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Abstract

This report presents a method for addressing integrated navigation and control tasks for constrained
dynamical systems. Specifically, we focus on solving this problem for an idealized point robot subject to
bounds on velocity and acceleration. The basic approach divides the overall task into discrete sub-tasks, and
achieves those sub-tasks using feedback control policies. The method is based on sequential composition
of safe, reliable, and robust feedback control policies.

This report presents an extension to the method of sequential composition that allows a new class of
feedback control policies with goal sets, not just goal points. Where previous work only allowed for goal
sets that were completely contained in the domain of another control policy, this extension allows the
deployment of policics whose goal intersects the domains of multiple policies. This extension allows for
a larger class of policies to be deployed, making it easier to build near globally convergent overall control
policies.

This report also details the new local control policies, defined over cells in the configuration space. The
policies cause a large subset of initial states to exit the cell in a specified manner. The resulting composition
of local control policies induces a global control strategy that brings any initial condition contained in the
union of the domains of the control policies the goal, provided that there is a single connected component
of free space containing both the start and goal configurations. The underlying control policies are designed
to respect environmental constraints such as obstacles, velocity bounds, and acceleration bounds. Control
policies for fully actuated kinematic and dynamical systems are developed.
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1 Introduction

The goal of this research is to develop feedback control strategies that allow for automatic deployment of
control policies in constrained environments, such that the resulting control system instantiates a natural,
provably correct behavior for systems operating with their full dynamic capabilities. The classic navigation
problem in robotics is to find a trajectory that takes the system from a start configuration to a specified
goal configuration, while avoiding obstacles in the environment. By system we mean a mechanical system,
capable of motion in its surrounding environment, with inputs used to specify the motion. The work in this
report focuses on fully actuated, or holonomic, systems in IR™. The inputs can take the form of velocities, in
which case we refer to the system as kinematic, or accelerations (forces), in which case we refer to the system
as dynamical.

Conventional robot architectures have separated the planning and control problem to a degree that prov-
ably correct planning algorithms offer no guarantees of dynamical performance. The problem of defining a
trajectory that solves the navigation problem is often decomposed into a path planning problem, followed by
a controls problem. However, a complete path may be impossible to follow for a dynamical system. Another
typical approach is to operate far below the capabilities of the system in order to approximate kinematic be-
havior. We present a new approach to decomposing this problem so that the planning and controls problem
is solved simultaneously by inducing a global control policy that brings any initial configuration to the goal
provided that there is a single connected component of free-space containing both the start and goal configu-
rations. Our approach is to define a palette of control policies, and a switching strategy among the individual
control policies, such that the resulting composition simultaneously solves both the navigation and control
problems. Our approach allows us to leverage the robustness afforded by feedback controls, while generating
a globally convergent control policy.

Our task is to design a control policy, a set of rules and governing equations, that determines the control
inputs to the system such that motion from the start to the goal is guaranteed to be safe, robust, and reli-
able with respect to system perturbations. The control policies considered in this research take the form of
memoryless state feedback policies. The systems of interest are subject to dynamic constraints in the form
of allowable motions and bounded control inputs. Costs such as elapsed time and energy consumption are
often considered in optimal control theory; the goal is to design a control policy that minimizes the value
of some cost function — often a function of clapsed time, or energy, or a combination of both. In our work
we do not consider optimal control policies, but seek to design control policies that respect the fundamental
dynamic constraints of allowable motions and control inputs, while at the same time satisficing from a time
and energy standpoint [64]. By incorporating the constraints into the low-level control policies, and planning
in the space of available control policies, we offer a methodology that is provably safe and correct in both
kinematic and dynamical environments.

After introducing an overview of related work, we discuss the decomposition and planning problem
inherent in our work. This serves to motivate the type and scope of our low-level control policies, while
offering proof of the correctness of the control policy composition. We develop extensions to the method
of sequential composition that allow feedback control policies with goal sets, not just goal points. Previous
work allowed only for goal sets that were completely contained in the domain of another control policy, this
report presents an extension that allows the deployment of policies whose goal set intersects the domains of
multiple policies. This extension allows for a large class of policies to be deployed, making it easier to build
near globally convergent overall control policies.

Next we develop the general form of the low-level control policies, and provide proofs of the applicability
to a simple dynamical system. We then outline the development of hybrid switching control policies required
to overcome dynamical constraints, such as acceleration limits, and increase the domain of attraction for
the low-level control policies. We present specific constructions for policies defined over convex polytopes
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in configuration space. We conclude by outlining the next steps in our research plan, which is to develop
automated systems of control policy deployment for real mobile robots subject to non-holonomic constraints.

2 Related Work

As introduced earlier, the navigation problem in robotics has a long history, and a vast literature. Numerous
techniques have been developed over the years in an attempt to solve this problem [42]. Researchers have
typically broken the problem into different parts, solving one part and leaving the rest to others. In spite of
the plethora of available techniques, no single technique has been universally accepted. Some techniques
work only in ideal conditions, others solve local problems but not global problems. Techniques that deal
with obstacles do not address non-holonomic constraints, and vice versa. Many of the techniques capable
of generating a valid path or trajectory through a cluttered environment do not address convergence issues if
the system starts off the desired path. The research presented in this document addresses these shortcomings
in a bottom up manner for a limited class of holonomic systems by designing control policies that respect
dynamic constrains on the system.

This section begins with a review of some of the relevant literature related to the problem of moving
a robot or other dynamical system from one point to another in a cluttered environment. An overview of
techniques used in the navigation and control of mobile robots is provided. The section concludes with a
discussion of hybrid control theory and an overview of the method of sequential composition, which forms
the foundation for this research.

2.1 Navigation and Centrol
The navigation problem can be divided into three classes:

i) path planning followed by trajectory generation or path following,
ii) local obstacle avoidance, or

iii) integrated trajectory planning.

This section considers each class in turn.

2.1.1 Path Planning

Path planning attempts to determine a valid path in the free space. Examples of path planning include
navigation from start to goal, mapping, and coverage tasks. The focus of this review is on path planning for
navigation tasks. The desired path is represented by a continuous function,

q(s) : [0) 1] - FSq,

that maps an interval to the free configuration space such that ¢(0) = qo, the start configuration, and ¢(1) =
gy the goal configuration [42]. A valid path, also called an admissible path, is a path in the free space that
satisfies given constraints, such as curvature bounds. In general, path planning requires full knowledge of the
environment [42]. The basic navigation problem ignores differential constraints, and assumes the system can
move in any direction. Latombe [42] terms this type of system a free flying robot, while others use the term
holonomic robot [27]. The lack of motion constraints makes the planning problem easier.

The vastness of the path planning literature renders it impossible to give a full accounting in this section.
Therefore, this section focuses on the why and results of path planning. For the “how,” and further references,
the reader is referred to the accepted reference for motion planning, Latombe’s Robot Motion Planning [42].

2 © 2003 Carnegie Mellon



Loosdly, we will divide the path planning methods into two camps - those that provide a continuous path and
those that provide a discrete set of way points aong the desired path.

A continuous path from initial configuration to goa can be found using roadmap methods, such as
Canny's silhouette method, visibility graphs, Voronoi graphs, and freeway methods [42, 23]. Roadmaps are
one dimensional subsets of the free configuration space that have the properties of accessibility, connectivity,
and departability. The robot can access the roadmap from any initia configuration (accessibility), navigate
aong the roadmap to a point near the goa (connectivity), and depart the roadmap near the goa where a path
to the god can be found (departability).

Potential fields are also used to find a continuous path by performing gradient descent along the potential
function beginning &t the initia configuration [31, 42]. A potentia field can be constructed by summeation
of an dtractive potential, which increases with distance from the goal, and a repulsive potential, which in-
creases as obstacles are approached. Unfortunately, for genera potential fields, the path may only lead to a
local minimathat does not correspond to the overdl god [31,40, 36]. Rimon and Koditschek [57, 55, 58,56]
developed an analytic method of finding a navigationfunction, which is a potential field with a single min-
imum &t the goal. Their approach mapped a class of obstacles to a model space, and defined the navigation
function on the model space. The induced potential on the configuration space was guaranteed to be a nav-
igation function as well. Connolly et al [17, 16, 18] developed a potentia field with a unique minimum
based on anumeric solution to Laplace's heat equation, which yields a harmonic potential function.

The second class of methods used to generate a path is to approximate the continuous path with a st of
discrete way points. Approximate cellular decompositions are often used to define the region corresponding
to the discrete points [42]. In H?, agrid representation is common, both because of the ease of representation
and its utility as amethod for merging sensor data [49]. Each grid point correspondsto aregion of free space
or obstacle. The value associated with each grid point may represent the cost to traverse the cell, or represent
the probability that the region is occupied by an obstacle. The path is found by searching for adjacent grid
pointswith the minimum associated cost to traverse the cell. The grid discretization extends to hyper-cubesin
higher dimensions, athough other region shapes corresponding to each grid point are possible. Approximate
cell decompositions are only resolution complete, and may require refinement of the resolution [42]. For
moderately complex environments, or configuration space dimensions greater than two or three, the number
of cells to search may become intractable, which has given rise to probabilistic methods.

Probabilistic RoadMaps (PRM) sample the free configuration space at some specified number of loca
tions [29,46]. The roadmap is built as a graph, where nodes in the graph corresponding to the sample points
are connected to their neighbors if an admissible path in the free space exists between the two corresponding
sample points. A fagt, drictly loca planner is used to query sample pointsto see if an admissible path exists.
If admissible paths between the gtart and goal points can be found to points in the graph, the complete path
is found by searching the graph corresponding to the roadmap. While none of the PRM techniques are com-
plete, they are probabilistically completein that as the number of random sample points and execution time
goes to infinity a solution, if it exists, will be found with probability one.

While solving the path planning problem generates an admissible path, it does not actudly cause the
system to move toward the goal. For this, acontrol policy must be used to map the current state and desired
position on the path to the system inputs. Given the path, the development of such acontrol policy is known
as the path following problem.

2.1.2 Path and Trajectory Following
Given an admissible path, possibly constructed by one of the methods given above, the task becomes to

design the control inputs to move the system aong the path from start to goal. For an idedlized system,
without differential congtraints or input bounds, thisis relatively straightforward. If the system is kinematic,

© 2003 Carnegie Mdlon 3



we have

¢ = f(u)
= 6’(8)5, m

where § is the time derivative of the tjme scaling s(t) : [0,T] — [0,1]. In the simpliest case of a constant
speed trajectory, § = T, where T' = ~— with L the total path length and Vy,ay the desired speed.

If the system is dynamical, § = f (u) the path following problem can become more complicated. Accel-
eration bounds may prevent the system from cxactly following the path for arbitrary velocities. If the path is
continuous (¢(s) € C°), but has a discontinuous first derivative ( §(s) ¢ C!), then there is no bounded con-
trol input capable of following the path. As such, the admissiblity of path must consider the dynamics of the
system that will attempt to follow the path. For paths with continuous second derivatives, §(s) € C!, there
exists an algorithm to determine the time optimal time-scaling for which the path can be followed [4, 65].

In spite of these methods of control, systems rarely follow paths exactly, whether due to differential
constraints, limited actuation, or the general imprecision of the motors and control policies [43]. Therefore,
paths that are perfectly valid from a planning perspective, may lead to collisions when applicd to a physical
robot.

One approach to avoiding the collision problem s to plan in the space of admissible trajectories (¢rajectory
planning), as opposed to decoupled path planning and motion control [45]. However, before moving on to
integrated trajectory planning, we discuss a more basic method of obstacle avoidance, which can be coupled
with path following or used as a navigation method by itself.

2.1.3 Obstacle Avoidance

The most basic form of navigation is moving toward the goal while avoiding local obstacles. Although all of
the local obstacle avoidance methods described in this section suffer from the problem of “local minima” by
virtue of their being based on local information, the methods are able to operate in real time, while moving
in cluttered and changing environments. Often these methods are layered on one of the global path planning
algorithms described earlier, where points along the desired path serve as intermediate goals to guide the
local algorithm to the global goal [41, 70]. This form of local obstacle avoidance helps to overcome some of
the problems associated with path following error. The coupling of local obstacle avoidance with global path
planning allows planning system to operate on a coarser scale, which speeds the planning stage making this
approach feasible for real-time operation [41].

The potential field method can serve as both a local obstacle avoidance method and a global planning
method, as discussed earlicr; here, the focus in on local obstacle avoidance [31, 40]. The basic approach cal-
culates an attractive potential with respect to the distance to the (intermediate) goal, and repulsive potentials
with respect to obstacles, with control effort applied along the gradient vector [31]. The input magnitudes
used for control are sometimes based on the magnitude of the potential gradient, and sometimes on some
specified magnitude in the direction of the gradient.

Several variations of the basic potential field method of obstacle avoidance have been developed. Krogh [40]
defines a generalized potential field that includes velocity information, along with acceleration bounds, in the
potential calculation. The acceleration direction field is a scaled linear combination of gradient vectors of the
generalized potential field. Kim and Khosla [32] defined potential functions using harmonic functions based
on the solution to Laplace’s equation. Their method used source and sink functions, along with a constant
flow condition, to solve the obstacle avoidance problem. The method required tuning of parameters within
certain bounds to prevent failure.

All of these potential methods can result in a stable (zero gradient) points at local minima other than at the
global goal, and thus require higher level information [42, 31, 40]. Additional way points, random motion,
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and equipotential “wall” following are techniques used to escape local minima. In spite of the problem of
local minima, potential field techniques are still in widespread use [66].

Borenstein and Koren [6] attempted to overcome local minima problems found in their implementation
of a Virtual Force Field potential method with a method called the Vector Field Histogram (VFH). The VFH
method created a polar histogram of the polar obstacle density function, and sought to steer through the
open corridor closest to the goal heading. The VFH method was extended to account for vehicle width and
trajectory with the VFH+ method [69]. The next extension, termed VFH*, allowed for semi-global planning
by virtue of simulation of a finite number of steps of the VFH+ algorithm and an A* search of the resulting
tree [70]. This last extension was shown to overcome several situations that are problematic for potential
fields, and the older VFH and VFH+ algorithms.

Another approach to obstacle avoidance is based on searching through a set of admissible trajectories
to find one that avoids the obstacle while generally moving toward the goal. Two methods, the Curvature
Velocity Method (CVM) [63] and the Dynamic Window Approach (DWA) [25], take this approach. In both,
the feasible trajectories are encoded as circular arcs. The search space was limited by constraints, and focused
on short term collision avoidance. Short comings in both methods, such as missing narrow corridors, led to
further extensions [34, 67].

All of these local obstacle avoidance methods trade reactive speed and simplicity for global performance
guarantees. As local methods, these techniques are most effective when incorporated with the global path
planning methods. While global paths make it more likely that a complete trajectory can be found, the local
methods may invalidate feasible paths, such as those through a narrow doorway in the case of potential fields.

2.14 Trajectory Planning

The decoupling of the planning stage with the motion control leads to several problems, as discussed in Sec-
tion 2.1.2. This has led to the integration of this coupled problem into a single step, which is termed trajectory
planning [45]. Trajectory planning can be loosely grouped into potential field methods and kinodynamic
planning methods.

In addition to being used for path planning and obstacle avoidance, potential field methods are used to
trajectory control. For kinematic systems, setting the velocity equal to the negative gradient will move the
system to a local minimum. For dynamical systems, the addition of a dissipative term in the control law
will result in convergence to a local minimum for any system whose total energy is less than or equal to the
potential on the boundaries of the free configuration space [37, 38].

To avoid the problems associated with local minima, Koditschek [37] defines a navigation function 1o be
a twice differentiable potential function that is Morse and admissible. In this context, admissible is defined as
taking a uniform non-zero value on the boundaries, and a unique minimum on the free configuration space.
Morse functions are those where all critical points are non-degenerate, that is the matrix of second derivatives
(Hessian) is non-singular. Rimon and Koditschek [57] present a constructive method for creating a navigation
function for any space with obstacles that can be represented as overlapping unions of star shaped obstacles.
The method maps the environment to a sphere world with a series of diffeomorphic transformations, which
yield disjoint spheres as obstacles. A navigation function for the sphere world is given. Their work proves
that a mapping via diffeomorphism preserves the properties of the navigation function [57, 35].

Connolly et al. [17, 16, 18] generated a navigation-like function, which was admissible but not neces-
sarily Morse. The function, which they termed a weak navigation function was found through numerical
evaluation of Laplace’s equation, which yields a harmonic potential function. Although not Morse due to
the possibility of isolated degenerate saddle points, the function is uniformly maximal on the boundary, and
has a unique minimum [17]. Since the saddle point is detectable, any perturbation away from the saddle will
lead away from the saddle with probability one. Connolly ef al. [19] used Hamiltonian dynamics to derive
an energy reference control policy based on harmonic potential functions. The control policy can be used to
drive the system to the goal (H = 0) or to drive the system along some equipotential manifold (H = H,.s)
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contained in the state space. The induced manifold is under-constrained, and allows for the specification of
additional constraints.

Most potential methods used in control do not account for input bounds, and typically have unbounded
potential at the obstacle boundary [57]. Although Rimon and Koditschek’s method has bounded potential, it
still does not account for arbitrary bounds on the inputs [57]. Potential methods that do not account for the
total energy may allow collisions for certain initial conditions [37]. For example, a system near a boundary
moving towards the boundary may not stop before collision with the boundary under gradient control if the
total energy is not respected.

Another method of trajectory planning, termed kinodynamic planning, specifically considers the navi-
gation problem in light of dynamic constraints, such as acceleration and velocity bounds, and kinematic
constraints such as obstacles [12, 13, 21]. The method also allows for strictly kinodynamic constraints that
do not fall into either category, such as speed dependent obstacle avoidance margin. A solution to the Kin-
odynamic planning problem is a mapping from time to generalized forces or accelerations. The original
formulation dealt with holonomic systems, and did not not address non-holonomic constraints. The approach
given in [21] transformed the continuous state space navigation problem into a graph search problem by
generating a set of regularly spaced nodes corresponding to states reachable from a given state with the appli-
cation of a 7-bang of the maximum acceleration applied for time step 7 in each basis directions. This gives
an safe approximation to the time optimal path, where the closeness of the approximation is governed by
0 < € < 1. If a given node lies near an obstacle, as defined by a safety parameter 4, then the node is pruned
from the graph. The algorithm was refined and extended to provide an exact solution of a point mass moving
in a plane with polygonal obstacles [13].

