r for

the liquid asset, a comparison which takes transaction costs into account.

By replacing our high-yield bond by a stock, whose price Pe evolves according to the

Brownian-motion-driven equation

dPe(t) = Pe(t)[Rdt + edwt], (1.3)

we get a stochastic transaction cost problem. This problem was formulated by Magill &;

Constantinides [8], who conjectured for power utility functions that the no—transaction region

was a cone in the two-dimensional space of position vectors. This fact was proved by

Constantinides [3] in a discrete—time setting, and also in continuous—time under a strong

restriction on the class of admissible consumption processes. Recently Davis & Norman [4]

provided a rigorous proof for the continuous—time model without Constantinides' restriction.

A closely related transaction cost model was studied by Taksar, Klass & Assaf [13]; their

objective was to maximize expected long-run average growth of wealth. In all these models,

the optimal cumulative purchases of the assets were found to be singularly continuous

processes, causing the position process to reflect at the boundaries of the no—transaction region.

Thus these problems belong to the class of singular stochastic control problems which have

received much attention recently (e.g., [1, 2, 5, 11]).

The problem studied in this paper arose from our attempt to permit non—power utility

functions in the stochastic transaction cost problem. The no—transaction region will no longer

be a cone, and the study of its boundary is difficult. The simpler model with two bonds offers

insight into the stochastic model, and can be used as an approximation to the stochastic model

with small volatility (e in (1.3)).
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A non—power stochastic model driven by a finite-state Markov chain rather than a

Brownian motion has been investigated by Zariphopoulou [14]. She obtained regularity results

on the value function, and characterized this function as the solution to the Bellman equation.

This paper is organized as follows. The mathematical formulation of our problem is

given in Section 2. In Section 3 we present the Bellman equation of our model and state our

main theorem, which characterizes the value function as a concave solution to the Bellman

equation satisfying certain boundary conditions. Sections 4—9 are devoted to the explicit

construction of a solution V to the Bellman equation satisfying the given boundary conditions

In Section 10 we show that V is concave. Section 11 considers properties of the control laws

associated with V. In Section 12 we show that V is the value function, and thereby prove th<

main theorem stated in Section 3. Section 13 develops the special case of power utility

functions. This is a completely deterministic paper, and it uses little more than multivariate

calculus.
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2. Formulation of the Model.

To simplify nomenclature, we henceforth refer to the high—yield bond as the "stock" anc

to the low-yield bond as the bond. This is consistent with the origin of the model, as explainec

in Section 1. We shall also refer to position (state) and control "processes", even though these

are deterministic.

The agent chooses a consumption rate process Ct, which must be a nonnegative,

Borel—measurable function defined on [O,GD). He also chooses nondecreasing, nonnegative,

right—continuous processes Mt and Nt. We adopt the convention

Mo- = N o - = (2.1)

so Mo (respectively, No) is the "size of the jump" in M (respectively, N) at time 0. The

number Mt (respectively, Nt) denotes the cumulative purchase (respectively, sale) of "stock" )



up to time t.

Let the constants A G (O,oo) and /x € (0,1) represent the proportional transaction costs in

the following sense. In order to invest one dollar in the "stock", the agent must divest (1 + A)

dollars of bond; in order to invest (1 - /x) dollars in the bond, the agent must divest one dollar

of "stock". We denote by Xt (respectively, Yt) the dollars invested in bond (respectively,

"stock") at time t, and refer to (Xt,Yt) as the agent's position at time t. The position

evolves according to

dXt = (rXt - Ct) dt - (1 + A) dMt + (1 - M)dNt, 0 < t < oo,

dYt = R Yt dt + dMt - dN t , 0 < t < a>.

Following Davis & Norman [4], we define the solvency region to be

A) y > 0, x > 0}

(2.2)

(2.3)

(2.4)

and we partition its boundary into

« i* 4 {(xjr) j 7 > 0, x + (l-/x)y = 0}, ft* k {(x,y) I y < 0, x + (1+A)y = 0}. (2.5)

Roughly speaking, the solvency region is the set of positions for which the net wealth of the

agent is nonnegative. We assume that our agent is given an initial endowment (x,y) 6 G*", i.e.,

0- = x, Y 0 -=y. (2.6)

If he chooses the consumption/investment policy (C,M,N), then his position will evolve

according to (2.2), (2.3), (2.6). The policy is admissible for (xTy) if (Xt,Yt) £ ^ fci every

i 2L Q, and we denote by u4(xj) the set of all such policies.



2.1 REIIAU. If (X0.,Y0-) G #2<̂ > the only admissible policy is to jump immediately to the origin

and remain there. This is because Xt + (1 + A)Yt must remain nonnegative, but

d(Xt A)Yt) = r(Xt + (1 + A)Yt)dt + (R - r)(l + A)Ytdt

- Ctdt - (A

and all the terms appearing on the right—hand side are nonpositive if (Xt,Yt) 6 #2< .̂ Indeed,

(R - r)(l + A)Yt is strictly negative unless Yt = 0.

Now we introduce the agent's utility function U : [O,OD) -• [O,OD). We assume that U is

strictly increasing, strictly concave, twice differentiate, and satisfies

U(0) = 0, U'(0) 4 l im U'(c) = a,, U'(») 4 l im U'<
C l 0 C-» OD

= 0.' (2.7) '

The life—time discounted utility of consumption is

J((x,y); C.M.N) 4 f e"^ U(Ct)dt, (2.8)

where /? is a positive discount factor. The value function is

V(x,y)4" sup J((xj); C.M.N), V (x,y) 6 •. (2.9)

In light of Remark 2.1, we must have V = 0 on

A remarkable difference between this model and the stochastic model can be observed on

the boundary di<&*. In the stochastic case, if (X0.,Y0.) e d\<$f and the agent does not



intervene, the stock volatility will cause the position process to immediately exit df. Thus, t

agent must sell stock and buy bond so as to bring (X0,Y0) to (0,0). This is an absorbing stat

with value zero, and so the stochastic model value function is zero on all of di<^.

