
Policy Search in Kernel Hilbert Space

J. Andrew Bagnell, and Jeff Schneider

CMU-RI-TR-03-4S,

Policy Search in Kernel Hilbert Space

J. Andrew Bagnell and Jeff Schneider
Robotics Institute

Carnegie-Mellon University
Pittsburgh, PA 15213

{dbagnell, schneide} @ ri. emu. edu

Abstract

Much recent work in reinforcement learning and
stochastic optimal control has focused on algo-
rithms that search directly through a space of
policies rather than building approximate value
functions. Policy search has numerous advan-
tages: it does not rely on the Markov assump-
tion, domain knowledge may be encoded in a
policy, the policy may require less representa-
tional power than a value-function approxima-
tion, and stable and convergent algorithms are
well-understood. In contrast with value-function
methods, however, existing approaches to pol-
icy search have heretofore focused entirely on
parametric approaches. This places fundamen-
tal limits on the kind of policies that can be
represented. In this work, we show how pol-
icy search (with or without the additional guid-
ance of value-functions) in a Reproducing Kernel
Hilbert Space gives a simple and rigorous exten-
sion of the technique to non-parametric settings.

In particular, we investigate a new class of algo-
rithms which generalize RElNFORCE-style like-
lihood ratio methods to yield both online and
batch techniques that perform gradient search in
a function space of policies. Further, we describe
the computational tools that allow efficient im-
plementation. Finally, we apply our new tech-
niques towards interesting reinforcement learn-
ing problems.

Introduction

Control under uncertainty and reinforcement learning are
central problems in artificial intelligence and robotics. The
customary approach has been to solve such problems using
Bellman recursion methods. Recently, however, methods
that instead search directly through a space of parametrized

policies have gained currency. Despite the potential disad-
vantages of policy search, e.g. inability to bootstrap, on-
policy restrictions, local minima, and potentially high vari-
ance in estimates, the approach has some practical appeal.

We review some the advantages of the direct search ap-
proach: While aliasing is potentially very detrimental to
both the performance and stability properties of value-
function based methods, policy search methods extend eas-
ily to accommodate partial observability. The convergence
properties are fairly well understood, in contrast with value
methods. It also often seems to be the case that a very
effective policy may be more easily represented in policy
form than as a value-function. Direct policy representation
are also at times more appropriate for real-time applications
where computing policy outputs must be rapid. Finally, do-
main knowledge about the problem solution is often easily
encodable in the policy form.

Further, frameworks that leverage the best of both value-
function and policy search methods are available. A sim-
ple, learned, approximate value function, for example, may
not be sufficient for control purposes, but may prove quite
valuable in reducing the variance of a gradient based policy
search algorithm. A number of algorithms merge the prop-
erties of the two, including Actor-Critic techniques, VAPS
[2], and approaches utilizing reward-shaping [11].

Value-function methods have had at least one signifi-
cant advantage that has not been overcome. It has
long been common practice to use very powerful non-
parametric function approximation techniques, including
locally-weighted regression and support-vector machines
to accurately approximate the value-function. Recently,
theoretical results have been obtained as well for these
techniques. [12] In contrast, policy search has been phrased
in terms of an explicit search over a parametric policy class.
This presents a fundamental limitation on the applicability
of policy search techniques; although one would hope that
in the presence of more data, more refined and complicated
policies can be learned, the parametric approach obstructs
this.

In this work we show how techniques from the kernel ma-
chine [7] approach to learning can be extended to the pol-
icy search problem. The machinery of Reproducing Kernel
Hilbert Spaces allows us to develop a natural generaliza-
tion of policy search to search through a space of functions.
From this we recover a fully non-parametric policy search.
Further, we investigate the regularization of policy learn-
ing, a notion concomitant to learning in function space, but
one that has seen little investigation in the reinforcement
learning literature.

We briefly review the aims of reinforcement learning
and the essentials of Reproducing Kernel Hilbert Space
(RKHS) theory. We then derive kernelized versions of
William's REINFORCE algorithm [3] for policy search. We
consider both online and batch approaches. We then con-
sider techniques that render the approach computationally
tractable, including least-squares approximation in Hilbert
space, and data-structures tricks from computational geom-
etry. Finally, we consider the application of the techniques
to two domains: the well-known dynamics problem Moun-
tain Car, and a financial portfolio optimization considered
in [12].