Dynamic programming, which is another method of solving kinodynamic planning problems [45], lever-
ages Bellman’s principle of optimality, which states

An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the
first decision [3].

Numerical dynamic programming techniques are used to solve the kinodynamic planning problem, often
based on a cost-to-go iteration scheme [45]. Atkeson et al. [1] apply variations of the dynamic programming
technique used in reinforcement learning to kinodynamic problems. The solution to a dynamic programming
problem results in a global control policy that specifies the optimal control action for a given state. Although
these techniques are extremely powerful, they suffer from the well known curse of dimensionality, and are
limited to low dimensional state spaces or coarse approximations. Roy and Thrun [61] use dynamic program-
ming to plan a path in a low dimensional configuration space, then use gradient ascent to locally optimize the
trajectory in the full dimensional continuous space.

Because of the relatively high dimension of the state space, twice the dimension of the configuration
space, randomization techniques are attractive for use in kinodynamic planning problems [43, 45, 45, 53,
33, 44]. Mazer et al. [53, 52] present the Ariadne’s Clew Algorithm ! The technique uses two algorithms
— SEARCH and EXPLORE. SEARCH optimizes a parameterization of a trajectory through the free space
from some initial point, minimizing the final distance to the goal. If the final distance is zero, the algorithm
terminates and returns the path. If the distance is non-zero, the EXPLORE algorithm adds a landmark from
the initial point, maximizing the distance to other landmarks. The design of the algorithm is well suited to
parallel execution, and has been implemented on parallel computer architectures. The path optimization was
performed using genetic algorithms, which are also well suited to parallel execution.

Lavalle and Kuffner [43, 44] introduce the Rapidly-exploring Random Tree (RRT) as a probabilistically
complete method of solving high dimensional kinodynamic planning problems. The basic RRT builds a tree

! Ariadne’s Clew is named for the ball of thread given to Thesus by Ariadne in Greck mythology; Thesus unwound the string in the
Labyrinth as a navigation aid.
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by randomly choosing a point in state space, finding the node in the tree closest to the chosen point, and
applying a control for a unit of time to move the system from the node towards the chosen state. The new
point generated by applying the control for a unit of time is then added to the tree. This biases the formation of
new nodes toward unexplored space, while preserving randomness. To facilitate convergence, two RRTs are
constructed — one originating at the start state and one at the goal state. If a node from the first tree can reach a
node from the second tree, the path is found by graph scarch over the trees. Unlike other planning techniques,
the RRT readily extends to systems with non-holonomic constraints. New points are only generated by
admissible motions from a node to the new point. As with PRM, the resulting paths are feasible; however, in
general the paths are not optimal [45]. Kindel ez al. [33] use similar techniques in the state-time space to solve
kinodynamic planning problems with moving obstacles, where the obstacle trajectories are known a priori.
The method forms a directed tree, oriented along the time direction. Relatively fast execution time enables
replanning on the fly, which effectively removes the assumption that obstacles have known trajectories.

Although, the techniques using dynamic programming can generate the optimal policy for a discrete
approximation over the entire free space, this is only tractable for low dimensional states spaces and relatively
coarse approximations. Kinodynamic planning on the other hand generates the trajectory, but is not amenable
to feedback policies. For any given trajectory, modeling errors and control imprecision will cause the actual
trajectory to deviate from the desired trajectory. This will require replanning, and invalidates the guarantee
of collision avoidance.

2.2 Switched Control Systems

Regardless of how the desired trajectory is arrived at, the implementation falls to the control system. The
control system is responsible for determining the active control policy, and specifying the inputs to the con-
troller hardware as dictated by the active control policy. This section provides an overview of so called hybrid
control systems — systems that combine discrete and continuous dynamics. Finally, this section presents an
overview of a specific technique for organizing hybrid control systems called sequential composition. Se-
quential composition forms the foundation for the techniques developed in this report.

2.2.1 Hybrid Control

The use of discrete behavior modules, and the switching between them, results in what is known as a hybrid
control system [8, 26, 10]. The hybrid control system is defined as a system containing both discrete and
continuous elements. Hybrid systems theory provides a conceptual framework for analyzing the performance
of a robotic system under the influence of a given control architecture. There are two main formalisms
for describing hybrid systems: hybrid automata [26] and the general hybrid dynamical systems (GHDS)
framework [8]. The hybrid automata and GHDS formalisms represent a convergence of paradigms arising
from computer science and control theory respectively. For our purposes, the formalisms are interchangeable.
A special sub-class of hybrid systems, called switched systems, has also been defined [47].

The hybrid automata model of [26] emerged from a computer science background, and has the framework
of a discrete automata. Associated with each node in the automata is a n-dimensional set of real variables
that represent the continuous component of the model. The edges connecting each node are called control
switches, and are associated with events triggered by jump conditions or guards dependent on the discrete
node and continuous variables. In the simplest case, a node could correspond to a discrete behavior, where
the a control policy induces the desired behavior. The control policy associated with a given behavior induces
a specific dynamic response modeled by the continuous state space associated with each node of of the hybrid
automata. Figure 1 shows a basic example.
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x >73

X <68

Figure 1: A ample hybrid automatamode! of athermostat. The real variable x denotes the temperature of the
room, with temperature dynamics associated with each node. From the On mode, thejump condition x > 73
sates that the system may switch to Off mode in response to an external control signal. The guard condition
x < 75 forces a switch if the temperature goes higher than 75.

Another formadism for describing hybrid systems is the Controlled General Hybrid Dynamical System
(CGHDS). As defined by Branicky [8, 10], acontrolled genera hybrid dynamical system H, is a system

#c. = [Q,E,A,G,V,C,F] ,
where
e Qisast ofindex dtates,
* HE= {£$}g cQ isacollection of controlled dynamical systems.

A = {Ag}scQ , Ay C X, for each g € Q is the collection of autonomousjump sets.

G = {Ga}gEQ where Gy : Aq X Vq -¥ Sis the autonomousjump transition map, parameterized by
the trangition control set V,, a subset of the collection V = {Vg}qcE they are said to represent the
discrete dynamics and controls. .

* C={Cq¢ NCq C X, for each g € Q is the collection of controlledjump sets.
« F={Fg} {Q whereFy: Cq — 2° isthe collection of controlledjump destination maps.

The hybrid state space of H, is defined as S = UgeQ %q * {<3+ Figure 2 shows agraphical representation.
States that enter Aq jump to another hybrid state according to G, and V,; States that enter Cq may jump if
commanded. The General Hybrid Dynamica System is, as its name implies, quite generd. If |Q] is finite,
each X, is asubset of R", and each Ty = IR (orH"), then the CGHDS iis the usua hybrid system, which
corresponds directly to the hybrid automata of [26].

A hybrid system is referred to as a switched system if the following conditions are met;

* the dynamics induced by fy : X, X Uqg — X, are Lipschitz continuous in X,
« only afinite number of switches occur within afinite time period [8].

For areal system, infinite switching could only result from a deadlocked control system.
Tools have been developed to assist in the analysis of hybrid systems [14, 26, 48]. From a computer
science perspective, the important issues are reachability, decidability, and liveness. Given a hybrid system,
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Figure 2: Representation of a controlled general hybrid dynamical system. Based on [8].

with controls and jump maps, is a given state reachable (reachability) or is the set up nodes that satisfy a
given condition empty (decidability). For specified jump transition maps (switching policy), liveness means
that the system is free of deadlock. Most often, the tools and techniques are based on finite partitions of the
state space that yield conservative approximations of the solution.

From a controls perspective, stability is a major concern. In general, the stability analysis of hybrid or
switched systems can be difficult [7, 9, 20, 47]. The very act of switching between two dynamical systems
can make stable systems unstable, or unstable systems stable. Conceptually, the simplest criteria for stability
of a hybrid system is the existence of a common Lyapunov function for all of the switched systems [47].
Unfortunately, the construction of a common Lyapunov function is difficult for general systems. For systems
with multiple Lyapunov functions, as long as the value of the Lyapunov function associated with a given
control policy decreases relative to the last time the policy was active, the switching is stable [9, 20]. One
way to guarantee stability is to carefully construct the control policies and switching strategy. This is the
approach taken in this report.

2.2.2 Sequential Composition

Our approach is based on the technique of sequential composition [11]. This technique enables the con-
struction of switched control policies that have guaranteed behavior, and provable convergence properties. In
its original form, sequential composition used state regulating feedback control policies whose domains of
attraction partitioned the state space into cells. For a given control policy, ®, the safe domain of attraction is
defined be the largest positive invariant set that does not intersect any obstacles.Henceforth, we will use the
term domain, denoted 2(&®), to denote the safe domain of attraction for a given policy. The control policy
can be thought of as a funnel, as shown in Figure 3, where the vertical represents the value of a Lyapunov
function, and the domain is the “shadow” cast by the funnel on the state space below [11].
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Figure 3: An idealized Lyapunov function
and its associated domain of attraction rep-
resented by its shadow on the state space.
The goal point is shown as a large dot
within the domain.

Figure 4: Composition of control policies leads
to an enlarged domain of attraction. Note that
the active policy switches to the highest priority
policy as soon as the state enters its domain.

The basic idea behind sequential composition is to compose multiple control policies in a way that en-
larges the domain of attraction, while preserving the underlying convergence guarantees. The goal point of
one policy is designed to lie within the domain of another policy. By properly prioritizing the policies, and
switching to a higher priority policy once the state enters the domain of the higher priority policy, Burridge
et al. [11] were able to construct a switching control policy with a domain of attraction equal to the union
of the domains of attraction of the component policies (Figure 4). By composing functions with limited
domains, constraints in the state space can be respecting while building an approximate globally convergent
control policy. In this way, the free state space may be covered by incrementally covering an additional region
of the free state space. Figure S shows a conceptual example of this process.

Figure 5: Multiple control policies with overlapping invariant safe domains can be used to build an approxi-
mate globally convergent safe control policy that respects constraints in the environment.
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The composition of control policies is based on a formal notion of prepares [11]. For a given control
policy, ®1, the domain of the policy is denoted 2(®;) and the goal is denoted ¥(®1). Given two control
policies, @ is said to prepare ®;, denoted &, > @y, if ¢(®2) C 2(®1). For these two policies, we assume
that control switches from ®5 to ®; as soon as the state enters 2(®1). Let i = {®,..., P} denote a
finite collection of parameterized control policies defined over the free state space of a given system. The
prepares relationship induces a digraph (directed graph), I'zs, over the collection of parameterized control
policies. In general the graph is cyclic; however, an acyclic graph, I'},, may be generated over the collection
of policies by searching I';; breadth first, beginning at the node corresponding to the policy that stabilizes
the overall goal, and adding only those links and nodes that connect back to previously visited nodes. Thus
I}, € Ty; Iy, is a partial order over the collection of control policies. By construction, I'y, is a connected
graph containing a node corresponding to the policy that stabilizes the goal. Given the collection of policies
Uand I}, the associated partial order, an overall control policy & = \/U is the induced switching policy
defined by the partial order, where \/ denotes the operation of control policy composition defined by the
prepares relationship. The collection U of parameterized control policies is known as the palerte of available
control policies. The act of selecting and ordering the policies from the palette is known as deploying the
control policy. The collection of parameterized control policies and associated partial order is known as
a control policy deployment; we refer to the composition of the component control policies as the overall
control policy. For the given deployment, which brings some limited domain to the goal,

2u)= | 2(%) .

®;€ry,

The edge connecting two nodes in I'j, corresponds to a transition that occurs when the state of the sys-
tem enters the domain of the higher priority control policy. Under this transition map, I';, is a finite state
automata. Thus, sequential composition gives a constructive method for building a finite state machine (fi-
nite state automata), with predictable transitions guaranteed by the feedback control policies. Reachability
and decidability can be determined by the discrete transitions on I'},, without recourse to analysis of the
underlying continuous system.

The overall control policy induced by sequential composition is fundamentally a hybrid control policy.
However, the method of composition based on the prepares relationship obviates the need for complex sta-
bility analysis of the form given in [7, 9, 20, 47]. The stability of the underlying control policies guarantees
the stability of the overall policy because the partial order results in monotonic switching [11]. Disturbances
are robustly handled provided their magnitude and rate of occurrence is on a scale small compared to the
convergence of the individual policies.

All that is required to determine the switching policy is a partial order over the collection of policies. The
resulting switched policy covers the maximum region of the free state space, while guaranteeing that the state
is brought to the goal, for a given collection of control policies. Let the cell within the state space where ®, is
active be denoted €'(®,); in this example, €(®2) = 2(®2) \ 2(®,). For an arbitrary collection of policies,
the following algorithm recursively builds the required partial order [11]. In fact, the algorithm builds a total
order.
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Algorithm 1: B-R-K Sequential Composition
Input: Finite collection of parameterized control policies i = {®1,...,Pnm}
Output: Ordered collection of parameterized control policies U’ = { ®4,..., 90 M)},
where O (M) is an index set.
0)) Assume ¢(®,) is the overall goal, and let V = {®;}, U/’ = {}
2) while |V| > 0
Remove the first element,®;, from V.

) Let4(2;) = 2(3,) \2(U')

(5) if6(®;) #0

(6) Add ®; to the end of U’

@) Append the list of all control policies from I/ that prepare ®; to the back of
V.

®) Remove the list of policies that prepare ®; from IA.

9) endif

(10)  endwhile

The algorithm induces a total order over the collection of available control policies, which determines
the policy switching. The system determines the highest priority policy containing the current state, and
implements that control policy. Given the collection of parameterized policies, this ordering specifies the
control policy deployment. Generating the parameterized control policies such that they fill the free state
space is a control policy design problem.

In the work of Burridge et al. [11], the task was to control a robotic system that juggled a ping bong ball
by repeatedly batting the ball with a paddle. A generic control policy was used to control the ball’s setpoint,
the horizontal position (z,y) and apex height above the horizontal. The domain of the control policy was
limited, and depended on the setpoint and the control policy gains. After developing a generic policy that
reliably brought the ball to a stable, periodic trajectory, with a stationary apex, the task then became to move
the ball, by juggling, through its domain, while avoiding obstacles. In this case, the obstacles were sensor
limits (camera field of view) and a physical obstacle placed in the workspace. The domains of attraction were
not available in closed form, so conservative approximations obtained through experiment and simulation
were used. The parameterization and deployment of the policies was specified by hand.

Rizzi [59] used sequential composition to simplify programming of robot motions. Rizzi specified over-
lapping convex polytopes in the configuration space for the case of an idealized dynamical robot, # = u with
z,u € R™, with both velocity and acceleration constraints in the form of Euclidean norm bounds. Over
each polytope, a Save control policy, ® 5, was designed to bring the maximum subset of the tangent bundle
over the polytope to rest within the polytope without violating the polytope boundaries. A velocity regula-
tion policy, ®y/, used a position dependent velocity reference to bring the system to rest at a specified goal
point within the polytope without violating the polytope boundaries. A third policy, called Join and denoted
®;, was used to transition between the Save and Velocity Regulator policies. The domains were such that
2(dy) C 2(®;) C 2(®s). By specifying a goal point within the boundary of an overlapping polytope, the
control policies could be composed to move the idealized system through space. The method was extended
by Quaid and Rizzi [54] to more complicated bounds on acceleration and velocity. In this latter work, the
polytopes represented safe reservation regions that the system could travel. Only one agent in this multi-
agent framework was allowed access to the reservation area at a time. Parameterizing the policies required
specifying a goal point and the polytope vertices, along with a few additional parameters.
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3 Overview: Decomposition, Planning, and Control

Our approach to addressing the coupled navigation and controls problem is to define a paette of feedback
control policies, and a switching strategy among the individua control policies, such that the resulting com-
position smultaneoudy solves both the navigation and control problems. Our gpproach aJows usto leverage
the robustness afforded by feedback controls, while generating an approximately globally convergent control
policy. We begin by discussing ways to decompose the global task into subtasks that can be controlled by
individual control policies. The control policies considered in this research take the form of memoryless
state feedback policies. We choose to parameterize our control polices based on local information obtained
by decompositions of the free configuration or workspace. Therefore, we begin with a discusson of the
relationship between decompositions in work, configuration, and state spaces. We then discuss the deploy-
ment problem, and present an extension to sequential composition that alows a larger class of policies to be
deployed. The design of the new control policies is deferred until the next section.

3.1 Decompostion of Taks

The fundamenta idea behind the gpproach outlined in this report is that of task decomposition. Globa
navigation and control tasks are decomposed into a series of sub-tasks, where the solution of each sub-task
brings us closer to the completion of the global task. We contrast thiswith the idea of problem decomposition,
where we decompose the globa problem into a series of problem steps, such as plan path andfollow path.
Solving the path planning problem does not cause the system to move closer to the goal.

One approach to automaticaly generating task decompositions, is to base the tasks on regions of the free
gpace. Thisis anatural and intuitive decomposition that humans perform every day. For example, to get to
class, one must leave their office, go down the hall, leave the building, cross the road, enter another building,
go down another hall, and finally enter the class room. By decomposing the tasks into regions of free space
(office, hallway), the global navigation and control problem is reduced to a more local problem (go around
the desk to get to the door), which is (hopefully) more tractable than the globa problem.

3.2 Decomposition of Free Space

The robot to be controlled lives simultaneoudy in at least three abstract spaces: workspace, configuration
space, and state space. The workspace, >V, of the robot is its surrounding environment; the world that is
seen. Generdly, either the plane, modeled as H?, or space, modeled as H?, is considered as the workspace.
A configuration of the robot is the set of variables required to specify the location of each point of the robot
in its workspace relative to some fixed frame of reference [42, 50]. The configuration space, Q, is the st
of dl configurations of the robot. The state of the system is set of variables required to uniquely specify the
system, such that given a known initial state and the system inputs over time, it is possible to solve for the
date of the system at all future times [2]. For dynamical systems, the State is both configuration and velocity.
The state space, X, of adynamica system is the set of al possible values of the state

A=TQ={{s.9) | ¢€Q,4€ 7,0},

where TQ is the tangent bundle of the configuration space, and T, Q is the tangent space at configuration g.
For kinematic systems, the state space is just the configuration space, that is X = Q. This report assumes
that each of these three spaces (W\Q,/Y) is bounded.