In the deterministic model, if (X0-,Y0.) = (x,y) e d^, the agent can choose M = 0,

N = 0 and

- / i ) , t > 0. (2.10)

The resulting position process is

(2.11)

which is in dxdf for all t > 0. Therefore,

V*HHi)y, y) > W(y) 4 | V # U[yeRt(R-r)(l-,x)]dt V y > 0 (2.12)
J0

We shall eventually discover (see Remark 3.3) that equality holds in (2.12), i.e., (2.11)

describes the optimal trajectory for an initial condition on d\df. In any case, (2.12) shows t

it is necessary to make Assumption I below. In fact, we make Assumptions I, II and III belc

throughout the paper.

ASSUMPTIOI I: W ( y ) < OD V y > 0.

In order to analyze our model, we need a condition that the transaction costs are larj

enough. The particular form this condition takes is as follows.

ASSUMPTIOI II: W is twice differentiate and



(A + /z)U'[y(R-r)(l - / / ) ] - W'(y) > 0 V y > 0.

Finally, we need a condition on the rate of growth of U' at zero.

ASSUMPTIOI HI: The function g defined by

r-p

V y > 0

is strictly decreasing and satisfies

(2.13)

l img(y) = oD.
ylo

(2.14)

2.2 REMIM. If U(c) = j - for some p e (0,1) then Assumption I, II and III become

- Rp > 0, 0 - Rp > and 0 - Rp > - (R - r), respectively. Thus,

Assumption II implies the other assumptions. We see in Remark 13.1 that Assumption II is

necessary for power utility functions.

2.3REMAM. The concavity of U and (2.7) imply that y U'(y) < U(y) V y > 0. Therefore,

Assumption I and the Dominated Convergence Theorem imply that W is finite and can be

computed by differentiation under the integral, i.e.,

W'(y) = (R-r)( l - /
l l ) t U'[yeat(R-r)(l-/z)]dt

(2.15)

ft-Jt 0

l-/i)y a
Jy

a.



This implies that

since

l i m y 1 1 U'[y(R-r)(l-M)] = (2.16)

= lim p a * U'

> Hm f
V-4 rr\ v 'y-»oo J y

.§.
>limy(2y)

Furthermore, integration by parts of the dt integral in (2.15) shows that

( 2 1 7 )

3. The Bellman Variational Inequality.

Because U' is a strictly decreasing function mapping [0,OD] onto [0,a>] (see (2.7)), U'

has a strictly decreasing inverse I mapping [0,<D] onto [0,a>]. We define the convex Legendre

transform

U(v) 4 inf {cv - U(c)} = vl(v) - U(I(v)) V v > 0.
0 0

(3.1)



9 '

In terms of U, we can write the Bellman variational inequality for the deterministic control

problem formulated in Section 2 as

min{/?V - rxVx - RyVy + U(VX), (1 + A)VX - Vy

- (l-/x)Vx + Vy} = 0 on (3.2)

One consequence of (3.2) is

0V - rxVx - RyVy + c Vx - U(c) > 0 V c > 0. (3-3)

3.1 LEMMA. Assume that V is a nonnegative, concave, continuously differentiable solution to

the variational inequality (3.2). Then V dominates the value function defined by (2.9), i.e.,

V(x,y) > V (x,y) V (x,y) 6 «f. (3.4)

PROOF: Fix (x,y) e 4f. For any (C,M,N) 6 c^(x,y), let (Xt,Yt) be the corresponding position

process and define

a4 in f{ t>0 | (Xt,Yt)e

Applying the chain rule rule for finite—variation functions (Rogers k Williams [9], p. 29), we

get

r

J0

tAtr
- rX8Vx(Xs,Ys) - RYsVy(Xs>Ys) + CsVx(XS)Ys)]ds
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e^s[(l+A)Vx(Xs.,Ys.) - Vy(Xs.,Ys.)]dMs
J0

Vy(Xs.,Ys.)]dNs

(3.5)

e- /3s[-V(Xs,Ys)+V(Xs.,Ys.) + VX(XS.,YS.)AXS+ Vy(Xs-,Ys_)AYs

0<s<tAa

From (3.2) we know that the second and third integrals are nonnegative. The sum is

nonnegative because of the concavity of V. Because of (3.3), the first integral dominates

f e~^ U(Cs)ds. Letting t go to infinity, recalling that V > 0, and observing from Rema
Jo

2.1 that U(Cs) = 0 V s > a, we obtain V(x,y) > | e^s U(Cs)ds. Maximization of the
J0

right-hand side over (C,M,N) e ^(x,y) results in (3.4). o

We next seek to understand how equality can occur in (3.4). For a model in which the

is a bond and a risky stock, one would expect there to be two free boundaries, which would

split the region of into three parts. On one part, denoted by NT, no transaction should

occur, and the nonlinear differential equation

pV-ixVx- RyVy + U(VX) = 0 on NT (3.6)

would be satisfied. On another region, denoted by SB (Sell fiond), the agent holds too much

bond and should transfer some wealth into stock. Thus, his position should jump to the

boundary of NT, moving in the direction (—(1+A),1). We would have

( l + A ) V x - V y = 0 V(x,y)GSB. (3.7)
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On the last part, denoted by SS (Sell Stock), the agent should transfer wealth from stock to

bond, causing his position jump in the direction ((1—p),—1) to the boundary of NT. On this

region, we would have

Vy = 0 V(x,y)eSB. (3.8)

However, in our model, the "stock" is riskless. It would make no sense to sell such a

"stock", since it has a higher interest rate than the bond. This leads us to conjecture for our

model that there is no region SS and only one free boundary, defined by

x = h(y) , y > 0 , (3.9)

for some continuously differentiable function h. The no—transaction region is defined as

NT = {(x,y) e (^ | y > 0, x < h(y)} , (3.10)

and the sell—bond region is defined by

SB = {(x,y) € <^ | y > 0, x > h(y)} U {(x,y) e ^ | y < 0}.