The research presented in this report considers the problem of navigation in complex or cluttered spaces,
where the workspace is populated with a finite number of obstacles, O,, that occupy certain points in the
workspace. The boundary of the space is considered to be obstacle zero, that is Oy. These obstacles, Oi, can
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be mapped directly to the configuration space (C—space) by
QU;={ge€ Q| R(gNO: #0},

where R (g) is the set of points in the workspace occupied by the robot at configuration ¢ [42, 23]. Analogous
to the C—space obstacles, we could define a state space obstacle

{(@9) e X [R(9NO; #0}.

However, this does not capture the full complexity of state space. There are regions of state space where
the corresponding configuration is not contained in an obstacle, but whose velocity makes collision with an
obstacle unavoidable for systems with bounded acceleration. Therefore, we define a state space obstacle as

XO;={(¢,9) € X | R(Q)NO; #Bor(A®(q,9) s.t. VER(¢(1)) NO; =P)},

where ® is some arbitrary control policy that satisfies the given constraints on the system.
The free space is the set of points within a given space that is not occupied by obstacles. More formally,
for k obstacles,
FSw = W\UL, 0:,
FSe = Q\Ui,Q0:,
FSx = x\UL,x0;,

This report will use the term free space, denoted FS, to apply generically to the free work, free configuration,
or free state spaces. Where the distinction is important, we will use the subscripts as above.

Consider a decomposition of the free work or configuration space into cells, with the collection of cells
known as a cellular decomposition [42]. The standard definition of a cellular decomposition only requires
that the union of the cells cover the free space. In this work, we present a more restrictive definition:

Il

Definition: A disjoint cellular decomposition, K, is a finite collection of cells in the free (work or configu-
ration) space,
K={P;CFS|i=1...n,P;NP; =0Vi # 3},

where each cell P; is defined as a simply connected compact open set. The union of the closures of the
cells, P;, in the collection covers the free space, either exactly (FS = |J; P;) or to an approximation
at some resolution(FS = |J; P:).

For general environments and cells, the problem of constructing any cellular decomposition is known to
be NP-hard; for now, we will assume that a disjoint cellular decomposition exists, and is given to us [42].
Figure 6 shows a simple disjoint cellular decomposition of a non-simply connected region in R2.

The requirement that the union of the closures covers the free space implies that the closures are connected
to neighboring cells by a common boundary region. We restrict the decomposition such that the common
boundary region is a simply connected set of co-dimension one, and give the following definition:

Definition: Two cells P; and P; in K are adjacent if and only if they share a common simply connected
boundary set of co-dimension one, i.e. dim (P; NP;) = n — 1, where n is the dimension of the free
space.

If the common boundary formed by the intersection of the closures is a disconnected set, then the cells should
be split into multiple cells.
The connectivity of the cells is easily encoded into an adjacency graph, also called a connectivity graph [42].

Definition: The adjacency graph G (V, E) associated with the cellular decomposition K is a simple graph
with vertices V' and edges E such that
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- The set of vertices,V’, has a one-10-one correspondence to cells in .

- Two vertices 4,j € V are connected by edge, e € E, if and only if the corresponding cells
P;, P; € K are adjacent.

Figure 7 shows the adjacency graph associated with the decomposition of Figure 6.

3.3 Control Policy Design

The feedback control policies considered in this report are designed to have a limited domain with respect to
the free state space. The policies are parameterized based on closed cells within the free configuration space,
denoted P. With each configuration cell, P, we associate one or more an individual control policies, which
we term component control policies for P, denoted ®&p.

The extension of the configuration cell into the state space creates a generalized cylinder, as shown in
Figure 8. The generalized cylinder is capped by the velocity constraints of the system. This generalized
cylinder is the tangent bundle over the configuration cell, and is denoted 7P, where 7P C AX’. For each
component control policy, ®p, defined over the cell P, there is an associated goal set, 4(®p) C TP. The
goal set may be an attractive set, as in [59], or it may define a subset of the boundary of the generalized
cylinder, as do the control policies developed in this report.

For dynamical systems with acceleration bounds, there are states in the generalized state space cylinder
for which there does not exist a control policy that will drive the state to the goal set without leaving the
free state space over the cell. Consider an initial condition adjacent to a cell boundary, with initial velocity
oriented toward the boundary. For a system with bounded acceleration, collision with the boundary cannot be
prevented. For this reason, the generalized cylinder is further cut by a surface defining the velocity constraints
as a function of configuration and available control policies, as shown in Figure 9.

Rizzi [59] developed a switched control policy, ®p defined over a given cell P, such that the domain of
the switched policies was

2@p) ={z=(q,49) €TP| Vt,z(t)eTP, and
Atst. (1§D > Amax or l§ (I > Vimax) } -

Figure 6: In this example, the free space Figure 7: The adjacency graph correspond-
(white) is decomposed into a set of labeled ing to the cellular decomposition shown in
polygonal regions . Figure 6.
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Figure 8: A simple 1D cell in configuration, Figure 9: A simple 1D cell in configuration
and its extension as a generalized cylinder space, and its limited domain in state space
into the dynamical system’s state space. given bounded accelerations. A goal set on

the boundary of the tangent bundle is shown
which corresponds to exitting the cell on the
left boundary.

The policies were designed to be attractive to a given point zp € P, so that 4(®p) = {zp,0} € TP. The
switched control policy ® was designed to be positive invariant over the given configuration cell P for some
subset of 7P. This subset was termed the savable set.

The newest control policies developed in this report define a goal set on the boundary of 7P. The policies
are designed cause the system configuration to exit the configuration cell within a specified region of the cell
boundary, which is termed the outlet zone. The boundary of a cell, excluding the outlet zone, is termed the
inlet zone. It is assumed that the active control policy changes as the configuration crosses the outlet zone of
a given cell. If the goal configuration is contained in a configuration cell, then the outlet zone is the empty
set.

The domain of these control policies, 2(®p) C TP, is defined as the set of states in the generalized
cylinder such that ®p drives the state into the goal set, ¥(®p) C 2(®p) without leaving the free state
space contained in the generalized cylinder, or violating the dynamic constraints of the system. Note, that
this definition excludes states that may not violate the constraints immediately, but unavoidably lead to a
violation during the evolution under the influence of a given control policy. That is

2®p) ={z=(q,9) €TP| IHt*st.z(t*) € ¥(®p)C TP and
Vt < t*,z(t) € TP and
At < t*s.t. (Il @I > Amax or (1§ (D)l > Vimax) } - @

(Note, for kinematic systems, the definition drops the acceleration constraint.) The domain P9(dp) is de-
signed to be conditionally positive invariant, meaning that the trajectory under the influence of the control
policy exits the domain only via the designated goal set ¥ (®7) [28].
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Returning to the task decomposition example, consider the example of navigating out of a given room.
The cdll in workspace is the room, and the doorway is the specified outlet zone. The contral policy is designed
to cause the maximal sat of initial states contained in the generalized state space cylinder to exit the room via
a specified doorway. The goal set encompasses those velocities that ensure the system exits the doorway (i.e.
, Zero velocity at the exitis not in the goal set).

In Section 4, this new type of control policy is developed for a particular class of configuration cells,
and is designed to give a closed form solution based on local information. The control policy, based on a
solution to Laplace's steady state heat equation, is intended to be but a single example of a vdid control
policy. Additional policies meeting the criteria above could provide an aternative solution, which could
result in different paths through a specified configuraton cell, and add to the flexibility of the deployment
scheme presented next. Although not explored in this report, other methods including other potentia field
techniques or dynamic programming, could be used to design control policies of thistype [1,42].

34 Control Policy Deployment

This research uses the idea of sequential composition to generate a switching control policy whose domain of
atraction is greater than any single control policy. The prior work using sequential composition [11,54,59],
discussed in Section 2.2.2, was based on point attractors. In contrast, the policies developed by this research
result in state that flowsthrough a goal set, not state that is attracted to agod point. We will refer to policies
of this latter type as set attractors, redizing that "attraction” is only with respect to agiven cell. The original
deployment scheme developed in [11] requiresthat asingle policy prepare another policy. This does not work
for st atractors if the goa set of one policy intersects the domains of multiple policies, but is not contained
within the domain of any single policy. In this section, we present an extension to the origina deployment
scheme to dlow control policies with set attractors whose goal sets intersect the multiple policies, aswell as
point attractors.

The prepares test is how based on the union of higher priority control policies. If the god set of a
component control policy is covered by the union of the domains of higher priority control palicies, the
component control policy may be added to the deployment. This extended definition of prepares alows usto
deploy policies whose domains encompass more of the free state space over the configuration cell. Sequentia
composition guarantees that the deployment is free of deadlock, as the system will dways enter the domain
of ahigher priority control policy. Because of the definition of prepares depends on the order of the deployed
policies, the digraph that specifies the prepares relationship must be congtructed concurrent with the order.
Beginning at the cdll containing the goa configuration, Vg a convergent control policy $o that drives the
state to the godl is deployed and added to the root node of the digraph T',. Any control policies that prepare
the goa policy are added to the collection of deployed control policies and the prepares digraph. We now
present two agorithmsfor specifying the deployment and prepares graph. Thefirgt, based on [11], isagreedy
algorithm that deploys contral policies as encountered.
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Algorithm 2: Extended Sequential Composition
Input: Finite collection of parameterized control policies i = {®1,..., P}
Output: Ordered collection of parameterized control policies U’ = {®1,...,®o(ar) }. Where O (M) is an
index set.
€)) Remove ®; fromY, and let U’ = {®,}
2) Define I}, as a digraph with one node corresponding to &1
3) Flag=1
4) while |/| > 0 and FSx\2(U') # D and Flag = 1

Flag=0
©6) foreach ®; ¢ U
(7 if9(®;) C 2(UU') [and 2(2:)\D(U') # 0]
®) Remove ®; from Y.
9) Add ®; to theend of U’ (U’ =U'|J {®:})
(10) Add a node to I';, for &;, and an edge from the ®; node to each node j in I'}, such that
9(2:) N D(3;) #
an Flag=1
(12) endif
13) endfor

(14) endwhile

The algorithm deploys the first available policy, continuing until either the free state space is filled or the
remaining policies do not add to the overall domain. By adding the optional condition, 2(®;) \2(U’) # 0,
to line 7, the algorithm may avoid redundancy by only adding policies that increase the overall domain.

In Algorithm 2, as in the original algorithm in [11], the order of deployment is dependent on the ordering
in the original collection ¢{. This dependency can be avoided with minor modifications to Algorithm 2, which
are presented in Algorithm 3.

Algorithm 3: Extended Sequential Composition with Reordering.
Input: Finite collection of parameterized control policies U = {®1,...,Pum}
Output: Ordered collection of parameterized control policies Y’ = { ®y,...,P0m) }
¢)) Remove &, from U, and let Y’ = {®;}
(2) Define I'j, as a digraph with one node corresponding to &

3) Flag=1

@) while |l/| > 0 and FSx\P(U') # D and Flag =1
Flag=0

© V=1{}

) foreach ®; € U

® if 9(®;) C 2U') [and 2(2:)\D(U') # 0]

9 Remove ®; from Y.

(10) v =vU{e:}

an Add a node to I}, for ®;, and an edge from the ®; node to each node j in T}, such that

4 (®:) N D(2;) #0

12) Flag=1

13) endif

(14) Order V based on some metric

15) Add ordered V to the end of I’

(16) endfor

a7 endwhile
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The algorithm is constructed to allow for reordering the control policies at each priority layer. Policies
that prepare previously deployed policies are placed in a temporary queue V and removed from Y. Once
the remaining policies in &/ are processed, the policies in V are reordered, and then added to the deployed
policics in U’. Although not developed in this report, the metric is expected to use a cammulative average
cost of traversing a given control policy domain, along with the cost of traversing each higher priority policy
in the order. In this way, the final ordering is not dependent on the original ordering of &.

Although the definition is the same, the notion of prepares is different for kinematic and dynamical
systems. For kinematic systems, the test is based on set membership in the configuration space. For dynamical
systems, the test is based on set membership in the full state space — both configuration and velocity. This
generally results in more complicated tests for membership for dynamical systems. Because a given control
policy results in a capped generalized cylinder in state space, it is anticipated that multiple policies over a
given cell, and multiple overlapping cells, must be considered to completely cover the free state space for
dynamical systems.

3.5 Hybrid Systems Analysis

The resulting composition of the component control policies forms a hybrid control policy [8, 10, 26]. The
hybrid control policy, defined as a policy containing both discrete logic and continuous control laws, causes
the dynamics of our closed loop system to become hybrid as well. Since it fits well with the notion of the
digraph specifying the partial order, this report uses the description of the hybrid automata model of [26].
The nodes of the hybrid automata correspond to the nodes in the digraph I'},, with edges that correspond to
the specified prepares relationship. The events are triggered once the continuous state enters the domain of
the next highest priority control policy in the partial order. Because the domains of the component control
policies are (conditionally) positive invariant, the state will not exit the domain of an active policy until the
state is in the domain of a higher priority control policy.

The continuous dynamics of the system under the influence of the component feedback control policies

db
are governed by z(t) = fi(z (1)),

where £ € RY¥™®) and f; represents the dynamics under the influence of the it* control policy. With the
restriction that the function f; (z (¢)) is Lipschitz continuous, the dynamics of the system under the influence
of the ordered control policies are those of a switched system [8]. Another requirement for a hybrid system
to be classified as a switched system is that finite switches occur in finite time. This requirement is satisfied
given a specification that the domain of each policy is a non-zero measure subset of the free state space.
Since the domain of each policy is a full dimensional subset of the free state space, and the state space is
compact, there are only a finite number of policies required to cover the free state space [39]. Because the
control policies are deployed based on a partial order, the switching is monotonic, there can be at most a finite
number of switches.

In general, the stability analysis of hybrid or switched systems can be difficult [7, 9, 20, 47]. Fortunately,
for hybrid systems constructed using the sequential composition technique and the prepares relationship, the
stability analysis is straightforward.

Lemma 3.1 Given a collection of local asymptotically stable control policies U' = {®;} ordered as de-
scribed in Section 3.4, the overall hybrid control policy ® = \| U’ is asymptotically stable provided that the
switches between policies occur in finite time. Furthermore, the domain of the overall control policy, D(®),
is given by the union of the domains of the local control policies, that is

2(®) = U 2(®;) .
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Proof: By congtruction, each component control policy, $i, is (conditionaly) postive invariant over its
domain ~($i), and brings any dtate in its domain to its goal set~($i). Thisgoa s, ~($i), is ether
the global goal, or the goa sat lies within the domain of the higher priority control policies.

#(®)c |} 2% .

=1

We assume the existence of aproperly constructed partial order, as described in Section 3.4. The partial
order is represented as a acyclic digraph, denoted T',. The root node $1 of T',, corresponds to a control
policy, $£, that asymptoticaly brings any state in & ($5) to the goal. Upstream nodes in the digraph
correspond to component control policies, and are labeled $i withi € 2,..., V, where A" — |F*| is
the number of nodes including the root.

First, consider the case where the digraph has only one node, then ~($) = fA($s), and $g is asymp-
totically stable by construction. Therefore, Lemma 3.1 istrividly true.

Assume the digraph has more than one node. Let $j be any node with a single outlet edge, which
connects to the root node $i in the digraph F. For any state in f~($i), the control policy <&i drives
the state to ~($i). A switch from $; to $i occurs when the state enters the domain of <5 as the
state approaches the Sf($i), whereby the state begins to approach Sf($i) under the influence of $i.
The switch is guaranteed to occur since & ($i) is contained in @($i) and the state is attracted to
the goal set S(4>i) under the influence of $j. Furthermore, we restrict the deployment such that this
switch is guaranteed to occur in finite time. This switch corresponds to a transition from the upstream
node $i to the root node <bi in the partia order. By construction, ${$i) is conditionaly positive
invariant under the influence of $j, such that the state only leaves @($i) when x € & ($i) C £7($i).
Therefore, any state starting in @($i) (™ ($i) is guaranteed to approach Sf ($i) under the assumption
that $i y $i. Thus @($i) (J @($i) is conditionally positive invariant under the influence of the
switched control policy {<>i<1>}, with goa set S(<I>i). Since the state enters ~($1) from @($i)
in finite time, the switched control policy is a worst asymptotic. Once the state enters fEALS), it
asymptoticaly approaches Sf($i). Given these facts, the proof of Lemma 3.1 is constructive:

Algorithm 4: Proof of Composition
Input: Acyclic digraph T', defining the partial order of control policies with associated domains and godl
s=ts
Output: Single switched control policy $ and associated domain and god sets
@ while|F/ |>1
Sdlect any node $j in F* connected to node $1, with the restriction that $i has only one outlet

edge

©) Define $i = {$i,$i}, where 4% is the switched control policy with domain 2(®5) =
A$i)UN(*i)> and god SF($i) = Sf(*i)

@) Replace $1 with *£, and let A($1) = ~($i)

©) Connect edges in T', entering node $« to $1

(6) Remove node $i from T',

(7)  endwhile

After the find step, we have a single switched control policy $ = \fU, whose domain 2(®) =
|J; ®(8i) and goal &($) = SF($"). Thus, Lenma 3.1 istrue by construction.

The restriction that $* have only one departing edge before it is merged with $1 ensures that there are
no policies with an intermediate priority between $i and $1. Because $1 is the highest priority, all
policies of the next priority can only have one departing edge.
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We conclude that the deployment of control policies based on the prepares relationship results in an
asymptotically stable overall switched control policy. Both the stability and domain are inherited from
the component control policies, obviating the need for detailed analysis of the stability of the hybrid
switched system as in [9] or [47].

m}
The restriction that switches from lower priority control policies occur in finite time is satisfied by the policy

design methods given in this report. Likewise, the methods of [59] and [54] satisfy the finite switching time
provided the intermediate goal points are placed in the interior of the overlapping cells.
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4 Development of Component Control Policies

The control policy deployment outlined in Section 3.4 depends on developing asymptotically stable compo-
nent control policies over (conditionally ) positive invariant domains. In this section, we present a candidate
component control policy for an arbitrary cell in a cellular decomposition based on a potential field free of
local minima. Control Policies for both kinematic and dynamical systems are developed. The control policies
are designed to bring a large portion of the free state space over the cell to a specified goal set on the boundary
of the generalized cylinder.

Our approach to generating a potential field over an arbitrary cell is to map the cell to a unit n-ball
centered at the origin,

B(0,p) = {z e R" | |lzl| < p} ,

which is bounded by the unit (n — 1)-sphere. A potential function, vy, : B — IR, is calculated, where -,
is free of local minima. The potential function is designed to have its global minima along a region of the
boundary, and its global maximum along the remaining boundary. The potential function in the arbitrary cell,
P, is given as the pull back of the potential in the n-ball, i.e.

Y=o,

where ¢ : P — B. Our control policies are designed to cause the system to flow along the integral curves of
the negative gradient field. We begin with a description of our chosen model space, present our solution to
the potential field, and then develop proofs of the validity of our pull back approach. We develop a general
velocity reference control policy, and use it as the basis for a collection of hybrid control policies over cach
configuration cell that are safe. reliable, and robust.

4.1 The Unit Ball - B(0,1)

By construction, each configuration cell in the cellular decomposition of the free space is a simply connected
compact set. The boundary of such cells is likewise a simply connected compact (n — 1)-surface, where n
is the dimension of the free space. We assume the existence of a homeomorphism ¢ : P — B for each cell
in the cellular decomposition. As we will describe later, we also require ¢ to be full rank, i.e. its Jacobian
matrix is full rank [S]. Our control policy construction will require the derivatives of order less than or equal
to some k > 0 to be continuous, therefore we require that ¢ be a C¥ mapping from P to B. We are only
concerned with derivatives of the forward mapping, thus a C*-diffeomorphism is not required..

Our work will focus on the use of convex sets to define the configuration cells in the decomposition,
although the work readily extends to star shaped sets. The overall technique that we describe below is in fact
quite general. From the generalizations to the Poincaré conjecture, and the (apparent) proof for 3-surfaces,
we know simply connected compact surfaces are homeomorphic to the (n — 1)-sphere, S*~! [51]. The cell
boundary surface is an orientable surface, which lends itself to a notion of inside and outside. Constructing a
mapping for an arbitrary non-convex set is often difficult; but given such a mapping, the techniques described
in this section readily extend to more complex set definitions.

Using this idea, we will define a n-cell to be a simply connected compact set in configuration space whose
boundary,dP, is homeomorphic to the (n — 1)-sphere, and whose interior can be C* continuously mapped
to the open ball centered at the origin with unit radius, denoted B (0, 1). In addition to the requirements given
in Section 3.2, we require that each cell in our cellular decomposition be an n-cell.

For cells whose boundary is not a C*¥ continuous manifold, the required derivatives may not exist on the
boundary of the cell. In this case, we approximate the cell by a region P* C P that differs from the cell only
in regions of discontinuity and matches the boundary elsewhere, such that

¢ |preCk.
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Our control policy will provide a continuous transition from the region VAP*,

Because our mapping is continuous and full rank, connected regions in the cell V remain connected in
the ball B. This causes the outlet zone of the cell to be mapped to a smply connected compact region of the
(n — 1)-sphere, which we aso call the outlet zone and denote dB,, The remainder of the cell boundary
maps continuoudy to the remainder of sphere, and we refer to this portion of the sphere as the inlet zone,
denoted

= 8B\8Bout -
The potential along the outlet zone is defined as
¥ (8Bout) = 0,
while the potential along the inlet zone is defined as
Y (OBin) = 1.

The choice of one for the inlet boundary is arbitrary and could be scaled by any postive factor without
changing the fundamental results. The choice of zero for the outlet boundary potential is for convenience;
any constant vaue may be added without affecting the gradients. Using function composition, the potential
values dong surface of the cell is given by
7=76"°V,

where the cell has a unit potentia dong the inlet zone and zero potential dong the outlet zone. To generate
the potentia in the interior of the cell, we firg find the potentia in the unit ball using the solution to Laplace's
equation as described in the next section.

4.2 Harmonic Potential Functions
Laplace's equation, the partial differential equation (PDE) given by

V2u=%+.-.-+'g“|z—‘_201 ($
X

iswiddy used in modeling physical phenomena such as heat conduction or chemical diffuson [24, 60]. In
(), using the standard notation of PDE literature, u : U -> H where U C K" is a given open s¢t, X € U,
and u — u (). In modeling heat conduction, u is the temperature, and the heat flux F is proportiond to the
temperature gradient, F = —aD,u, wherea > 0 is some constant. For steady state heat conduction, the net
flux through any smooth subregion VV C U is zero, or formally

L/F—ud8=0,

where v is the outward pointing normal vector aong the boundary dV. By the Gauss-Green theorem, we
may write
/ F-udS= / divF dz =0,
Jav v
where div is the divergence operator div = V* :[ Neee —’\].

Because V is arhitrary, this implies div F = 0. Because a > 0, this implies that V2u = 0, which is
Laplace's equation. If u G C? (U) and satisfies (3), then u is called a harmonic function [24]. Harmonic
functions have the following "nice" properties [24, 60]:
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Mean Value Formula: If u € C? (U) is harmonic, then

u(a:)zi/ udS=i/ ude,
Wn JoB(z,p) Qn JB(z,0)

where w,, is the measure of the (n — 1)-sphere, and (2,, is the measure of the (n — 1)-ball,
Maximum (Minimum) Principle: Suppose u € C2 (U) N C (U) is harmonic within U, then

maxu = maxu,
U au
and
minu = minu,
bv 6L{
Uniqueness: Given a boundary solution 4 = g on 9U, there exists at most one solution u €
c2(Uync (D),
Smoothness: Assume u is harmonic in U, then u € C*® (U) and u is analytic in U.

As a consequence of these properties, the potential function u is free of local minima.

For our system, the open set U is given by the unit ball B, while u is given by our potential function
~p. For now, assume that 4, is a harmonic function that uniquely solves the boundary value problem given
~ (OB). We can then find the potential on the (n — 1)-cell P asy = -y, 0 .

4.2.1 Pull Back of Harmonic Potential Functions

The idea of mapping the solution in one space to a valid solution in another space is closely related to the
idea of conformal mapping, which is predicated on preserving the properties of harmonic equations between
spaces. In classical conformal mapping using the Schwarz-Christoffel map, planar shapes are mapping to
regions of the complex plane that have well defined solutions to PDE [22]. Because conformal maps are
defined as those that preserve angles, the harmonic properties are preserved during the pull back, resulting in
a valid solution for the original planar shape. The homeomorphism ¢ between the arbitrary (n — 1)-cell and
the unit ball BB is not necessarily an angle preserving mapping. Therefore, we must address the validity of the
pull back in detail; including the preservation of the “nice” properties.

In order for +y to have a local minima, D,y must disappear, where

Dq’}/: an’)’b ch,’), “4)

g € P, and g5 € B [68]. Because -y, does not have a local minima in B, Dg,~, is nowhere zero in B.
Therefore, D,y must be rank deficient for -y to have a local minima. We require that ¢ is full rank over P,
therefore - is free of local minima. Because ¢ maps the boundary of P to 8B, and 7 is free of local minima,
the maximum (minimum) principle is preserved by the pull back. Because the composition of continuous
functions is continuous, ¢ € C* (P, B), and y, € C* (B), the pull back < is an element of C* (P). With
the restriction that ¢ is full rank, v : P — IR is a C* continuous potential function without local minima.

4.2.2 General Form: Unit Ball in R"
The solution to Laplace’s equation in an unit (n — 1)-ball in n-dimensions, given specification of the bound-

ary potential g (y) , y € 8B, is given as

1— 2

u(z) = -
= wn  Joso,a) llz —yll
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where wy, is the measure (“‘surface area”) of the (n — 1)-sphere boundary, z € R"™, y € R"™, and g (y) €
C (9B) [24, 60]. This formula is known as the representation or Poisson integral formula. The given u (z)
is a harmonic function, and extends continuously to the boundary provided that g is continuous [24, 60]. The
specification of the boundary potential is known as a Dirichlet boundary condition.

Because the boundary conditions given above are discontinuous, we approximate them with a continuous
transition over some interval contained in the outlet zone. In this case, the numerator of (5) is bounded above
by one. Because the constant function is integrable (with trivial solution « = 1), we conclude the approxi-
mation is integrable by Lebesgue’s bounded convergence theorem, and the integral over the transition region
goes to zero as the interval goes to zero [39]. The above representation can be solved in closed form given
certain symmetries for the boundary conditions. At worst, the function is computable, with a computable
derivative representation. This allows us to directly calculate derivatives using numeric quadrature.

4.2.3 Special Case: Unit Disk in IR2
The examples presented in this report are for planar systems, so we detail the calculations for the planar ball,
or disk, in this section. Let D = B(0,1) C R?, where

D= {(a:d,yd) eR?| /22 +y2 < 1} .

The boundary is 8D = 8B = {(zd,yd) eR?|/2Z+yl= 1}, which is equivalent to the unit circle S!.
For the disk, the most natural representation is in polar coordinates, so we define

p = VTi+y3,

[ atan2 (yq, T4) -

I

The boundary is parameterized by an angle ¢, such that (cos(,sin{) € 8D. We construct the homeomor-
phism ¢ : P — D such that the inlet zone is in [ag, @], where —7 < ap < a3 < . Figure 10 shows the
parameters for the polar coordinates.

For the unit radius boundary, dS = d(, and we may rewrite (5) as

- 1-p [ 1 d
u@=ulp,f) = — /a (pcos8 — cos¢)® + (psin@ — sin () ‘

1_p2 ay 1
= / 5 ac¢,
2 Joy 1+ p? —2pcos(¢—6)

©)

¢ > 2% 2%
+ O qujtg

Figure 11: Discontinuous boundary condi-

Figure 10: Variable specification for the tions approximated by continuous functions
unit disk. as AC — 0.
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where z = (pcosé, psin §). Note, that we have modeled the discontinuities as shown in Figure 11, and taken
the limit as A¢ — 0.
The integral in (6) has a closed form solution, although some bookkeeping is required. Consider the

indefinite integral
2tan—1 ((1+p) tan( <32 )

1 —14p .
/1+p2—2pcos(C—0) d¢ = -1+ p2 ’ @

where tan—! = arctan. This leads to the following solution via the fundamental theorem of calculus

tan—! ((1+p) tan(a—‘{—a))

— p2 [o —1+p
1 p/ 2 . a = -
2r Joo 14+ p?>—2pcos(¢—6) s
_1 [ (+p) tan(2972)
+ ®
™

If, in the range [ag , a1), the argument for the tangent function crosses a discontinuity at £7 &+ mmw, where
m is an integer, then the evaluation of (7) needs to be broken at the discontinuity. In this case, the arctan
function will yield a total difference of 7 across the discontinuity, which leads to a difference of +1 with
respect to the naive evaluation given in (8). Once derivatives are taken to evaluate the gradient, the constant
+m7 term vanishes. By calculation, it can be shown that VZu = 0 everywhere.

Another equally valid method of solving Laplace’s equation, known as separation of variables, is appli-
cable if the problem has natural symmetries [60]. As the name suggests, the technique involves separating
the influence of the variables and solving using a Fourier series. The calculations, details of which can be
seen in Appendix A, lead to

u(p,0) =ao+ Y p™ (am cos(mB) + by sin (m9)) , )

m=1

where a,, and b, are the Fourier coefficients. Solving for the coefficients, and simplifying as shown in
Section A, gives the final solution

_a1—ap 1 psin (ag — 6)
u(p:6) = 2r T opte (l—pcos(al—O)

R S psin (ap — 8)
= o (1—pcos(a0—9)) ’ 10)

The solution has two singularities at § = ag and 8 = a; when p = 1, but is otherwise continuous. Again, a
straightforward calculation shows that V?u = 0 everywhere.

With appropriate bookkeeping, v, (g4) = u(p,0), where u is given in either (8) or (10), and p =
\/:1:3 + ydf and 8 = atan2(yq,z4) is the polar coordinate representation of ¢z € D. Although the forms
of the equations are quite different, they evaluate to the same potential and derivatives, as expected given the
uniqueness of solutions to PDE with Dirichlet boundary conditions.

4.3 Component Control Policies

Given the potential field -y for the n—cell C IR”™, generated as described above, we wish to generate control
policies that follow integral curves of the negative gradient vector field. By construction, the gradient vector

(© 2003 Carnegie Mellon 27



field induced by the pullback of <y is orthogonal to the boundary of the cell. This is trivial to show, given
that the potential along the boundary of the cell is constant by virtue of the pull-back. The negative gradient
vector field is inward pointing along the inlet zone of the cell, and outward pointing along the outlet zone of
the cell. Orthogonality allows us to construct control policies that have continuity of orientation across the
cell boundaries, and facilitates some of our later proofs. Because the gradient field is nowhere zero on the
cell, and the field is C*¥ smooth, we are guaranteed that any trajectory that follows the integral curves of the
negative gradient field will exit the cell through the designated outlet zone.

Although following the integral curves has the desired effect with regard to exiting the cell, the dynamic
behavior may not be desired. For example, the potential function tends to be flat near the boundary at the
maximal distance from the outlet zone, which leads to a small gradient. The gradient tends to be largest near
the boundary condition discontinuities. Our approach is to make use of the negative normalized gradient of
the pulled-back potential function to generate a vector field X : P — TP, given as

_ Dy __ Dyp™ Doy vy
1Dl | D gy ve Doeel|

where ¢ € P and g, = ¢(q) € B. The integral curves of X(g) correspond to the integral curves of the

negative gradient field. Figure 12 shows an example of the vector field X (g). We are free to scale the vector

field by any non-zero scalar to generate the desired speed profile along the integral curves. Given a scalar
field, s(g), defining the desired speed at each point, we define the desired velocity vector field as

X(g) =s(g) X(q) - (12)

In the subsections that follow, we construct control policies that follow the integral curves of X (g) for both
kinematic and dynamical systems.

X(g) = a1

4.3.1 Kinematic Control Policy

For kinematic systems, where velocity is controlled directly, integral curves of the vector field X (g) can be
exactly followed.

Figure 12: Negative normalized gradient vector field for a polygonal cell.
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Lemma4.1 For akinematic system of theform g = u, wherequ G H", the integral curves ofthe system
under the influence of u = X(q) = s(q) X(g), where s(q) G (O, Vmax] and X(q) is defined in (11),
determine a pathfrom any point on the inlet zone, or interior ofthe cell, to a point on the outlet zone such
that thetrajectoryiscompletely containedin thecell until it crossesthe outlet zone.

Proof: By construction, the potential over the cell is maximum on the inlet boundary, minimum on the outlet
boundary, and free of local minima. The system is performing gradient descent by moving in the X(q)
direction, which moves the configuration from a point on the inlet zone or interior of the cell through
the outlet zone.

Thisis exactly the behavior required of the component control policy for use in the control policy deployment
scheme from Section 3.

Combined with the automated control policy deployment scheme described in Section 3.4, the component
control policy u = X(q) yields a (resolution) complete motion planning method for the kinematic system
via the induced overal control policy. Because the vector fidd is orthogond to the boundaries, the velocity
orientation is continuous across the boundaries. Speed continuity is dependent on specification of s(q) in
eech cell. For the kinematic system, the most natural speed specificationis () = s < V> Where s* is
some congtant. It might be desirable to define lower speeds in regions where sharp turns are being made, but
we defer discussion of how to do this until Section 4.3.3.

43.2 Uncongrained Dynamics Control Policy

While the kinematic control policy deployment scheme, with the component control policy design presented
above, provides anove solution to the classical mobile robot navigation problem, it does not guarantee that
areal robot, subject to dynamica constraints, could follow the prescribed path.

Given a second order system of the form

g=u, (13
we wish to design acontrol |law that convergesto an integral curve of the vector fidd X(q), without departing

the defined cell V. We begin by developing the control policy assuming the system dlows arbitrary, but ill
finite, accelerations. Later, we consider acceleration and velocity constraints.

Using X(q) as aposition dependent velocity reference leads to a natural velocity reference control policy
of the form

u = KX(@)-q+X(), 04)

where K > 0 is the "velocity regulation” gain, which acts to decrease the error [59]. The feed-forward term,
X(g) = DgXq accounts for the change in the vector field as we move in the g direction, and alows the
system to exactly track the integral curves of X(q).

Lemma4.2 In the absence of constraints, including those of the cell boundary, the integral curves ofthe
vector field X (q) areattractivetothetrajectoriesof theclosed| oop systemdefined by (13) under theinfluence
of(14).

Proof: Define the velocity error, e = X{q) — ¢, and consider the set
V:={(q.a) | llell = 0} .
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Define a Lyapunov-like function of the form

1
Th = §€Te

= SX@ -7 (X@-9) as)

Evaluating the time derivative of (15) along the trajectories of the closed loop system, and substituting

(14) yields
o= (X@-d)" (X(a) - 4)
= (X(-9)
(X(@) - K (X(@) - 4) - X(a))
= -K (X(@)-9" (X(@) -4 . (16)

For K > 0, 1j,, < 0 for all non-zero velocity error, and we conclude that the set V is both attractive and
invariant, implying that the velocity error asymptotically approaches zero [59, 62].

The orientation error, defined as the angle between the desired velocity, X (g), and the current velocity, ¢,
is given by
a4 X

9 = cos an

where X = X (q).

Lemma 4.3 In the absence of acceleration constraints, and for initial velocities such that ¢T X > 0, there
exists a lower bound on K such that the orientation error, 9, monotonically decreases.

Proof: First, consider the isolated case where ¢ = 0. We define ¥ |4—o= 0, since differentially the accelera-
tion will be in the direction of the desired velocity and the orientation error will be zero. As we show
below, the orientation error will remain zero for all time.

To show that the orientation error 9 monotonically decreases, consider the set

U:={(¢,9 |9=0},

and define a Lyapunov-like function of the form

N = sin’®=1-—cos’?
T XTX - "X §"X 18

where X = X (q).
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Evaluating the time derivative of (18) along the trajectories of the closed loop system, and simplifying
yields
2 (XTX i+ TG XTX — TX §TX ~§TX XT(j)
e = TgXTX

2 .TX 2 .