We will establish the above conjecture, and further show that

(3.11)

h(0) = 0, h(y) > -(1-M)y, h'(y) > -(1+A) V y > 0. (3.12)

These conditions guarantee that except for the initial point (h(0),0), the graph of h lies in the

interior of df. In the Lemma 9.1 we use these conditions to show that for each (x,y) e SB,

there is a unique point (h(y),y) on the graph of h which can be reached by moving from (x,y)

in the (—(1+A),1) direction. This point is determined by the equation
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(3.13)

The main theorem of this paper, whose proof proceeds throughout Sections 4 - 12, is the

following.

3.2 THEOREM. Under Assumptions I, II and III, the value function V is a nonnegative,

concave, continuously differentiable solution to the variational inequality (3.2) satisfying the

boundary conditions

V Hl-/*)y,y) = W(y), V x Hl- M )y ,y) = U'(y(R-r)(l-/x)), y > 0,

V*H1+A)y,y) = 0 , y < 0.

(3.14)

(3.15)

Furthermore, there is a continuously differentiable function h : [0,o>) -»[0,a>) such that (3.12),

(3.6) and (3.7) hold, where NT and SB are defined by (3.10) and (3.11). If (X*o., Y*o.) =

(x,y) e NT, the optimal control processes in feedback form are

*, * *.Mt = 0, Nt = 0, Ct = I(Vx(Xt)Yt)), t > 0.

If (X0.,Y0.) = (x,y) € SB, the optimal control processes in feedback form are

(3.16)

Mt = y - y, Nt = 0, Ct = I(Vx(Xt)Yt)), t > 0, (3.17)

where y is determined by (3.13). (Recall that Mo. = 0, so (3.17) mandates a jump in position

at time zero. Furthermore, Vx = <» on dttf and (3.17) is to be interpreted as Ct = 0 if

(X*t,Y*t) €

3.3 REMAIK. The boundary condition (3.14) on Vx is chosen so that (3.16) is consistent with



13

(2.10), (2.11).

3.4 REMAIK. Because we construct V , the uniqueness of the solution to (3.2) subject to the

boundary conditions (3.14), (3.15) is not a major concern. It is to be expected that under

condition (3.15), either of the equalities in (3.14), and a growth condition, uniqueness can be

proved by the methods employed in Soner [10] and Soner and Shreve [12].

4. linearization of the Bellman Equation

We first tackle the nonlinear equation (3.6) in NT by a linearization technique

introduced by Karatzas, Lehoczky, Sethi and Shreve [7]. We proceed formally in this section

and make the arguments precise beginning in Section 5.

Suppose V is a strictly concave, smooth solution to (3.6) satisfying the boundary

condition (3.14). Then for each y > 0, Vx(- ,y) is a strictly decreasing function and so has a

strictly decreasing inverse c#(-,y), defined on some subinterval of R. In other words,

Vx(cWy),y) = 6, c2T(Vx(x,y),y) = x (4.1)

for all y > 0 and all 6 and x in intervals to be specified later. Differentiation of (4.1) with

respect to 6 and y leads to the formulas

(4.2)

Differentiating (3.6), we get

- Ry Vxy + I(Vx)VXX = 0.

Substituting (4.2) into (4.3), we obtain the linear equation

(4.3)
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1(6) = 0, (4.4)

whose general solution is

= y (4.5)

where 0 is a C1 function and ij) is a particular solution to (4.4). We specify ip by

i f /? = r ,

(4.6)

where

0 if 0 > r,

» if 0 < r.

4.1 REIIAIK. The integral in (4.6) is finite. If 0 > r, then the integrand is bounded at zero.

B.Suppose 0 < r. Equation (2.16) implies U'(c) < c for sufficiently large c, so

-!(d)

<U'(c)c E

for sufficiently large c. The last expression is integrable at infinity because of the finiteness of

W (see (2.15)). D



We use the boundary condition (3.14) to determine 8 in (4.5). Define

15

= U'(y(R-r)(l-/x)), V y > 0 (4.7)

g ( y ) = * L ( y ) y R , v y > o . (4.8)

Then Vx(-(l-/i)y,y) = ^(y) , or equivalently,

= -(My. vy>o. (4.9)

Comparing this with (4.5), we obtain

R-r
R /i . \ . R-7 (My if fi = r,

*i± _ r A

r y(R-r K M UL(y)\

(4.10)

By Assumption III and (2.16), g is a strictly decreasing function mapping (0,OD) onto

onto
(O,OD), SO it has a strictly decreasing inverse f : (0,a>) » (O,CD), i.e.,

a)) = a , V y > 0, a > 0. (4.11)

Note that ^(f(a)) = a(f(a)) R. We may rewrite (4.10) as



B.-I

if

r J f (a ) (R- r ) ( l - M ) l a J

Direct computation shows that

a 0'(a) - iO{a) = R(l-^)(f(a)) R V a > 0.