Substituting (14) into (19), we obtain
-2 - i . .
= axTx (qTX TX+KTXXTX -KiTX XTg+¢TX XTX)
2 (§7X)
(@74 XTX)?

2 T T vy T Ty

2 (47 X)
(@74 XTX)
KX XX - K (§"X)")

(KXTX FTX-KXTX T4+ XTX X +§"¢ XTX)

(XTX iTX +¢7¢ XTX)

T §Tq )2(TX (

T 2
2@X)exTx X - KXTX )
(474 XTX)’

2(4"x)* : . §TgXTX XTX
- 22X (XTXqTX pitgxmx - TIX Xrg 474 XTX)
(¢T¢XTX) §TX TX

2(aTX)? /6TsxT
@X) (4T4XTX oy FTGXTX —XTX X +XTX¢"g
@eX7X)* \ "X

2(‘jTX)2 Ty, oyt C4XTX 7 §T¢XTX
=W(XXq+qu—qTXq qTXXX

_ quTXT_T-T
K( qTXXX X'X¢g X (20)

Now consider the case where ¢ is aligned with X (g) and we have ¢7 X = ||¢|| || X||. We assume that
llgll > 0, and ||X|] > 0 by construction, so the leading term is a finite positive number. Because
¢T¢ = ||gl* and XTX = ||X||*. both parenthetical terms inside the brackets of (20) are zero, and
1. = 0. Therefore, we conclude that the set I is invariant. In other words, if the orientation error is
Zero, it remains zero.

Away from U, the leading term of (20) is positive and bounded, because we assume that initially
47X > 0. Assuming the system has finite initial velocity and that ||X (g)| is finite, if follows that the
velocity error is finite; then by Lemma 4.2, the error magnitude decreases, and we conclude that ||g}|
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remains finite for al time. The first parenthetica term in brackets for (20) has an indeterminate sign,
but isfinite since dl the terms are bounded.

We may rewrite the parenthetical portion of the second term as

(q"fq'fﬂ"x Xy — Ty A i (x'x)? ( (ex)? \
§TX
P - T 2
= qqé#(l_cosz,)- (21)

Because (21) is non-negative for al g such that q"X > 0, the overal impact of the second term in
bracketsfor (20) isto decreaserj,. Therefore, for sufficiently large K, rj, can be made negative definite.
This implies that §'X remains positive, and therefore rf, is dways negative for sufficiently large K.
Sincef}, < 0, we conclude that U is attractive and invariant, and that ft monotonically decreases under
the influence of (14).

Intuitively, making K sufficiently large ensures that the control policy is correcting more quickly than the
vector field is changing. Formally, the sufficiently large K is determined such that

(qTX XTX qT + .qTX qTq XT _ -qT-q XTXqT _ qTq XTX XT) )'(
K > max T F —
™ - [a'g (XTX)? - XTX (q"X)
Thisis aworst case limit based on the vector field derivative.

Lemma4.4 In the absence of acceleration constraints, with sufficiently large K and initial velocities such
that "X > 0, thetrajectoriesofthe closed |oop system defined by (J3) under theinfluence of (14), converge
to theintegral curves ofthe vector field X(q) in such a way that the trajectory never exitsthe cell except by
theoutlet zone, andinfact exitsthe cell viathe outlet zone.

Proof: For initia velocities such that "X > 0, we know the orientation error is initialy less than f. By
Lemma4.3, for aufficiently large K the orientation error is monotonicaly decreasing.

Assume the trgjectory exits the cdl in the inlet zone. At the point of departure, q'X < 0 given the
inward pointing vector field orthogond to the cell boundary. Thisimplies that t? > f, requiring that
the orientation error increased along its trgjectory. This contradicts Lemma4.3.

Since the vector field X(q) is nowhere zero over the cell, the system cannot come to rest and remain
stationary, because the system experiences an acceleration aong the vector field. Therefore, we con-
clude that the trgectory must leave the cell viathe outlet zone under the influence of (14) for the given
conditions.

The utility of lemmas 4.3 and 4.4 is limited by two factors. Firgt, alarge vaue for K can lead to an
overly aggressive policy over the cell that may prove troublesome for implementation. Secondly, and most
importantly, al real world systems have acceleration limits, which may very well be violated by the feed-
forward term of (14), regardless of the value of K and the velocity error.
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4.3.3 Constrained Dynamics Control Policy

To extend our ideas to real world systems, we now consider the following dynamic constraints,

[lgll < Vmax (22)
”U”:”qn < Amax- 23)

The velocity limit is taken to be a safety limit, and it is assumed that || X (¢)|] < Vmax for all ¢ € P.
However, if the change in the vector field X (g) given by D, X ¢ is aligned with the current velocity, then
the feed-forward term of (14) may act to increase the velocity magnitude (speed), causing a violation of the
maximum speed. We will modify the velocity reference control law in (14) to prevent this violation from
occurring, but first we consider the acceleration limit.

The acceleration limit represents a physical limitation of the dynamical system. Since the acceleration
cannot be exceeded, the inability to produce the desired acceleration will invalidate the lemmas given above.
To accommodate both the velocity and acceleration constraints, we have modified our basic control policies,
and developed hybrid control policies to address the dynamical constraints. We begin with a discussion of
the acceleration constraints, and then discuss the hybrid strategies in Section 4.4.

As discussed in Section 4.3.2, the feed-forward term of (14) may cause a violation of the acceleration
constraint regardless of the value of K and the velocity error. Consider the case where we are exactly tracking
the integral curves of X (g), and V, = X(g) — ¢ = 0. Then, by (14), we have

uo = DgX ¢ =Dy X X(q) ,
where g is the zero error input. To satisfy our constraint,
lluoll = [1Dg X X (@)l < Amax - (24)

This norm depends on both D, X and 4. If the system velocity is high, then large accelerations are needed to
follow even modest curves in the vector field. If the vector field is changing significantly over small distances,
then even modest velocities can require significant accelerations.

First consider X(¢) = s*X(g), where s(q) = s* is a constant (i.e., X(q) is a constant speed field). In
order to trace the integral curve given the velocity reference control policy from above,

1D X X (@l < Amax ,

(s)? | Do X(@)]| < A,

where D, X = s* D, X. By definition, ”D‘,X f{(q)” < ”DqX' ﬂ , where "D,,X” is the spectral norm. The
spectral norm of a matrix M, denoted M, is defined as

1M1 = max |M <]l .
llzll=1

Figure 13 shows a plot of ”DqX " for an example polygonal cell. Conservatively, if

then the system will not exceed the acceleration bound so long as the velocity magnitude at ¢ does not exceed
s*. Unfortunately, this is overly conservative.
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Figure 13: Spectral norm of the derivative of the negative normalized gradient vector field ("DqX' ") for a

polygonal cell, with the cell boundary shown. The contours corresponding to the largest norms are located
near the polygon vertices.

We now use the spectral norm of DqX' to encode the idea of slowing down while turning. If we let
X(g) = s(g) X(g), where

) (25)

_ s > s N -
DX = o —DuX —("qu(”_i./\)zXDq”DqX"
s* 5 1
- i (e o)
- 6@,
D X[ +

where G(g) := (Dq)“( — o5 X D an)‘cﬂ>.
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‘We now have the constraint that

IDg X X (@l < Amax

* *

S S

WG’(Q) W——/\X(q) < Amax s
2
o) o0 K0l <o

Again, being somewhat conservative, if we specify

Vi ([24] +)

e

then the system will not exceed the acceleration bound so long as the velocity magnitude at ¢ does not exceed

(26)

s* < min
q

“D—}‘—"n . Since " DqX' " is maximal where the normalized vector field is changing most, this form encodes
q

the idea of slowing down while turning, as desired.

This form is still somewhat conservative, but is available in closed form. One can imagine solving a
non-linear PDE to find a more aggressive speed scaling for s(¢q). However, this would require numerical
techniques, and would lose the analytic proofs, without giving much insight into the problem.

We make one final change to incorporate the velocity constraints, and define

s*

anf(ﬂ +A

Although this form allows the reference velocity control policy to make use of the dynamical capabilities of
the system, the form is still not sufficient to prevent constraint violations. In the case where initial velocity is
not aligned with the vector field, the proportional term may cause the acceleration constraint to be violated.
To prevent this, we construct our component control policy from a set of hybrid control policies designed to
cause the system to converge to the integral curves without violating the constraints.

5(¢) = min »Vimax | - (27)

4.4 Hybrid Control Policies for Dynamical Systems

To understand the need for hybrid control strategies over each cell for dynamical systems of the form given
in (13), it is helpful to understand the interaction between level sets of the Lyapunov-like functions defined
in Lemmas 4.2 and 4.3 and the constraint surfaces defined by (22) and (23). Consider an element in the
2n-dimensional state space (q, (j)T, where ¢ € P is a configuration in the cell P, and ¢ € T, P is an element
of the tangent space at q. Level sets of the Lyapunov-like functions from Section 4.3.2 define surfaces in the
state space. The velocity constraint given in (22) defines a compact set of permissible velocities V in the state
space at each point in the region such that

V:={(g,9) | l4ll € Vmax} - (28)
The acceleration constraint given in (23) defines a set of permissible states .4 such that
A= {(q,9) | 1l = llull £ Amax} , 29)
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where u is defined in (14), and depends on g, g, and K. Furthermore, define the sat Z of velocities that are
somewhat aigned with the desired velocity (1? < f) as

Z :={(a, DX '¢g>0) . (30)

All of these sets, V, A, and Z, are defined purely by functions of the state given the vector fidd X(q).

If aleve st T2'* (C) for somec G H, wherer), : TqV -t H was defined in Lemma 4.3, is completely
containedinV P AR Z for a sufficiently large K, then by Lemmas 4.3 and 4.4 we may invoke the controller
specified by (14) for any state with rf, < ¢ with guarantees that the system will exit the region properly.
Definec as

c— argmax {rj'"t (X) cVdAOZ

If r}y, > c, orif c does not exigt, then it is possible that a trgectory will violate the either the maximum
velocity or acceleration congtraints. In addition to the difficulty of actually determining c, the set of states
withr), < cislikely to be overly restrictive.

Our approach, again taking ingpiration from the sequentiad composition methods of [11, 54, 59], is to
define a sat of controllers that cover the region of the free state space, and whose composition guarantees that
the system exits the cell via the outlet zone with peed less than | X(</)||. For our system, we define three
control policies: $s, $A> and 3>T- Where the subscripts S, A, and T refer to "Save," "Align," and "Track"
respectively. The control policies are designed such that

Pg B4 Br.

441 Save Control Policy

We begin by considering the case where the best the system can do, using all available acceleration, is prevent
collison with the cell boundary. The Save control policy, $5, is used to apply al available acceleration in
way that prevents collision with the cell boundaries ifit isat all possible.

The exact form of the Save control palicy is dependent on the structure of the cell. In Section 5.1.3, we
present the formulation for cells of arbitrary convex polytopes. For now, we assume that 5 is capable of
bringing to rest any condition in TV that could be brought to rest without violating the given constraints [59].

By our construction and composition methods outlined below, collision with cell boundaries will only oc-
cur for trgjectories entering too fagt from outside the cell viathe inlet zone, or for anon-zero initial condition
that istoo fast. The domain of the emergency stopping controller @{$s)> which we term the savableset 5, is
the et of dl (g,d) € TV such that $5 can bring the system to rest without colliding with the cell boundary
intheinlet zone.

Define the the collision ratio, £ to be the ratio of the distance to collision, d., to the distance required for
braking, d&; that is 4

Ce &
This definition is made concrete in Section 5.1.3 for cells defined as convex polytopes. Note, that if £, < 1
then collision can be avoided, while C,. > 1 impliesthat collisonisinevitable. For £. < 1, $5 isdesigned to
reduce Cc further. We formally define the domain of $5 as

@(CI’S) = {(‘IsQ) | q€ P} Cc < 1} .
The god set of the Save control policy, S?($s), is any rest condition within the cell, or more formally

¥(2s)={(g.9) g€ P,¢=0}.
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The goal set of the Save control policy is in the domain of the Align or Track control policies because
starting from rest we can follow the integral curve passing through ¢ by Lemma 4.3, provided the vector field
is defined as in (25). The savable set is positive invariant under the Save control policy because Save does not
increase the collision ratio, (., for any state in the savable set.

4.4.2 Align Control Policy

The Align control policy is designed apply maximum acceleration to system in order to bring the velocity
into the domain of the Track control policy as quickly as possible, in the case where collision with the cell
boundaries is not imminent.

The Align control policy is designed to continuously transition from the Save control policy to a condition
where maximum acceleration is applied along the velocity error vector. This later condition acts to decelerate
the system and turn the velocity toward the desired velocity vector, X (¢). The domain of the Align control,
given the collision ratio defined above, is

2®@4)={(g,919€P, (< u},

where u € (0, 1) is a user defined parameter defining the collision avoidance margin.
Let
p=HP=Ce
I

and define the Align control policy as
(1—a(v)) Ps+o(v)é T T
Amax [(I=s(m)ostomal 4 X <4'4

A (1=0(v)) ®s—a(v) §
mXa-o() es—o(v) 4|

dq:u= , (31

otherwise

where é = "—ﬁ%ﬁ[, §= TI%H and o : v — [0,1] is a transition function with o (0) = 0 and o (1) = 1.
For demonstrations in this report, o (v) = /v has been used. The Align control policy is guaranteed to keep
the system in its domain, as the policy transitions to the Save control policy at the domain boundary. Recall
that under the Save control policy, the collision ratio (. is guaranteed to not increase (see Section 5.1.3 for
proof). Therefore, the system will not exit the { < u domain. Figure 14 shows an example of the vector
relationships used by the Align control policy.

X(q) - q

X(q)

Figure 14: Velocity vector relationships for the Align control policy.
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Because the domain, 2(® 4) C S, the worst the Align control policy will do is bring the system to rest,
which is within the domain of the Track control policy. In the normal case the Align control policy will bring
the system velocity orientation towards the desired velocity orientation, while at the same time reducing the
speed of the system. If acceleration along the unit error vector would tend to increase the velocity, i.e. when

TX > ¢7q, the system switches to accelerate against the current velocity. In all regions, the Align control
policy acts to decrease the system speed. The goal set of the Align control policy, 4 (P 4), is

9(24) ={(¢,9) 1g€P,¢=0},

which prepares the Track control policy.

4.4.3 Track Control Policy

The Track control policy is designed to bring the system velocity into alignment with the vector field X (g)
using maximum available acceleration and transition continuously to the velocity reference control law. The
domain of the Track control policy is

2@r)={(g,9) 1d"X >0, lldl <IX @I} -

At the same time, the Track control policy must guarantee that the system trajectory does not exit the cell,
other than by the outlet zone. The goal of the Track control policy is

9(@r) ={(g, P | 4l <X (Il ;¢ € OPoutier}

i.e. the system exits via the outlet zone.

To accomplish this goal, the Track control policy is designed to monotonically decrease the orientation
error, ¥, between the current velocity and the desired velocity. The approach is to use some of the available
acceleration to keep the orientation error constant as the trajectory evolves, and use the remainder of the
available acceleration to decrease the error. The vector field derivative, X = D,X ¢, defines the amount
the desired velocity, X (g), changes as the system moves by ¢. Let d@) be the acceleration vector applied to
the system such that the change in orientation error is zero. Essentially, d@), shown in Figure 15, is a scaled
version of X that has been rotated by 9.

Consider the plane defined by the current velocity, ¢, and the desired velocity, X (q), which we will
term the velocity plane. We will decompose the vector field derivative vector into three components: the
component along the desired velocity, the amount orthogonal to the desired velocity in the velocity plane,
and the remainder. The component along the desired velocity is the differential speed change. The second
component encodes how the desired velocity vector differentially rotates in the velocity plane. The remainder
encodes how the velocity plane differentially rotates in space. If the system is accelerated such that the
current velocity differentially rotates in the velocity plane the same as the desired velocity, and rotates with
the velocity plane, then the change in the orientation error will be zero. Define the following unit vectors:
q, M, N, and P, where q is the unit vector along the current velocity, M is the orthogonal to the desired
velocity in the direction given by the error vectore = X (9)—4g, N is the unit vector orthogonal to the current
velocity in the direction of M, and Pi is the unit vector orthogonal to the velocity plane. These vectors are
shown in Figure 15. Note, that M and N are both in the velocity plane. If the current and desired velocities
are aligned, we define M=N=0.

Letz = X7TX andm = MTX, and define

P=X-zX-mM.

The vector P, orthogonal to both X and M, defines how the desired velocity vector rotates out of the velocity
plane. The scalar z defines the differential speed change, and the scalar m defines how the desired velocity
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A
|

Figure 15: Vector relationships for the Track control policy.

vector rotates in the velocity plane. Considering the different magnitudes of ¢ and X (qg),

ll4ll
X (@l

This is equivalent to scaling X, and rotating in the velocity plane by 9. Given the scaling from Section 4.3.3,
[1dQIl < Amax because [|4]] < [|X(g)]] in 2(®r), and I‘XH < Amax. Letting v = dQ will hold the
orientation error constant, while allowing the speed to change proportionally. Note that the speed can never
exceed the desired speed under this control, because the speed change will be equivalent when the current
speed equals the desired speed. In general, because ||dQ|| < Amax. there will be some acceleration capacity
left over to decrease the orientation error. Let u = dQ + K* (X (q) — ¢), where K* is calculated to use the
remaining acceleration capacity. This control will decrease the orientation error, or at worst keep the error
constant. However, the available control can be used more efficiently.

Consider, if m < 0, then the vector field is changing in a way that is already decreasing the orientation
error. Also, if the speed change given by z is positive, then we can safely ignore this component, assuming
we prefer alignment over speed matching. We redefine d@) such that

il
Q=X

and preferentially use the available acceleration for steering, then use any remaining acceleration for speed
regulation. The Track control policy is defined as

dQ = (mé+mN+P).

(min (0,2) §+max (0,m) N + P) - (32)

®r:u=dQ+sN +ag, (33)

where

o oT 2 474 (o . 2\ _ llgll
s = min (KN e, \/Amax XTX (P P+mm(0,x)) i max (0,m) | and

) A o . 2 .
a = min | K§Te, \/Amuz - ;T§PTP - (——llllg(lh max (0, m) + s) - _ll||;l||| min (0, z)

Lemma 4.5 Under the influence of (33), the system of (13) with constraints given in (22) and (23) converges
1o the integral curves of X (q), defined as in (25), in such a way that the trajectory never exits the cell except
by the outlet zone, and in fact exits the cell via the outlet zone.
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The proof directly follows that of Lemma4.4.

In the limit, as the velocity error approaches zero, the Track control policy is identica to the velocity
reference control policy givenin (14). We assume that the vector field X(q) is defined asin (25), and as such
the velocity reference control policy is able to follow the integrd curves without violating the constraints.
Therefore, once the velocity g has converged to an integral curve such that WG\ < (), lemmas 4.3 and 4.4
are applicable. Note, that snce the orientation error is zero, the value of K only needs to be greater than zero
for the lemmasto hold, and not sufficiently large.

444 Composte Palicy

Given $s, $,4, and $/% any initial statein the savable st will be brought into the domain of the Track control
policy and exit the cdll viathe outlet zone. Given the prepares relationship,

L TRk TRl 78

the highest priority control policy takes control until the system exits the cell. Asthe Align policy transitions
to the Save palicy, the Save palicy is superfluous over a cell where the Align policy is deployed.

The Align and Track policies may be thought of as separate policies over the same cdll, to be deployed
individually, or as part of a single switched policy over agiven cell. We define the composite contral palicy,
which we term the Flow policy, as $p = V { $T>®A}- Thus, we can think of deploying individua Align
and Track policies, or one Flow palicy, over agiven cell.

Since the vector fidds used with the Align/Track/Flow policies are orthogona to the boundaries, the
trgectory will enter the adjacent cell in the domain of $1, with one caveat. The orientation will be in
alignment, but the speed dong the curve may be too fast, and require the Align policy to be activated. In
order to prevent this, we want the exit speed from one cell to be within the domain of the Track control policy
of the next cell.

Beginning at the god cell, we may impose the restriction on (27) in the adjacent cell be less than (27) in
the current cdll at the shared boundary. This guaranteesthe desired behavior, but is overly conservative as the
sharpest turn dominates the speed profile. We desire to find a more relaxed, yet computationally tractable,
method of finding $(q) such that the constraints are satisfied and speeds are consistent across cell boundaries.

45 Goa Contral Policy

The How control policy constructed above is useful for transferring a system from some configuration to the
cell containing the goal, however, a different type of policy is needed to stabilize the system at the goal. The
policy congtructed in [59] is appropriate, and can be deployed dong side our Flow policies. However, we
make an extension that aigns the vector fields a the boundaries of the Goal and FHow cells.

To construct our component control policy for the goa cell, we follow a procedure similar to that used
to construct the component control policies described above. We generate a potential field with uniform
potential dong the boundary of the goal cell, and zero potentia at the goal, and generate a configuration
based velocity reference as before.

Wefirst map the god cell to the unit ball using the map ip as before, and let

<& = <p(ay) >
where qg is the goal configuration, and q% is the mapped goal point. We then define a diffeomorphism
tp: B-> B suchthatip(dB) = dB and ip(q%) = 0. Definethe potential functionjg : V > 1R such that
1
Yo = 5ol
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Figure 16: Equipotential contours for potential field found by mapping from goal cell to ball to ball centered
at goal, and letting v, = 1 |l 0 .

Figure 16 shows an example of this mapping for a polygonal cell in the plane.
We define the negative normalized gradient vector field, b'e g>as

Dq'ygT
1D Yo Il

Xy (@=-
We define the position dependent velocity vector field as

X,(q) = 54(9) Xy,
where s,(g) is given by

llg — ¢, II”

5 ) 34)
llg — golf* + o

50(q) =

and « is a scalar parameter that regulates the rate of deceleration near the goal. Figure 17 shows how the a
parameter affects the speed profile as the system approaches the goal.
We now wish to develop control policies to follow the vector field X, (g), while respecting the system

constraints. We will leverage our prior results by letting X = X,(g), and using the control laws developed
above to follow the vector field.

For the kinematic system, we scale X,(q) as in (12) with 5(¢) < Vmax. The value of @ > 0 is only
useful from a convergence time standpoint, as its impact on acceleration is irrelevant for kinematic systems.
Smaller values of « result in faster convergence.

For dynamical systems, the velocity reference control policy of (14) is still valid; however, care must be
taken in defining the scaling function for constrained systems. Consider the vector field derivative,

Dng(‘I) = 39(‘1) Dng + Xg Dqsg(‘I) > (35)
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Figure 17: Curves of s4(gq) vs. |lg — g,|| for various a. Figure on right is close up of origin.

At the goal point, the qu(g component has an infinite norm due to

N DyT
DX, = Dq( qg)

" 1Dl
- _ D, (Dq'Y;r) Dq7}Dq "Dq%”
1Dgxl 1D lI>

which goes to infinity as m. However, by multiplying by s,(g), which goes to zero at the goal point, we
negate this impact. The last term in (35) involves a unit vector and a bounded gradient,

20 (¢ = ‘Ig)T
2
(llg — golP” + )

Dysy(q) = (36)

so it results in a bounded vector field derivative.

Now consider the value of a. Assume the system is tracking an integral curve of X(q) = s8* X,(q) such
that § = X(q), where s* is a constant. Further assume that the vector field has begun to approach the goal
point radially, so that qu(g ¢ = 0. Under these conditions, the feed-forward acceleration is due only to the
speed changes due to the change in the scaling factor,

X =D,X(q)

8" DgX4(q) 5*Xy(q)

(3*)2 Xg Dysy(q) 34(q) Xg

(5*)2 39(q) Xy Dqsq(a) Xg
(s*)” 59(a) 1Dy3,(a)ll cosé X, ,
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where ¢ is the angle between Dgs4(g) and X ¢- For the radial approach, £ is 0. We note that the norm of X is

maximal when s¢(g) ||Dgs4(g)| is maximal. By calculation,

2
le—al®  2allg—g,ll
2 . 2
llz=asl"+ @ (jjg - g,|° + )
llg — gl
2 37
(ll— gl + <)

39(q) 1Dgse (9l

= 2a

therefore s,(q) ||Dgs,(q)| is maximal when ||g — g,|| = \/a. We now have the constraint that

] = )7 20(@) 1Dus@l] < A
3
2a (s*)‘l —_”—q_—qf“—§ < Amax
(lla - gI* + <)
a3/2
2a (s*)2 (C; )3 < Amax
s
3/2
"2 «
(S ) T.z < Amax
(S*)2
< x5
4\/Q; = Ama
which implies
(S*)4
16Aax

(37

Defining a as in (37) allows X (g) to decelerate the system to the goal point in a way that respects the
acceleration constraint on final approach, assuming the approach is radial. However, this does not take into
account curvature in the vector field. For this we let X = X, 4(@), and use the speed scaling factor as in (26)
to ensure that the acceleration constraint is not violated where the vector field is changing. The a parameter
takes most of the burden during final approach, while (26) guarantees that the overall control policy does not

violate the constraints in the goal cell.

Given the vector field X, (g), the hybrid control polcies, Align and Track, can be used to bring the system
to rest at the goal point. Thus, we define the Goal control policy @ = \/ {®7, ® 4} using the vector field

Xo(q)-
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5 Specific Example

In this section we make our control policies concrete, given a specific type of decomposition. We begin by
describing the use of convex polytopes to specify our cells. We construct a mapping that takes the cells to
the unit ball such that the mapping of the interior of the cell is C° almost everywhere. We then develop
the specifics of the Save control policy, which is used in the hybrid control policies that form the switched
component control policy for each cell in the constrained dynamical system. We conclude with simulations
of navigation problems for planar systems.

5.1 Cellular Decomposition: Convex Polytopes

The use of convex polytopes is one of the most basic types of cellular decompositions. In lower dimensions,
the polytopes are the familiar polygons in IR?>and polyhedra in IR®. The cells can be easily described as the
intersection of a set of half space constraints, which make the boundaries easy to specify, and involves trivial
calculations to check a point for inclusion. It takes a minimum of n + 1 half space constraints to bound
n-dimensional space.

The decomposition of arbitrary space into convex polytopes is dependent on resolution, as curves are
approximated by linear segments, and surfaces by planes. This implies that our methods are only resolution
complete for arbitrary environments. For environments with obstacles defined by polytopes, this method can
be exact. The component control policies are designed to take the configuration through a designated outlet
face into the adjoining polytope.

We represent each half space constraint with a point, p € IR™, and a unit normal, n € IR™. The normal
direction is assumed to be inward pointing with respect to the polytope being defined. Note, that the normal
direction changes as the system goes from cell to cell across a common face. We choose p such that p is the
center of the polytope face being specified by the half space. Note, this is an over parameterization of the
half-space constraint. All that is required is the distance from the origin, and not a point on the hyper plane.
We choose to carry p; for use in later transformations.

Let 8; () = n; - (¢ — p;), the distance from a point ¢ to the hyperplane defining the ** half space
constraint. If ¢ is an interior point of the cell, then §; (¢) > 0 forall< € 1...m. This allows us to compactly
specify a convex polytope P as

P={geR"|Vi=1...m,B:(q) >0} .

If B; (g) = O for some, but not all, of the half space constraints, then g is on the boundary of the cell. A
necessary condition for the set {(p;,n;) | ¢ = 1,...,m} of half-space constraints to specify a valid polytope
is that the face normals n; positively span the free space. Another necessary condition is that the center point
of each face, p;, is contained in the intersection of the other half space constraints. In other words,

Vi=1l...m,Vj=1...m,i#7, ﬂ]‘(p,')>0.
Define g such that

g5 = arg;naxnﬂi @,

=1

and let

Bmax = H Bi (as) ,

=1
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wilere Bmax 1s the maximum value of the product of distances to each face on the interior of the cell. We
define the scaled distance product function 3 (¢) as

B(q) = Bmitx [[5i(a) -

(38)

=1

Lemma 5.1 The set of local maxima of 8 (q) on the interior of P is a singleton. Furthermore, B (q) is free

of local minima on the interior of P.

Proof: By construction, 3 (q) is positive over the interior of P and zero along the boundary of P. Therefore
B (q) has at least on point corresponding to a global maximum on the interior of P. Let such a point
be given, which we denote gg. Without loss of generality, transform the polytope such that gz is at the

origin.

Assume there exists another local maxima on the interior, and denote such point as gp,.

Define the line segment between the origin and ¢,,, as 1(t) = ¢m t, and note that 3 restricted to the line

segment is given by

B ()

Bt IIn:-a®-m)

i=1

1=m m
o T (4T amt = n7pi)

=1

1-m O
= Buix ] (ait+d9) (39)
i=1
where a; = nJ gm, d? = —n] p;, and t € [0,1].
The derivative along the line segment parameterized by ¢ is given by
1=m P m
DB() =Bmix 3 |ai[[ (@it +) | » (40)
A==
while the second derivative is given by
1-m m m m
DuB(t) = Budx D |aid_ |a;[] (art+d})
i=1 i=1 =1
=\ 5
1=m m m 1 m
= BB : — t+ df
ﬂmax lZl: az; a’ait‘i‘d?kl:ll(ak + k)
A= k5
1om ai m m
= ﬁmg‘xg mg ath_Il(akt‘f-d(l)c)
a i k#j
i g G 4
= Pmix z(a,t+d?Ai>’ 41
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where

A; =z a; H (akt+dg)
#=\ 2
Because we assumed that gpand g, are locd maximum points, then P (t) must be constant or there
must be aloca minimaint € (0,1). In either case, Dip (t*) = 0 for some t* € (0,1). Note, that

Dip()\.= A+aB(ar+td) ,

which implies that m ..
P A; = —wy H (a;, th + <«). (42)

k#i
Subgtituting (42) into (41), we obtain
/ m
o
Lo=TTT (ot + )
\ kAL

ml

DUP it*) = -pmZX >

Since each term in the summation is positive, we have Dyj3 (t*) < O, which implies 1 (£*) is alocd
maximum. This contradicts our assumption that p is constant or has a local minimum aong the line
segment. Therefore, g, must equal g$, and we have a single local maximum on the interior of V. Since
P is positive over the interior of V), and there is only one local maximum on the interior, there cannot
be alocal minimumin the interior.

From Lemma 5.1, we conclude that P (g) monotonicaly decreases as g approaches the boundary of V
adong aray fromg$ in dl directions.

5.1.1 Mappingto Unit Ball

Given the specification of avalid convex polytope, we construct a mapping to the unit ball using the scaled

distance product, P (q). First, note that the desirable properties of the constructed vector fields are invariant

under rigid body transformation. Let T be the rigid body motion that transforms the cell so that the point g$

is e the origin, and the center point, p, of the designated outlet face lies on the negative X\ axis. Such an

operator maps face points to face points, and face normals to face normals. Unless otherwise noted, we will

henceforth assume that the cell is transformed such that pi — T (p?), ni— T (m), and g = T(q) e T(V).
Given aconvex polytope V and transformation T defined above, (p : T(V) —> Bisdefined as

_ q
o = A m

where P(q) : T(V) -> H was defined above. The P (q) term is scded such that the mapping is scae
invariant. The mapping in (43) maps the origin to the origin, and any point on the boundary to the (n — 1)-
sphere.
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The Jacobian matrix, Dy, is given by Dy = [Dz,cp,] where z; is the j** component of ¢, and ; is
the it component of ¢ (q). Each element of the Jacobian is

. 9i,
8i j ©i
W+6@ ~ (al+5@) (uqu 'D“ﬁ(”) ' “4)

where
5. = 1 1=y
%77 1 0 otherwise
Note, when |lg|| = 0, ¢; = p; =0, and

. 8;
lim D,;¢; = S0
llqll—0 ,Bmax
The distance function partial derivative is
m m
B(g) = B Ylrsllsc@ |, (45)
i=1 k=1
ki

where n; ; is the j** component of the 7*# normal vector. We claim that the Jacobian is full rank everywhere
on the interior, so that the mapping ¢ is full rank on the interior as required from Section 4.1 [5]. We sketch
the proof for arbitrary dimensions, and give a detailed proof for 2D.

Lemma 5.2 The mapping  is full rank on the interior of the cell P.

Proof: (Sketch) The mapping ¢ is designed to preserve angles relative to the origin, and scale the radial
component. Consider the spherical coordinate representation of the mapping. The Jacobian has diag-
onal 1’s for the angle coordinates. In order for the mapping to be singular, the partial derivative of the
radial scaling with respect to the radius must be zero.

Let g7 be the point of intersection with the boundary, along the ray from the origin through the arbitrary
point ¢ in the interior of P. This relationship is shown in Figure 18. The radial scaling is given by

__ »pt
Ty 1ok

qx

Figure 18: The point q and origin determine a point of intersection gy in the linear retraction mapping.

48 © 2003 Carnegie Mellon



where p = ||gz]|, and ¢ € [0, 1]. Then,

P ptlp+ DB
(pt+8)  (pt+8)*
p(pt+B) ptlp+ DiB)
(pt+8)°  (pt+8)’
p (B—tDB)

(pt+8)°

Dtr (t)

which only equals zero when
,3 - tDt,B = 0 .

However, by Lemma 5.1, £ is monotonically decreasing as we move along the ray parameterized by t,
so that D;8 < 0. Since ¢t > 0 and 8 > 0 over the interior of P,

B—tDyB >0

for all ¢ € P. We conclude that the Jacobian in spherical coordinates is full rank.

The mapping from Cartesian to spherical coordinates is full rank, except at the origin, where a proper
limit exists. Therefore, we conclude the mapping ¢ is full rank over the interior of P.

The mapping fails to be C'™ at the origin due to the use of the radial retraction. However, this isolated
discontinuity can be accomodated in the vector field calculations as it only impacts the calculation of the feed
forward term in the control policies. Another option is to make use of blending C'*° blending functions in a
neighborhood of the origin. This is not necessary, as the system recovers from any minor perturbation on the
interior due to the discontinuity.

5.1.2 Mappings to Unit Disk

The simulations presented in this report are for systems evolving on IR2. For these systems, we decompose
the free space into convex polygons. There are a number of algorithms for decomposing spaces into convex
polygons. For some of the demonstration in this paper, we assume the free space is represented as a general
polygon and use an algorithm from Keil [30]. This allows us to demonstrate automated deployment of our
control policies. In general, our work assumes the decomposition is given.

From (43), with the scaling factor included in 3 (g), we have

d y
(g = , 4 . (46)
( (v-’r2+y2+ﬁ(q) \/$2+y2+ﬂ(q)>
The Jacobian, Dy, is
v _ ey
Do = Joig TP @ —2DA(9) 7o DB ()
(4 @7

1
(VETP+8@) | VRS D@ FEE @D

Lemma 5.3 The mapping  given in (46) from an arbitrary polygon to the unit disk is full rank everywhere
on the interior of the polygon.
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Proof: If ¢ = 0, then a simple limit operation yields
1

—— 0
D qp |q=0: ﬂ’au 1 )
Brax

which is full rank. Assume, ||g|] # 0, and consider the determinant of Dy,
(52 +9* + Va2 17 8() (-B(@) + 2 D2 (a) +y Dyf ()
1 .
Va7 (VEZ+ 7 +8(0)

Det (Dgyp) = —

The denominator and the first term in parenthesis in the numerator are positive, non-zero numbers for
[lgll > 0. Therefore, to lose rank, the second term, —3(q) + = D, 8(g) + y D, 3 (g) must be zero.
Assume this is true for some ¢ = (z,y) € P. Then,

B(q) =DeB(q) q- (49)

However, by Lemma 5.1, 8 (¢) is monotonically decreasing as we move along the ray through ¢ origi-
nating at the origin. Therefore, Dgf (¢) ¢ < 0 for all ¢ € P, while 3 (g) > 0, contradicting (49). We
conclude that the determinant is non-zero.

The mapping is singular on the boundaries, and in fact the Jacobian is the zero matrix at a vertex of the
polygon. This necessitates an approximation of the cell near the polygon vertices, since the gradient vector
disappears. We discuss approximation techniques in Appendix B.

Given the mapping ¢ from above, and the solution, -, to Laplace’s equation for the disk given in (8) or
(10), we define the potential over the polygon as

YT=Y0p.