16

(4.12)

(4.13)

5. Precise Definition and Properties of SS.

The preceding section, particularly (4.5), (4.6) and (4.12), suggest the precise definition

of a function X as

ft-r
ft

-/? E-r (5.1)

defined for all y > 0 and 0 < tf < ^(y). We use 6 for the first argument to remind us that

the derivative Vx should appear in this position. Note that the definition of & is

independent of A.

Our intention is to use & to construct a function V satisfying (3.6). With ip and 0

defined by (4.6) and (4.12), the equations (4.4), (4.5) and (4.9) hold. Differentiation of (4.5),



coupled with (4.13), yields

r-R i-0 R-r

If P = r, then differentiation of (5.1) yields

if 0 + r, then (4.4), (5.1) and (5.2) imply

17

(5.2)

(5.3)

(5.4)

1(6)

5.1 LEMMA. For each y > 0, the function ^(- ,y) : (0,^(y)] -* [-(l-/x)y,oD) satisfies

(5.5)

(5.6)

PROOF: We first consider the case /? = r. Since I is decreasing, we have 1(5) > l(6L(y)) =

y(R-r)(l-/i) for tf 6 (0,^(7)] and the inequality is strict if S < 6L(y). The result follows from

(5.3).

We next consider the case /3 $ r. Let 6 e (0,£L(y)) be given, and note that
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y(R-r)(l-M) = I(£L(y)) < I(^)- Fr<>m t h is follow the equivalences

Iffl (5.7)

Inequality (5.6) follows from (5.4). If 6 = ^(y), except for /? < r the inequalities in (5.7)

become equalities, and (5.5) is obtained. o

6. Inversion of *£"(•,y).

For each y > 0, the strictly decreasing function ^(..y) has an inverse A(- ,y). We will

eventually identify A(x,y) with Vx(x,y), at least on part of the domain of the former. In light

of (4.9), -(1—p,)y is one endpoint of the domain of A(- ,y), and is itself in the domain. The

other endpoint is ^"(0,y) = lim <#(£,y), which is not a member of the domain. Thus, the
6[ 0

domain of A is

3 4 {(x,y) | y > 0, -(H*)y < x < jr(0,y)], (6.1)

which is a subset of G/, and

,y),y)= 6, jr(A(x,y),y)= x V y > 0, 0 < S < ^(y), -(1-M)y < x < S(0j). (6.2)
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In particular,

AHl-/x)y,y) = ^(y) V y > 0. (6.3)

3)

7. Construction of V o n ^ .

In this section we construct a function V on 3) = 3) U {0,0)}, a set which will turn out

to contain NT.

Restricted to NT, V will agree with the value function V*. We define V(0,0) = 0 and

V(x,y) 4 W (y )
-<HOy

V (x,y) e 3. (7.1)

Because A is not bounded near (0,0), it is not immediately clear that V is continuous at

(0,0); however, we establish this continuity in the summary at the end of the next section.

7.1 LEMMA. We have for all (x,y) e 3,

Vx(x,y) = A(x,y)

r R-r

(7.2)

(7.3)

PEOOF: Differentiation of (7.1) yields (7.2). To obtain (7.3), we make the substitution

£ = <%(6,y) in (7.1) and integrate by parts to obtain
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fA(x,y)
V(x,y) = W(y) + 6Sb{6j)d6

J & (y)(y)

= W(y) + xA(x,y) - f *'*
J £ (y)

Therefore,

j ) = W'(y)
(y)

(7.4)

Denote the right-hand side of (7.3) by H(x,y). After integration by parts and an

application of (2.16), we see that

r-B, r-/? R-r

H(x,y) = (l-n)y A(x,y) [f(A(x,y)y

(7.5)

R U'-r)(l-/i) y a j T_^o RU'(<r(R-r)(l-/<))dcr.

f(A(x,y)y

From (6.3), (4.11), (2.15) and (7.4), we have

HOyjr) = (Hi) «o(y) + W'(y) = (7.6)

Differentiation of (7.5), taking (4.11), the definition of g, and (5.2) into account, results in



r-B, 1-0
Hx(x,y) = (1-n) y R Ax(x,y) [f(A(x,y) y R )

= -^y(A(x,y),y)Ax(x,y).

From (6.2) and (7.2) we have

21

(7.7)

-JTy(A(x,y))y)Ax(x)y) = Ay(x,y) = Vxy(x,y). (7.8)

Equation (7.3) follows from (7.6) - (7.8).

7.2 LEMMA. The function

E-r
G(a)4(0-R) f a » g'(<r)d<7 +

Jf(o)

R-r

is positive for every a > 0.

PIOOF: Integration by parts using (2.16) reveals that

G(a) =
f(a)

a(f(a))

which is positive if ft < R. If ^ > R, then
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RU'(a(R-r)(l-/x))da

and again G(a) > 0.

f(a)

i-r
= g(f(a)) (f(a)) * = a(f(a)) r ,

We would like to show that V is concave, but it is not clear that its domain

2 U {(0,0)} is convex. We content ourselves, therefore, with the following local convexity

result.

7.3 PIOPOSITIOI. The Hessian matrix V2^ is negative definite on 3).

PEOOF: Recall that 2 is the range of the mapping X. Differentiation of (6.2) implies

(7.9)

Differentiation of (7.2) yields

(7.10)

(7.11)
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Differentiation of (7.3) yields

Vyy(x,y) = -
0-TL

L
r-E i-0 R-r

R (i(6y * )) R [Ay(x,y) + ^ A(x,y)].

Using (5.2) and (7.9), we may rewrite this as

yy
(7.12)

Now Vxx < 0 on 3> because of (7.10) and Lemma 5.1. Moreover

det

because of Lemma 7.2. D

7.4 TMEOUEM. The function V solves the nonlinear equation (3.6) and satisfies the boundary

conditions (3.14).

PIOOF: The boundary condition follows immediately from the definition of V and from (7.2)

and (6.3). On ^i^\{0,0)}, we have from (3.14), (7.4), (3.1) and (2.17) that (3.6) holds, to wit,

/?V(x,y) - rxVx(x,y) - Ry Vy(x,y) + U(Vx(x,y))

-Ry[W'(y)
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= 0W(y) - Ry w / ( y ) - U(y(R-r)(l-/x)) = 0.

Furthermore, V satisfies (4.3) because 3> satisfies (4.4). If we now integrate (4.3) with

respect to x, starting at x = -(l-/i)y, we obtain (3.6). D

8. The Free Boundary.

On the free boundary, we should have (1+A)VX - Vy = 0. The formulas in Lemma 7.1

suggest the introduction of the function

irr
R-r

(8.1)

defined for y > 0, p > 0. For each y > 0, we seek p(y) 6 (0,1) such that

F(/>(y),y) = 0. (8.2)

The free boundary h will then be characterized by the equation £R(y) = />(y)£L(y) = A(x,y),

or equivalently,

h(y) 4 ^(^(y),y) V y > 0.

8.1 LEMMA. For each y > 0, F(« ,y) is a strictly convex function satisfying

limF(p,y) = 0, li
iO i

(8.3)

(8.4)

,y) = (A+/i)5L(y)-W'(y)>0. (8.5)
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In particular, there exists a C1 function p: (O,OD) -• (0,1) such that (8.2) holds for every y > 0.

PIOOF: We have

which satisfies (8.4) and is strictly increasing in p. By (7.3), (7.4) and Assumption II,

,y) = (l+X)6L(y) -

These facts imply the existence of a function p(') satisfying (8.2); smoothness follows from the

Implicit Function Theorem and the fact that

F>(y),y) > o v y > o. (8.6)

83 CoiflLLAiY. For each y > 0, we have

(A+/z)p^L(y)-F( / ) ,y)>0 V p G (0,1].

(8.7)

(8.8)

PEOOF: Because W7(y) > 0 (Remark 2.3), the concave function of p in (8.8) is nonnegative

at p = 0 and positive at p = 1, hence positive on (0,1]. D

The function £*(y) = p(y)^(y) is characterized by the equation
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B,-r
7 *g ' (a )d<7 = 0 V y > 0 . (8.9)

We shall see that 5*(y) is the derivative vl(h(y),y) along the free boundary.

8.3 LEMMA. The function 6* : (O,OD) -* R is positive, strictly decreasing, and satisfies

y|0 ylO
= 0. (8.10)

Furthermore, for every y > 0,

1 + A + ),y) > 0, (8.11)

Ry[ l+ A+
(8.12)

PIOOF: From (8.6) and (5.2) we have

r-R, x-(3 R-r

0 < Fp(p(y),y) =

= *L(y)[l + A + Sy{6\y),y)),

which proves (8.11). The above inequality also implies

*=§. JL
y > o. (8.13)
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Applying the function g to both sides of (8.13), we obtain

x-0 _R_

Ay) > (¥$)*-* U'[(R-r)(l-^)(l±A)R-ry] V.y > 0. (8.14)

The limits (8.10) follows from (8.13) and (8.14).

Differentiation of (8.9), followed by substitution based on (8.9), results in the formula

0 =

r-R

- (HO y R [f( Ay)y (n^)Ay)]

= £ Ay)[i

which gives us (8.12).

It remains to show that SK is strictly decreasing, which we accomplish by proving

0 V y > 0, (8.15)

and then appealing to (8.11), (8.12). But with G as defined in Lemma 7.2, we may use (8.9)

to write the expression in (8.15) as



P-t. R-r

r

The free boundary is defined by (8.3). We extend h by setting

8.4 LEMMA. The free boundary h satisfies

i.e., h is continuous at y = 0. Furthermore,

28

h(0) = 0, h(y) = V y > 0. (8.16)

l imh(y) = 0 ,
y|o

(8.17)

h(y) > -(l-/x)y, h'(y) > -(1+A) V y > 0. (8.18)

PiOOF: For (8.17), we consider only the more difficult case of 0 i r. According to (5.1),

rJi(Ay))
dc.
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As y | 0, the first two terms on the right—hand side approach zero because of (8.10). Because

of (5.7), the upper limit of the integral dominates the lower one if and only if (3 < r, in which

case

(8.19)

for all c in the integral of integration. In the reverse case /? > r, (8.19) holds because now
c i I(^(y)) a nd jfig < 0- Since the integrand is bounded by 1, and both limits of integration

approach zero as y does, the integral also has limit zero. This concludes the proof of (8.17).

By construction, 6 (y) < 6 (y), and the first inequality in (8.18) follows from (4.9) and

Lemma 5.1. For the second inequality, we use the strict decrease of Jf(-,y) and £R and

inequality (8.11) to write

8.5 LEMMA. The function V satisfies

limV(h(y),y) = 0.
ylo

PIOOF: Making the change of variables £ = &{6,y) in (7.1), we obtain

(8.20)

V(h(y),y) = W(y) + J (8.21)

It is clear from (2.12) that



limW(y) = 0,
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(8.22)

so we concentrate on the integral in (8.21). This integral is positive; we seek an upper bound

which approaches zero as y does.

Let us first consider the case /? == r. Recall (5.3) and use the change of variables

c = 1(6) to write

U'(c)dc

Because of (8.10), 1 im l(S\y)) = 0, and we have the desired result.
ylo

We next consider the case /? < r and recall from (5.4) that

f ^L(y)

dcd^.