This mapping is depicted in Figure 19.

By construction, the gradient vector field induced by the pullback of the heat equation solution is orthog-
onal to the boundary of the cell almost everywhere. This is trivial to show, given that the potential along the
boundary of the cell is constant by virtue of the pull-back. At the vertices, where the gradient disappears, it
is natural to define X as the norm of the average of the adjacent face normals. In Appendix B, we present a
method for approximating the vertex region using a C? continuous curve.

To calculate the gradient, we must pick a solution to Laplace’s equation, and differentiate. Choosing (10)
to avoid the bookkeeping, we have

 (p,0) = 220 lt;an“( psin (o1 — 6) )

27 + 1—pcos(as —6)

1, psin(ao—6) )
B Wtan (l—pcos(ao——a) ’ (50)

With p = /7 + y2 and 8 = atan2 (yq, T4), Where (z4,Y4) = (2, ), we have

—sin(a)+sin(8)+p (2 cos(8) sin{(a—pB)+p (— sin(a—2 8)+sin(8-20))) T
m (1+p%—2 p cos(a—0)) (1+p%—2 p cos(B—6))
Dy = . (1)
cos(a)—cos(8)+p (—(p cos(a—2 6))+p cos(B—2 6)+2 sin(a—p) sin(8))
m (1+p2—2 p cos(a—0)) (1+p%—2 p cos(B—0))
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Figure 19: Mapping from polygon to unit disk. The contour plot on the left shows level sets of the pullback
75 o (p on the polygon; the contour plot on the right shows the corresponding level sets of 75 on the unit disk.

The gradient in of the potentia in the polygon is Dgj = Dgyji Dgip, which is dl we need to caculate the
negative normalized gradient vector field X.

It is worth noting, that the mapping ip has a direct impact on the potential field, and therefore the gra-
dient vector fidd. Figure 19 showed the results for the mapping given in this report. There are many other
dternative mappings; consider the following three.

For the planar system, a Schwarz-Christoffel conforma map is anatural choice [22]. Unfortunately, the
conformal map is in the opposite direction, that is from the disk to the polygon,

s=pit@) =a+c | ﬁ(bi)a*_ldc, (52)

4
k=i k

where A and C are complex constants, z* —=<p (U)K) is the prevertex corresponding to the k™ vertex Wk of
the polygon, and CTT istheinterior angle of the polygon. Note, Zk, Wk, and#& = ipsc (<}) arerepresented as
complex r12umbers Driscoll and Trefethen [22] present numerical agorithms for performing the caculations
in Matlab

As a second dternative, consider a variation on the mapping presented in this report. We term this the
Beta Root mapping,

= — = 53
vor @ Yall™ + 51 (g) 3)

where -
A@=]][51@
i=1

isthe unsedled distance product. Like our mapping tp, (PBRis scdeinvariant.

2MatLab is a trademark of the Mathworks, Inc.

(€ 2003 Carnegie Mellon 51



For the final alternative, consider the simple linear retraction
oLr (@) = o, (54)
llarll

where g7 is the boundary intersection point found by traveling from the origin along the vector ¢, as shown
in Figure 18. Note that the map origin may be chosen at any point in the interior of the polygon for this
mapping, although this has a direct impact on the distortion. For the comparisons in this section, gz was
chosen as the common map origin.

Now, compare the mappings to one another. First consider the way in which the contours in the polygon
corresponding to circles of constant radius inside the unit disk are distorted by the mapping. Figure 20 shows
the comparison for the four mappings.

We note that except for the lincar retraction, the mappings have a gradual transformation from a circle to
the polygonal shape. In fact, the mappings involving 3 () resemble the results from the Schwarz-Christoffel
mapping with regards to the circular distortion. However, the Schwarz-Christoffel conformal map preserves
angles between vectors when mapping from the disk and the polygon, which results in the bending of radial
lines. The other mappings are scalings where the angles between points are preserved.

Because of the distortion patterns of the mappings, the equipotential contours of the pulled back potential
field is likewise distorted. This causes different trajectories to occur when following the negative gradient.
Figure 21 shows the resulting integral curves obtained by following the negative gradient for trajectories
originating on the cell boundary. Note, the Schwarz-Christoffel mapping required the use of numerical ap-
proximations to calculate the Jacobian.

The resulting integral curves using ¢, ¢ _, and ¢__are very similar, with some subtle differences. Because
the conformal mapping does not gencralize beyond the planar systems, and given the lack of a closed form

¢) Beta root mapping ¢ _ d) Linear retraction mapping ¢ .

Figure 20: Comparison of distortion due to mappings of polygon to disk. Contours correspond to circles of
constant radius on the disk.
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a) Our mapping ¢ b) Schwarz-Christoffel mapping ¢ __

Voo

¢) Beta root mapping ¢ __ d) Linear retraction mapping ¢

Figure 21: Integral curves of the negative gradient vector field for various mappings.

a) Equipotential contours for ¢ b) Close up view

Figure 22: Distortion of the potential field due to linear retraction mapping. Notice the inflection points in
the contours along the line connecting the map center to the vertices.

mapping and dependence on numerical solutions, the Schwarz-Christoffel mapping is not a good choice
for our work. However, it is reassuring that the chosen mapping gives qualitatively similar results to the
conformal mapping. On the other hand, the integral curves for the linear retraction are problematic. Although
the mapping is continuous, the distortion of the potential field leads to unintuitive gradients. Figure 22 shows
the distortion of the equipotential contours.

Figures 20 and 21 point to both the problem and promise of our approach; that is the dependence of the
the path on the chosen mapping. We have presented a valid mapping; however, there are other equally valid
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mappings that might be less costly for some metric. Our approach has been to define a generic mapping and
control law applicable to any cell in the decomposition. However, any mapping that meets the criteria given
in Section 4.1 would work with our generic control law. In this way, the mapping used could depend on
some structure of the cell or other criteria, and the mapping could change as we move from cell to cell in the
decomposition.

5.1.3 Save Control Policy

The design of the Save control policy, introduced in Section 4.4.1, is dependent upon the form of the cells
used in the decomposition. For convex polytopes, the Save control policy given in [59] has maximal domain.
This section presents the Save policy, and develops an expression for the savable set defining the domain of
the policy. We begin by presenting the policy in its basic form, and then discuss the switched dynamics that
the policy induces. We next develop an expression for the collision ratio, (., that takes into consideration the
switched dynamics.

The Save control policy, ®g, is used to apply all acceleration normal to the boundary at the projected
collision point, in order to slow the system trajectory and prevent collision if at all possible. The goal of the
policy is to bring the system to rest within a given cell without violating the cell boundaries. Define ¢, to
be the point of intersection with the cell boundary along the direction of the current velocity, that is ¢, is the
collision point if no control input is applied (Figure 23). Let n., which we will term the collision normal, be
the boundary normal at this collision point. For now, under the general position assumption, we assume the
collision point is contained in one face of the polytope. That is the collision does not occur at the intersection
of two or more faces of the polytope. We define the Save control policy, s, as

U = AmaxTec . (55)

The effect of the Save control policy is to accelerate maximally away from the projected collision point,
thereby decreasing the collision speed s..

The effect of &g can be decomposed into a component along the current velocity, and a component
orthogonal to the current velocity, as shown in Figure 24. In every case, the component along the current
velocity acts to slow the system down, while the orthogonal component acts to steer the trajectory away from
the closest boundary.

Figure 23: Collision projection based on current velocity.
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o2 .

Figure 24: The acceleration componentsof ~ Figure 25 The action of the Save control

the Save control policy aways act to dow  policy $s pushes the trgectory avay from

the overal speed and steer the trgectory  the point of imminent collision to a local

away from the closest boundary. maximum of the distance to collision. At
the locd maximum, the collison normal is
aigned with the current velocity.

Note that the control policy aways acts to maximally decrease the component of velocity towards the
shortest collision distance. This pushes the trgectory away from the point of imminent collision, and locally
increases the time to impact. The acceleration away from the point of firg impact will continue until the
velocity vector is oriented toward the intersection of two or more faces of the polytope, as shown in Figure 25.
Thus, as the sysem is accelerating away from the point of immenient collision, it is accelerating towards
another face, until the system velocity is oriented toward the intersection of two polytope faces. In this case,
accdlerating in the direction of either face's surface normal would decrease the time to impact of at least one
of the faces. Thisintroduces a discrete change in the required acceleration direction.

We redefine the collision normal to be in the positive linear space of the normals of the faces intersecting
at the collison point on the intersection. In the planar case, where the current velocity is directed toward
a vertex, the collison normd is aigned along the negative direction of the current velocity, which will
act to bring the system to rest. The collision normal is oriented so that it and the current velocity vector
form aco-dimension (n — m) hyper-plane norma to the surface formed by the intersection of the polytope
faces, where n is the dimension of the TS and m is the number of faces intersecting at the collison point.
Figure 26 shows an example of this for 3-dimensional configuration space. The acceleration is contained in
this co-dimension (n — m) hyper-plane is by definition normal to the surface formed by the intersection if
the polytope faces. The acceleration pushes the trgjectory aong the intersection surface towards a "corner”,
formed by intersection with another face. The process continues until the intersection surface is a point, and
the collison norma is oriented directly opposite the current velocity, which drives the system to rest.

Lemma5.4 (Rizzi [59]) The Save control policy, $s> iscapable of bringing to rest any conditionin TV that
can bebroughttorest without viol ating thegiven constraints.

Proof: Based on [59].

Assume $s cannot prevent collison with the boundary for some initial position and velocity, and
further assume the existance of another control policy $'s that can prevent collision.
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Triangular region defines
co-dimension ( n-m) hyperplane

Positive linear span
of face normals

Figure 26: Collision with intersection of two faces with Save policy. Face 1 is transparent. With m = 2 and
n = 3, the velocity is contained in a co-dimension 1 plane.

Any boundary violation under the influence of ®g involves collision with the “nearest” boundary
component, that is the boundary component with the shortest time to impact. However, ®g acts to
maximally increase the time to impact of the nearest boundary component. If &5 # ®, then ' must
not act to maximally increase the shortest time to impact. But if &5 cannot prevent the collision, then
neither can ®%.

With this proof of correctness, we seek an expression for defining the savable set for convex polytopes.
Given the collision normal, the distance to collision is given by

d.=nT(¢g—pc),

where p, is a point on the face, and d, is the distance to the collision plane defined by the collision point and
the collision normal. We define the collision speed as

— T,
8¢ = N4,

where s, is the velocity component along the normal to the collision point, and represents how fast the system
is approaching the boundary. The time to impact, ¢, is simply

8¢ nlg
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The time required to bring the collision speed to zero using maximum acceleration in the constant direction

of the collision normal, is
Se

Amax

Krogh [40] defines the reserve avoidance time, t.—tp, and notes that collision can only be avoided if t. —t, >
0. The distance covered during the braking maneuver, given tp, is

ty, =

2
Se

2Amax ’

1 .
dp = scty — §Amaxt12> =

Using the definitions above, we define the collision avoidance ratio with the initial collision face, (i, as

Cl_dc‘

If (1 > 1 then a collision cannot be avoided.

Now, consider the change in (3 as time evolves. From the initial point, both the braking distance dj and
the collision distance d. decrease by the distance traveled over some differential time period. We can write
(1 as a function of time as

dp — fot (8¢ — Amax 7) dr
de — fot (8¢ = Amax T) dT
dp — sct+ %Amax t2
de—sct+ 2Amaxt?’

@) =

(57

Here we assume that the cell is a convex polytope, with the collision normal constant over some finite range,
hence the collision velocity is a one dimensional effect. Taking the time derivative of (57), we obtain

—8¢+ Amax t B dp — st + %Amax t2
de—8ct+ 5Amaxt  (do— 5ot + LAmax t2)°
2 (dp — dc) (sc — Amax t)

(de — sct + LAmaxt?)”

C'l t) = (=8¢ + Amaxt)

(58)

In the time period before the collision, s; — Apaxt > 0andd, — s.t + %Amax t2 > 0, therefore, the sign of
(fc depends on the relative values of d and d.. If d. > ds, then the derivative of the collision ratio is negative,
and the collision ratio never increases beyond the unity value signifying imminent collision. Intuitively, the
remaining braking distance goes to zero before the collision distance, and {; — 0. On the other hand, if
dy > d, ¢, is positive, signifying no recovery. In this case, the collision distance goes to zero before the
braking distance, and the collision ratio “blows up.” While this proves that the system will not collide with
the initial collision face, it fails to prove that there will not be a collision with any face on the polytope.

The discrete change in collision normal that occurs when the velocity is oriented towards the intersection
of two polytope faces results in a change in the collision ratio calculation, as the acceleration is no longer
orthogonal to either face. Therefore, although the Save policy may be able to avoid a first collision face in
isolation, collision with the second face may be unavoidable. As the closed loop dynamics in response to the
constant acceleration are easy to determine, we can determine the collision ratio when the system velocity is
aligned with the intersection of two or more faces based on the new collision normal.

Let n; equal the original collision normal defined by projected collision with a single face, and let p;
denote the associated face location. Using the Save policy defined in (55), the closed loop dynamics are
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given by
. 1 ;
q(t) = q(0) + ¢(0)t + §Amaxnlt‘2 , (59)
4(t) = ¢(0) + Amaxnut. (60)
Repeating the analysis in (56), we may calculate the instantaneous time to collision for the closed loop system.

ni (q(t) — p1)
n{4(t)

Likewise, we may calculate the time to collision with the second face

te, = —

¢ = n3 (a(t) — p2)
S FOR

where the second face is determined by checking the component of velocity orthogonal to the first face with
respect to collision with other faces. Equating t., and t.,, we can solve for the time at which the velocity
is oriented toward the intersection of two faces, t2. Let d., denote the orthogonal distance to intersection
of faces 1 and 2. With the collision normal n. redefined as described above, we may define the secondary
collision ratio as )

_ (nT4(t2))

o= el
2Amaxde, ’

For higher dimension systems, we continue these calculations beginning at ¢5, and solving for the closed loop

response given the new collision normal. The iterations continue until the intersections of additional faces

results in a single vertex point. If at iteration ¢, the calculated value for {; is greater than one, collision is
inevitable and the iteration halts. Given the iterations, define the overall collision ratio ¢, as

Ce= mf’x Gi-
In Section 4.4.1, we introduced the notion of the savable set, S which is the set of all (¢,4) € TP such
that ® 5 prevents collisions with the inlet zone. Given our definition of the overall collision ratio (., we may

formally define S as
S:={(qg,)) €TP|{ <1}
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5.2 Simulation Results

The methods described in the previous sections have been validated in simulation for fully actuated systems
in IR2. In this section, we present these simulation results for kinematic and dynamical systems.

5.2.1 Kinematic System Simulation

For the kinematic system ¢ = u, and the control law u = X (q) as described in Section 4.3.1, the deployment
strategy is even more straightforward that than given in Section 3.4. Because the state space is just the
configuration, the control policy deployment only needs to cover the configuration space, which is automatic
for control policies defined over the cells in the disjoint cellular decomposition. For non-overlapping cells,
the prepares relationship &; > & requires that cells P; and P, share a common portion of their boundary,
and the velocity from cell P; cause the system to enter cell Ps.

The adjacency graph G of the disjoint cellular decomposition K provides the full information needed to
deploy the control policies developed in Section 4.3.1. The control policies provide the means for navigating
the adjacency graph, transforming a continuous problem into a discrete graph search. Once the configuration
has traversed the cells and arrived at the cell containing the goal, the final attractive control policy is deployed,
which brings the configuration to the goal.

Given a collection of control policies {®;;} over cach cell P;, such that ®;; drives the configuration
g € P; through the outlet zone given by the common boundary with the 5'" adjacent cell in the decomposition,
we construct a partial order of the control policies by converting the adjacency graph to a spanning tree
representation. The spanning tree is constructed based on some metric used in the graph searching algorithm.
Although this report does not address the development of such a metric, some measure of the average cost to
traverse the cells of higher priority is appropriate. For an edge in the spanning tree connecting node ¢ to node
J, the control policy ®;; is chosen over cell 2. A spanning tree is guaranteed to exist for the portion of the
adjacency graph connected to the node corresponding to the cell Py [71]. Figure 27 shows the spanning tree
corresponding to the adjacency graph shown in Figure 7. For kinematic systems, the prepares relationship is
guaranteed by the nature of the control policies described in this report.

Figure 27: The adjacency graph is con-
verted to a spanning tree representation,
where the root node of the tree corresponds

to the cell containing the goal point. The Figure 28: Given the cellular decomposi-
topology of the spanning tree, determined tion and goal point, a path to the goal can be
by some cost function, induces a partial or- determined by searching the spanning tree
der on the adjacency graph. of the adjacency graph.
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The topology of the spanning tree determines the partia ordering of the control policies over the cells,
and we refer the the spanning tree representation as the partial order of the control policies for the kinematic
system. Starting a a configuration within any cell, Vs €E /C, the deployed component control policies induce
atrgectory that determines a path through connected cells by traversing the spanning tree from the current
node to its parent node until we reach the root node, which corresponds to the god cell. Given the structure
of the spanning tree, we are guaranteed to find a path to the goal cell for any cell in the connected sub-graph
containing the goal vertex [71].

The existence of this connected path in the partial order implies the existence of a connected path in the
free gpace by construction. The global control problem of how to get the system to the goal is reduced to that
of getting the system to the next cell in the discrete graph path, and then finally getting from the interior of the
goal cell Vg to the goal point go €LVe. In thisway, the continuous control problem is abstracted to a discrete
search problem. For an exact cellular decomposition, if a path in the spanning tree is not found, then a path
in the free space does not exist [42]. An approximate cellular decomposition may require refinement of the
approximation if a path is not found, but the search of the approximate cellular decomposition is resolution
complete[42,23].

The control policy deployment scheme, given component control policies that function as specified above,
is (resolution) complete. In other words, the system can navigate a path from start to god if and only if a
path in the spanning tree corresponding to a chain of connected cells exists. Figure 28 shows a hypothetical
trgiectory under the influence of the component control policies specified by the partial order shown in Fig-
ure 27. When the configuration enters the cell containing the goal configuration, a Smple converging control
policy is used in place of the component control policy described above.