We reverse the order of integration. Note that 1(6) < c if and only if U'(c) < 6, and

c < (R-i)(l-(i)i(8y R ) if and only if

Izi *=§.
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Therefore,

).Tj'(c)\ . . . c . . . j(*-0)/i

'(c)

) R]dc

^ x |.(R-r)
r'(c)dc

and this has limit zero as y | 0 because of (8.10).

The case /3 > i can be treated similarly. Using the equality

= y (R-r)(l-^

one obtains

f

and again (8.10) gives the desired result.
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8.6 SUMMARY. By definition, h(y) = S(^(y),y) < c5"(0,y), so 3 defined at the beginning of

Section 7 contains

NT 4 {(x,y) e • | y > 0, x < h(y)}.

Thus V is defined on NT. We have

>y) = 6\y) V y > 0.Vx(h(y),y) = A(h(y),y) =

In other words, Vx( • ,y) takes the value 6L(y) at x = -(1—/x)y and decreases to the value

at the free boundary x = h(y). In particular,

W(y) < V(x,y) < V(h(y),y) V x e [-(l-^y.hCy)], V y > 0.

From (8.20), (8.22), we see that VI is continuous at (0,0), i.e.,

lim V(x,y) = 0.
(x,y)-(0,0)
(x,y) e NT

Because lim 6\y) = w, we have

lim Vx(x,y)
( x , y H 0 , 0 )
(x,y) e NT

On the boundary itself,

(8.23)

(8.24)

(l+A)Vx(h(y),y) - Vy(h(y),y) = F(p(y)) = 0 V y > 0. (8.25)
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9. Construction of the Value Function on e/.

We partition <if into the regions NT and SB of (3.10) and (3.11).

9.1 LEMMA. For each (x,y) € SB, there exists a unique point (h(y),y) e NT satisfying (3.13).

Moreover, y > y.

PIOOF: Because of Lemma 8.4, the function <p(z) = h(z) + (1+A)z satisfies (p(0) = 0,

<p'(z) > 0 V z > 0, and l im <p(z) = OD. Therefore, there is a unique y > 0 such that
Z-»0D

= x + (1+A)y. Now, x > h(y), so <p(y) < y?(y), and thus y < y. D

For (x,y) e SB, we denote by (x(x,y), y(x,y)) the point on the free boundary constructed

in Lemma 9.1. The functions y and x = h o y are C1 on SB\52S, and

1+A

h'(y) + 1+A h'(y) + 1+A
,x x = h /(y)yx,xy = h/ (9.1)

Define V on df to be

V(x,y) 4

V(x,y) if (x,y)GNT,

y(x(x,y),y(x,y)) if (x,y) 6 SB.

(9.2)

We will ultimately show that V is the value function.

9.2 LEMMA. The function V is continuous on c/, C1 on df\d?<2f, and for every



Vx(x,y) = Vx(x(x,y), y(x,y)), Vy(x,y) = Vy(x(x,y),y(x,y)),

(1+A) Vx(x,y) - Vy(x,y) = 0.
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(9.3)

(9.4)

If (x,y) € d^, then

l i m Vx(f,77) = OD.

h{)
(9.5)

PIOOF: Formulas (9.3) and (9.4) follow immediately from (8.25) and (9.1). From (8.24) and

(9.3), we have (9.5). n

9.3 TKEOEEM. The function V is a nonnegative, continuously differentiable solution to the

variational inequality (3.2) satisfying the boundary conditions (3.14) and (3.15).

PKOOF: Because & satisfies (4.4), V satisfies (4.3) on NT\{(0,0)}. On 52^\{(0,0)}, we

have from (7.1), (7.2), (6.3), (7.4), (3.1) and (2.17) that

/7V(x,y) -rxVx(x,y) -RyV^x.y) + U(Vx(x,y))

- Ry[W'(y)

- RyW'(y) - U(y(R-r)(l-/x)) = 0.

If we now integrate (4.3) with respect to x, we discover that

pV - rxVx - RyVy + U(VX) = 0 on NT\{(0,0)}. (9.6)
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It remains to show that

- (l-/x) Vx + Vy > 0 on

( l + A ) V x - V y > 0 on d& U int(NT),

0V - rxVx - RyVy - U(VX) > 0 on

From Lemma 7.1 and (8.2) we have that for every (x,y) e dic/U int(NT),

(9.7)

(9.8)

(9.9)

Vx(x,y) = A(x,y), Vy(x,y) = (1+A) A(x,y) - F ( ^ * i , y).

Therefore,

,y) + Vy(x,y) = (A+/z)A(x,y) -
(y)

, y), (9.10)

(l+A)Vx(x,y) - Vy(x,y) = F&&A , y),

and both these expressions are positive in d ^ U int(NT) because of Corollary 8.2 and the fact

that

v x € Hi-/i)y, h(y))

(see Summary 8.6). Indeed, (9.10) is also positive when x = h(y), y > 0, and this positivity

extends to all of <2f\d2<if because of (9.3).

To prove (9.9), we use Lemma 9.2 and (9.6). For (x,y) e SB\<92S, let x = x(x,y),

y = y(x,y), and write
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/?V(x,y) - rxVx(x,y) - RyVy(x,y) - U(Vx(x,y))

= /?V(x,y) - rxVx(x,y) - RyVy(x,y) - U(Vx(x,y))

r(x-x)Vx(x,y) + R(y-y)Vy(x,y)

= r(h(y) -x)Vx(x,y) + R(y-y)(l+A)Vx(x,y)

r[h(y) - x - (1+A)y] Vx(x,y) = 0.

10. Concavity of V on o/.

A function $ defined on a domain f? c Rn is said to be locally concave at a point

x € # if there exists e > 0 such that the open ball Be(x) = {y e Rn | |y—x| < e} is a subset

of tf and $ is concave on Be(x). If & is an open subinterval of R and $ is locally

concave on #, the the right— and left—derivatives of $ exist on #, are nonincreasing, and are

right— and left-continuous, respectively (see, e.g., Karatzas & Shreve [6], Problem 6.19, p. 212

and Solution 6.19, p. 234). This implies, in turn, that $ is concave on # (see, e.g. ibid,

Problem and Solution 6.20). By applying this one-dimensional result along lines in Rn, we

obtain the following lemma.

10.1 LEMMA. Let $ be defined on an open domain <6 c Rn. If $ is locally concave at every

point in <6, and # is a convex set, then $ is a concave function.

10.2 LEMMA. Let $ be a C1 function defined on a convex, open domain tf c Rn. The function

$ is concave if and only if

$(y) - $(x) < V$(x) • (y - x) V x,y 6 #. (10.1)
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PEOOF: We show that (10.1) implies concavity. Let x,y € ^ be given. Then (10.1) implies

= \ [*(?) - *(£ x + 1 y)] + *[*(y) - *( J x + \ y)]

= 0.

10.3 THEOEEM. The function V defined by (9.2) is concave on

PEOOF: Since V is continuous on <2f> it suffices to prove concavity on int(G^). For this, we

prove local concavity and then appeal to Lemma 10.1. From Proposition 7.3, we already have

local concavity of V on int(NT), and it remains to prove local concavity on 5H\52<^.

Let (xO)yo) € SF\c?2<^ be given and define x0 = x(xo,yo), yo = y(xojo)- Then

(xo,yo) £ NT, and we can choose e0 > 0 such that Be (xo,yo) C 3. Now choose e > 0 such

that Be(xo,yo) n NT c B£ (xo,yo) and (x(x,y), y(x,y)) € Be (xo,yo) V (x,y) G Be(x0,y0) n SB.
o o

We shall prove that V is concave on Be(xo,yo) by checking the condition of Lemma 10.2.

Let (xi j i ) , (x2)y2) be in Be(xo,yo). For i = 1,2, if (xi,yi) G SB, define xi = x(xi,yi),

yi = y(xi,yi); if (xi,yi) G NT, set xi = xi, yi = yi. Note from (3.13) that in either case

(10.2)

From (8.25) we condude that

i - Xi) Vx(xbyi) + (y i - yi) Vy(xi,yi) = 0. (10.3)
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Using the convexity of V on Be (xo,yo) and (9.3), we have

V(x2)y2) - V(xbyi) = V(x2,y2) - V(x1)yi)

< (x2 - x{) Vx(x1>yi) + (y2 -

= (x2 - xi) Vx(x1}yi) + (y2 -

= (x2 -

Vy(xi,yi)] - [(xr-xi) Vx(xi,yi)

Vx(xi,y!) + (y2 - y^ Vy(xi,yi).

11. The Optimal Trajectories

We show in this section that if we start the position processes at (X0.,Y0.) =

(x,y) e NT, use the feedback consumption process

Ct 4 I(Vx(X t,Y t)), (11.1)

and do not trade (M = 0, N = 0), then the position process stays in NT, moving in finite time

to the boundary did*. We have already observed (see Remark 3.3) that once the position

process arrives at d\<^, it stays on this boundary.

Let (X0-,Y0.) = (x,y) 6 NT, and define X and Y by the formulas

Yt 4 y eRt , Xt 4 [rXs - I(Vx(Xs,Ys))]ds. (11.2)

We also define the derivative process

St = Vx(Xt,Yt). (11.3)
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As long as (Xt,Yt) remains in NT, we have Xt = c5"( t̂,Yt) and

dXt = #b{6t,Yt) &5t + JZy{6t,Yt) R Yt dt. (11.4)

Comparison of (11.2) with (11.4) shows that

- l{6t) - J?Ty( £t)Yt)RYt]dt. (11.5)

Invoking (4.4), we obtain the first—order linear differential equation

(11.6)

Define

T = inf{t > 0 | Xt = -(l- / i)Yt or Xt = h(Yt)}. (11.7)

Because of (5.6), we can cancel c£"6(£t,Yt) from (11.6) and thereby obtain

St = 6ae(P~T)X, 0 < t < r,

where So = Vx(x,y).

If r is finite and X, = h(Y,), then

(11.8)

On the other hand, if r is finite and X, = - ( l -^)Y, , then
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Finally, (Xt,Yt) e NT if and only if ^(Y t) < «t < *L(Yt). In particular, 0 < 6\y) < 60 <

11.1 LEMMA. We have r < a> and (X,,Y,,) e d\df, i.e.,

> «*(Yt), 0 < t < r, (11.9)

(11.10)

PIOOF: Let Zt = fc - ^"(Yt). From (8.12), (8.11) we have

_ (3 „ (6-R)(\+X)
+A

(R- i lQ+Al
1 + A + Sj{S\Yt),Yt)

> (/5-r)Zt.

Therefore, -JJ (e"XK~r^tZt) > 0 and (11.9) follows from the initial condition So >

To show that (11.10) holds for some finite r, we write

r ) t - U'(y eat(R-r)(l- /x))

- (eat) l U'(y elt(R-*)(H*))].

This quantity is nonpositive at t = 0 but becomes positive as t -» OD because of (2.16).