Figure 29 shows the results of this control policy deployment for a maze-like region of free space con-
structed in H2. The maze was buiilt as a single polygon, and then decomposed into convex cells using the
algorithm of Keil [30], which dlowed the demonstration of automated deployment. Switching from policy
to policy is automatic as the system configuration crosses the boundaries of the cells defined by the decom-
position. The exact path taken by the system is dependent on the underlying decomposition.

Figure 29: Simulation of kinematic system. The dark line shows the path taken, dark region denotes the
boundary of the free space, and dotted lines show the decompasition into convex polygons.
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5.2.2 Uncongrained Dynamics Simulation

For an unconstrained dynamical system ¢ = n, the control law u = K (X(q) — ¢|) 4- DqXd as described
in Section 4.3.2 is used. For sufficiently high gain K, the system becomes essentially kinematic, and the
deployment drategy presented in Section 5.2.1 is followed. The Align component control policy can be
deployed to recover non-zero initia conditions, by specifying alarge arbitrary acceleration limit.

Figure 30 shows a smulation of the dynamic system given in (13) under the influence of (14). A variety
of initial conditions are shown, each converging to the goal configuration using the hybrid control drategy
induced by the underlying decomposition. This demonstrates the global control policy that is induced by our
policies and deployment method.

5.23 Congrained Dynamics Simulation

For an constrained dynamical system ¢ = u, subject to \d\ < Vx and WG\ < A;nax, the hybrid control
policies developed in Sections 4.3.3 and 4.4 are deployed using the strategy presented in Section 3.4. Because
the domain of the Save palicy is limited by the cell, it will require multiple deployments of overlapping cdls
to fully fill the free state space.

The example shown in Figure 31 is only based on a single decomposition. The free workspace is decom-
posed into convex regions, and the policies are applied. The initial velocity points toward the upper right
corner of the firgt cell. The Align policy is applied firdt, followed by the Track policy. The initial velocity
was chosen to just miss the cell boundary. During execution of the Align policy, we differentiate between
stopping (Ec > /X) and digning (£. < fi). During the full smulation, numerical errors (disturbances) cause
the system to jump from the Track to the Align policies. The disturbances are handled, and the trgectory
quickly returns to the influence of the Track policy, because the Align and Track policies are deployed to fill
the savegble gate space. The system eventually convergesto the goa as desired, while avoiding the obstacles.

N

RSNy

Figure 30: Simulation of the dynamical system using the hybrid control strategy introduced in this paper.
Light colored lines represent integral curves of the X(q), while the dark colored lines represent trgjectories
of the system for various initia conditions. The velocity regulation gain was K = 20 in this example.
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a) Course layout b) Decomposition and path
behaviors. The initial velocity is
to the upper right.

Figure 31: Simulation of a constrained dynamical system showing the result of hybrid switching policies
with spatial decomposition. The Align policy is activated first, with stopping ({, > u) preceeding aligning.
The Track policy the takes over and drives the system through the region by composing the control policies.

Figure 32: Dynamical “P” problem. The non-simply connected configuration space elicits different “choices”
for the desired trajectory depending on the initial conditions. Behaviors for three different initial conditions
are shown. The overall control policy is achieved with 16 local control policies deployed using our methods
for extended sequential composition. The solid dots, which form the lines, are placed every 0.025 seconds;
the circles are placed every S seconds of simulation time.

5.2.4 Dynamical “P” Problem

As a demonstration of the power and flexibility of our approach, we present simulation results of what we
term the “dynamical P problem, shown in Figure 32. The configuration space is not simply connected, and
a decision about which way to travel around the loop to get to the goal must be made. One possible approach
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for kinematic systems is to base the decision on path length, with the resulting decison surface defined by
the st of points equidistant from the goal. Certainly other decison surfaces are possible as well. For a
congtrained dynamical system, specification of a comparable decison surface is complicated, based not only
on configuration, but also on initial velocity. Instead of determining the decision surface in a optimal fashion,
our method partitions the space into regions based on reasonably efficient local control policies.

The deployment of the policies is based on the geometry of the configuration space, and the congtraints
of the system. The system constraints determine the maximum extent of the domain in the free sate space
for apolicy defined over a given region of configuration space. Thus the active policy changes based on the
gate of the system and the constraints of the system. As the active policies change, the induced behavior of
the system changes.

The simulation assumes an idealized dynamical robot, g = u with q,u 6 K2, subject to both velocity
and acceleration congtraints. The system gtarts at a point near the bottom, and must navigate to a specified
point in the lower portion of the "P" loop. The smulation was conducted for three separate initial velocities
of varying magnitude and direction.

v/

b)

b
»

c) d)

s
L@

e) f)

U
v

g2) h)

i)
Figure 33: Configuration-cells used to define local control policies for dynamical P simulation.
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For the configuration given in Figure 32, nine hybrid control policies were deployed. One Goal policy
was used around the goal. Six Flow policies were deployed in polytopes that covered the remaining free
configuration space. Two overlapping Save policies were deployed to capture adverse initial conditions. The
ordering of the policies, U’, was generated by hand based on the algorithm prescnted in Section 3.4. Let

ul = { QGa7¢Fb7¢Fc7¢Fd7¢F¢7®F[7
¢F97¢Sh;(b3.'} )

where the second subscript corresponds to the configuration-cells shown in Figure 33. Additional deploy-
ments and cells are possible, but this set allows us to demonstrate the required switching behavior in simula-
tion. The Goal and Flow policies are each hybrid policies composed of Align and Track policies, so 16 local
control policies were deployed in total.

The deployment of the Goal and Flow policies covers the free configuration space, and the I'low policies
are configured to prepare the adjacent policy of higher priority. This induces a piecewise potential based
navigation function for any state within the domains of the Goal or Flow policies. To capture large initial
velocities, the two Save policies are deployed in the large corridor. The first Save policy covered the corridor
from the bottom to the top of the obstacle forming the “P”. Any state savable by this policy prepared the Flow
or Goal policies in a way that caused the system to enter the lower half of the loop from the left. The second
Save policy encompassed the entire large corridor, anything savable by this policy, but not by the first Save
policy, entered the lower loop from the right by traveling around the obstacle.

Figure 32 shows three initial conditions, which demonstrate the change in behavior as a response to
changes in the initial conditions. In the first case, which starts to the left, the activated policies are ®g;,
®r,, ®r,, ®F,, ®F,, and ®¢,, in that order. The second case, which starts to the right activates &g, , @, ,
and ®,, in that order. The final case, which starts near vertical, activates ® g, and ®,. In all cases, the
switching is automatic based on the state being within the domain of the highest priority control policy.

The “intelligent” decision making with regard to when to go around the obstacle is inherent in the de-
ployment scheme. There is no replanning based on initial conditions. The change in behavior is induced
by the switched local control policies and their respective domains. By allowing overlapping domains that
prepare multiple policies, our extensions allow for an expressive set of policies to be deployed that cover a
large region of the free state space.
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6 Conclusion

The work presented in this report represents the initial steps in a program of research designed to bring about
automatic methods of deploying robust low-level control policies for constrained systems. Our goal is to
enable global behaviors through composition of low-level controls in a manner that guarantees performance.
Our long term goal is to develop methods of encoding behavior design, and facilitating automated deployment
of these component control policies to enable high-level goals to be accomplished, while leveraging the
robustness and performance of low-level controls to accomplish the specified tasks.

Our work focuses on the development of control strategies based on a bottom-up design philosophy. The
deployment of local control policies results in a task independent method of solving global problems based
on the capabilities of a given system. Each local control policy results in a provably correct behavior for any
state within its domain, with guaranteed safe switching between policies inducing global convergence for any
state in the union of the domains of the deployed control policies. The policies are designed to be memoryless
state feedback policies, making them suitable for deployment in reactive systems. However, by their design,
the resulting stability properties guarantee safe behavior and predictable transitions.

Our extensions to the sequential composition method allow for the use of the broader class of control
policies presented here, in addition to other policies. The ability to deploy policies defined over multiple
overlapping configuration-cells increases our ability to deploy policies that cover a large portion of the free
state space. The extended sequential composition method yields a constructive technique for generating
a hybrid control automata with guaranteed transition properties, thereby enabling planning and analysis in
the discrete space of behaviors. As our simulations demonstrate, this method yields a rich set of behaviors
without the need for high-level planning, while guaranteeing the safety and global convergence.

7 Future Work

To enable the specification of truly globally convergent switched control policies, additional policies must
be defined. The current method of basing policies on convex decompositions in free space, while effective,
is not expressive enough to fully cover the free state space. Specifically, the configuration cell presents an
artificial boundary with respect to what is savable. Policies that cannot save or align, but can direct the flow
through a configuration-cell to a given face could be designed to address this problem. This would enable a
cell that cannot save a given inlet velocity to pass the system to another downstream policy that can bring the
system to rest. These flow-through policies would expand the available domains, and ease the restrictions on
the velocity scaling s(¢g). This, along with less conservative velocity scalings, could be used to expand the
domains of the deployable policies, thereby allowing a greater portion of the free state space to be filled.

The next phase of our research will extend the control policy composition concepts to systems with
nonholonomic constraints. Extensions to traditional wheeled mobile robots, as well as car-like vehicles, will
be constructed. By developing policies that respect the differential constraints of the vehicle, the sequential
composition method developed in this paper can be used to address the navigation and control problem for
nonholonomic systems. In this way, the control problem is abstracted away from the task and environment,
and towards the specific capabilities of a given system.

One of the main goals of this research is to allow global behaviors to be expressed through the composition
of local control policies. By properly deploying low-level policies, higher-level behaviors can be induced.
Our research will demonstrate this abstraction for parallel parking and k-turns for a car-like robotic system.
The abstraction is accomplished by finding a collection of policies that can be parameterized as a group to
solve the higher-level task. The ability to generate these types of behaviors is inherent in the methods used in
this paper to solve the navigation problem.

The method presented in this paper assumes a global goal and full information. Ultimately, our work
will address ways to incrementally deploy control policies to allow for changing goals or exploration. This
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will enable a high-level reasoning system to change the deployment on the fly, resulting in more flexible and
adaptable systems, while preserving the performance guarantees.
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A PDE - Separation of Variables

Another method of solving L aplace's equation, known as separation of variables, is gpplicable if the problem
has naturd symmetries [60]. As the name suggests, the technique involves separating the influence of the
variables and solving using a Fourier series. Consider the polar coordinate form of L aplace's equation for the
unit disk (see Section 4.2.3) given by

d’u Idu }_&u

8p? pop "
u(l,0) =g(theta) .
Assume u (p, 9) = X (p) Y (0), which implies
X" (p) Y (9) +},><1 (P) Y(9) + X (®) Y" {0) = O. (61)

Dividing by «, we obtain

X“(lo)+ : 1X'(|g) - 1IY'{9) 5"
X{p)" pX{p)" p>Y{9) '

X(P) * X(p) Y{9) -
Since p and 0 are independent variables, the equation must be equal to some constant, which we denote A%
Separating the variables, we obtain

which can be rewritten

Y/ (1) +A%Y («)=0,,
which is a second order ordinary differential equation (ODE). We assume a solution of the form
Y9 =el™r,

where the characteristic polynomia isr® 4- A? = 0 [15]. Theroots arer — +Ai, which leaves a solution of
the form

Y (0) =ci exp(Ai) +coexp(-Ai) .
The complete solution can be expressed as
Y(0)=acos (X0 + bsn X0.
Since the boundary function is periodic, A must be an integer, and we express the solution as
Y(9,m) = ancos(m9) +b,sinm9=Cmcos(m9+<f>), (62

wheremisaninteger, and <f> isthe phase angle. Substituting into (61), and canceling the Cmcos(m0 + <f>)
term, we obtain

1 m?
X.b' - L - — i
P+ pX () p X{p)=0

Assume X (p) = p?, and we obtain

a_2

a(a- 1) p*~?+ap*? - mp**? =
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For arbitrary p and a, we have a? — m? = 0, or a = +m. Combining the solutions, we obtain
oo (o o]
u(p,0) = ao + Z p™ (am cos (m@) + by, sinm@) + Z P~ ™ (am cos (mb) + by, sinm@) .
m=1 m=1
Because solutions containing p~™ are not physically realistic at p = 0, we discard and obtain
o0
u(p,0) =ao + z o™ (am cos(m@) + by, sin(mé)) . (63)
m=1

The Fourier sine and cosine series allows us to solve for the coefficients a,, and b,,, as

a = ;[ .9(6) db = 2 f5, & = osm,
am = Lf7 g(O)cos(mh) dd = L [° cos(mp) d§ = SSnlmarlsinimao),
b = 1 flr g(0)sin(mb) dd = % ff;o sin(m@) dd = °°s(m°“2n_fr°s(m @)

where we are using the boundary conditions from Section 4.2.3. We approximate the boundary function as
a continuous function and take the limit as A§ — 0. The infinite series limits the utility of this solution;
fortunately, there is a further simplification remaining by converting the infinite series to a complex logarithm

u(p,0) = 01—2}'—0 '217 log (1 —¢'(20—0) ,,)
+ 51—7; log (1 —el(1=9) p)
+ 51; log (1 — g (20— p)
- # log (1 — g—i(a1-0) p) ,
u(p,8) = a12—7rao _ 5‘; log (1 — pcos (ag — 8) —ipsin (ap — 8))

+ —;—ﬂlog(l—pcos(al—-0)—ipsin(a0—0))
+ i—rlog(l—pcos(ao-—0)+ipsin(ao-0))
- 2—17;log(1 — pcos(ay — @) +ipsin(ap — 8)) .

The complex logarithm, log (a + bi) = log (Via® + b2) + i (tan™ £ + 2xk) . Letting k = 0, rewriting
the logarithm, and collecting terms, the final simplification yields

_a1—ag 1. _yf psin(a1—96)
ulp,) = 2w +optan (l—pcos(al—O)

! jan—t (L5 (00=0)
T~ xe (l—pcos(ao—a) ) ©4
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B Boundary Discontinuities

In order to generate a vector fidd with continuous derivatives, as needed by our dynamic control palicy, we
require a C* diffeomorphism from an arbitrary polytope to our model space. Unfortunately, the intersections
of the half space constraints form comers on the polytope, which preclude the possibility of constructing a
C? diffeomorphism on the boundaries. Furthermore, numerical issues may arive in the vicinity of a comer.
In this case, the mapping can only approximate the polygon near the comers while maintaining C? continity
and numerical stability. Our construction approximates these comersin anatura way, thereby preserving the
vector fidd properties presented in this report. We present the derivation for polygona cellsin R?. Theideas
extend to higher dimensions with some added complications, which we discuss.

Consider the polygon vertex shown in Figure 34. Thej ' " vertex is formed by the intersection of the
i and j ' " faces. Associated with each face is a normal vector, n* and Uj. We wish to approximate the
polygon near the vertex by "rounding the comer” with & fillet curve, borrowing the term from computer aided
design (CAD). Figure 34 shows such a curve. The fillet curve should become tangent to the face in a way
that provides C? continuity along the boundary. Thisimplies that the second derivative should be zero at the
point of tangency to each face. To construct such acurve, we begin by defining a frame of reference.

The bisector of the two faces is given by the vector

Ui s rtj
N r -
im0

n

Let A*- be given by the 90 degree clockwise rotation of h. Our right-hand frame of reference is given by
" and ft. We need to define an equation for each line corresponding to the polygon faces. Let nf and
nf be given by the rotation of the i and j ' ™ normal vectors clockwise and counter clockwise respectively,
as shown in Figure 34. Note, we are assuming the faces and vertices are numbered clockwise around the
polygon.

We wish to approximate the polygon within fixed distance, /?#, of the vertex, v. Let /3R be the radius of
acircle centered at the vertex, as shown in Figure 34. Let the point of tangency on the i"" (resp. |'™) face be
givenbypi = v+ prnf (pj =v + {$Rnf). The coordinates of the point of tangency in our loca coordinate

Figure 34: The polygon vertex is approximated with a C? fillet curve.
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frame are given by

i = (xnyz)'—ﬂR(n - At ;J-'Fl)
P (zj,y;) =Br (nj - 2%, nf - 7).

Because the local frame bisects the vertex, the tangency points are symmetric with respect to the local frame.

The equation for the fillet curve, in local coordinates, is given as a fourth order polynomial. Fourth orderis
required because we must match point, slope (first derivative), and second derivative at one point of tangency
, the point at the second endpoint (to enforce symmetry), and the slope at the mid point. This requires five
parameters in total. Our fillet curve is then expressed as

y()=az® +bxd +cx’ +dz+e, (65)

where a, b, ¢, d, and e are the unknown parameters. We want the curve to be at its minimum (in local coordi-
nates) at z = 0, which implies that d = 0. The remaining parameters can be solved using

4 3

2 2?1 a Yi

4z 3z 2z; 0 b L

12z 6z; 2 0 c| "1 o0 |- (66)
4 3 2

z; z; z; 1 e Y;

Given the solution to (66), we may test any point g lying within the circle of radius Bg. Let (z4, yq) =
(Rt - g, @ - g) be the point in local coordinates. If y (z4) > g, then we use (z4 , ¥ (z4)) as our approxi-
mate point for evaluating the vector field properties. In cell coordinates, we have ¢* = v + x4t +y (z4) 7.
where ¢* is our approximated point if y (z4) > y,. We use ¢* to evaluate the vector field, and in this way
points between the fillet curve and the polygon boundary inherit the properties of points on the fillet curve.
Figure 35 shows the results of such a mapping.

This basic idea for approximating the discontinuities of the boundary tangents extends to higher di-
mensions, although, the calculations become much more complicated. The intersection of two half space
constraints in IR? is a single point, the vertex. In three dimensions, two half space constraints intersect in a
line. The methodology for calculating the fillet curve is the same, but now the curve is extruded along the
line of intersection forming a fillet surface. Three half space constraints intersect for form a vertex for the
polyhedra. In this case, the approximation requires a 2-surface that continuously blends the approximation of
the three pairs of intersections. For higher dimensions, the number of intersection types increases, as does the
order of the required approximating surface. The formulation of these approximations is beyond the scope of
this report.

a) Normalized vector field near b) Normalized vector field near
outlet vertex inlet vertex

Figure 35: The resulting vector field near a polygon vertex using the fillet curve approximation.
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