11.2 REMAU. For t > r, formula (11.8) cannot be derived from (11.6) because ^6(&T,Y1) = 0
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(see (5.5)). Indeed the boundary condition (3.14) shows that

* = U'(ye l t(R-r)(Ht)), t > r.

12. Proof of Theorem 3.2.

We show in this section that the function V defined by (9.2) is the value function V*

of (2.9). We already know from Lemma 3.1 and Theorems 9.3, 10.3 that V > V*. Because of

Remark 2.1, V* = 0 on d^, and this agrees with the definition V(x,y) = V(0,0) = 0

V (x,y) € di<if. It remains to show that

V(x,y) < V*(x,y) V (x,y) e (12.1)

We first consider the case (x,y) 6 dxdf and show that when Xo. = x, YQ. = y and M*,

N , C are as in Theorem 3.2, then

t-»OD
(12.2)

Because V satisfies the boundary condition (3.14) (Theorem 9.3), C , X and Y* are given

by (2.10), (2.11), and

W(yeIlt)

= f
J0

= J" e* U[yeES (R-r)(l-/x)]ds
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This expression has limit zero as t -+ © because of Assumption I. Now suppose (X0-,Y0-) e &.

Then (XO,YQ) G NT, and the discussion in Section 11 shows that (X*,Y*) reaches dxdf in finite

time. Therefore, (12.2) holds when M*, N*, C* are as in Theorem 3.2, regardless of the initial

position in <*f.

Let (x,y) 6 df\d2& be given, and let X*. = x, Y^. = y and M*, N*, C* be as in

Theorem 3.2. Then (Xt,Yt) € NT for all t > 0 (even if (x,y) t NT, because in this case, there

is an immediate jump to the free boundary). As in the proof of Lemma 3.1, we may use the

chain rule rule to write

= [*
Jo

0<s<t

The first term on the right-hand side is equal to e~~^ U(Cg)ds because V satisfies (3.6)
J0

(see Theorem 9.3, especially (9.6) in its proof, and also (3.1)). The second term is zero because

after the initial time, M is constant, and if M jumps at the initial time, then

*-) = 0

(see Lemma 9.2). The third term is zero because if M jumps at the initial time, then
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V(X?,Y?) = V(X*

Therefore,

= AMSH1+A)V^X*,YJ-) + Vy(X^Yj.)] = 0.

V(x,y) - e " ^ V(X;,Y;) = f*

and taking t -»», using (12.2), we we obtain

V(x,y) = P
Jn

< V*(x,y).

13. Power Utility Functions.

In this section we specialize the model to the case that the utility function for

consumption is of the form U(c) = £- for some p € (0,1). Then U'(c) = cp"1 and
1

1(8) = tfP \ The function g denned by (2.13) becomes

g(y) = , y>o, (13.1)

and its inverse is

f(a) = , a > 0. (13.2)
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As observed in Remark 2.2, Assumption II implies that

li (13.3)

an assumption which is in force throughout this section.

A straight—forward but tedious evaluation of (5.1) results in the key formula, valid both

when /? = r and /? f r,

0,

where

k i
R-r

The function F of (8.1) becomes

F(p,y) = [(R-r)(l-

(13.5)

1-k

and this function takes the value zero when p is

In particular,

(13.7)

p-1
, (13.8)



and the free boundary is (see (8.3))

= ay, y > 0 ,

where

A 1-,

Just as in Davis & Norman [4], the region NT is a cone.
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(13.9)

(13.10)

(13.11)

13.1 REMALK. Assumption II in the form (13.3) is a necessary condition for the free boundary

to be in the interior of df. To see this, define

A

%r * - u], V v > 0,

so b = i</?-Rp) and a = y<b). Note that

0 v > 0

, V i / > l ,
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). Therefore,

In particular, a > -(1-/*) because of (13.3).

Just as in the proof of Lemma 7.1, one can change variables in (7.1) to obtain the

formula

V(x,y) = W(y) + f L
X > y SJt^SjW V (x,y) 6 NT. (13.12)

(x,y)

However, the inversion of ^(*,y) in (13.4), necessary to determine A(«,y), is not algebraically

possible, and it thus does not seem possible to obtain a closed—form formula for V in NT.

One can obtain such a formula for V on the free boundary, because A(h(y),y) = 6 (y) (see

Summary 8.6). We have

V(x,y) = W(y) + f ' $J?T6(£,y)d£=cyP, y > 0, (13.13)
J S (x,y)

where

c "
rl-p
l- p

For (x,y) e SB, (x,y) constructed in Lemma 9.1 is given by the formulas (see (3.13))

x + fl+AWy ~ 1 + 1 + A ' x ~ a v - (13.15)



Because V(x,y) = V(x,y), we obtain
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= c [* +V(x,y)= c [* + V (x,y) e SB, (13.16)

where c is given by (13.14), and k, a, b are given by (13.5), (13.10), (13.11).

13.2 COICLUSIOI. If the agent is given an initial position (x,y) e SB, he should sell the bond

and buy "stock" so as to immediately bring his position to (x,y) given by (13.15). He should do

no further trading. He should set S(6j) defined by (13.4) equal to x and solve for S. Let

(see (11.1),So satisfy S(60yy) = x. The agent's consumption should be Ct = [So

(11.3), (11.8)) until time r when his position reaches d\df, where X^ = — ( l - / r

Thereafter his consumption should be Ct = Y1 e
E't~r)(R--r)(l--/z) (see Remark 11.2).

If the utility function U(c) is not of the form - cp, the above description of the optimal

policy is still correct, except the explicit formulas (13.15) and (13.4) must be replaced by their

more general versions (3.13) and (5.1), and, of course, x == h(y).
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