1 Preliminaries

1.1 Reinforcement Learning

A stochastic control problem consists of paths (also called
system trajectories) in a space , a distribution over path-
space, p (), that is a function of a sequence of controls
< u t > t {O,..,T}» indexed by time, from a space U. It
is useful to limit discussion to Partially Observed Markov
Decision Problems [8], in which there are state-variables
x t of the system that compose a path and render the
past and future independent. In a POMDP, p() is de-
fined by an initial state and next state transition probabil-
ities p (xt jxt_ i ,u t- i). We also typically have a sequence
of outputs (observations) < y t > t {0/..,T} each of which is
measurable with respect to x t. A controller, ia, usually pa-
rameterized by , is a feedback-type strategy that maps the
history of observations < y t > o,..f to a distribution over
controls u .

The goal in a control problem is to maximize the expected
reinforcement J =]T) p ()r() with respect to . The
reward function on paths in a POMDP is additive in time
(or in the infinite time case, discounted or averaged), and
a function R (x) of state, although unlike value-function
methods, the algorithms discussed here are not necessarily
predicated on that assumption.

Reinforcement learning (RL) is adaptive stochastic con-
trol, where an agent attempts to solve for an optimal con-
troller without an apriori model of the dynamics. Rather,
the reinforcement learner optimizes its control strategy us-
ing sample trajectories from the dynamics. (Possibly using

many sophisticated techniques including internal approxi-
mate models.) In this work, our algorithms will be adapt-
able to both situations.

1.2 Reproducing Kernel Hilbert Spaces

Kernel methods, in their various incarnations (e.g. Gaus-
sian Processes, Support Vector machines) have recently
become a preferred approach to non-parametric machine
learning and statistics. They enjoy this status because ker-
nel methods form a kind of point-free linear-algebra, where
inner product operations are performed by the kernel. As
such, natural operations, like least-squares approximation
in functions space, can be described by simple algebraic
methods that naturally generalize parametric linear coun-
terparts.

By kernel here we mean a symmetric function k (*, •) of two
arguments that produces a real scalar. Further, we must as-
sume that the kernel is positive-definite in the sense that
when applied to any two lists of inputs {a}i and {b} j the
matrix K i j = k (ai,bj) is a positive definite one. (i.e. has
all positive eigenvalues) Kernel methods can be thought of
as implementing a generalization of the notion of similar-
ity defined by the standard inner-product, where the kernel
computes the similarity between its inputs. Kernels as de-
scribed can also be thought of as computing the standard
inner product in a linear space formed by the kernel func-
tions. For any object a in the domain of the kernel, the
function k (a, •) can be thought of as a vector in a linear
space.

We turn this linear space into a Hilbert space as follows.
First we equip it with an inner product: for two vectors in
the linear space, f = £ \ Jc (a±/ •) and g = £ ± ±k ft*, •)
the inner product < f ,g >k(./.)is]T\ .. ± jk(ai,bj). That
this is a proper inner product may be easily checked. Fi-
nally, technical issues from analysis require us to complete
the space by adding the limits of all Cauchy sequences. We
denote the space Hk{.r). We note a very useful property
of the Hilbert space we have constructed is the reproducing
property. That is for any f H k (.r), the kernel reproduces
the function: < f ,k(x, •) >k(-,o= f (x).

2 Search in RKHS

We will consider stochastic policies Uf (u |y) that are de-
fined by a function f H k (./.) where the kernel k (•, •) is
defined on the observation space. That is, our policies will
take an observation y and compute a probability distribu-
tion over controls. The elegant representer theorem, given
in sufficiently general form by [13], tells that to maximize
the empirical reinforcement for sample paths ±.

-Jemp '

g]= F f F , g > +0 (2)

Figure 1: The figure shows a stochastic gradient update cal-
culated from a single sample path in the Mountain-Car problem.
Notice the gradient is a function on the state-space composed of
kernels (here Gaussians) at points along the sample trajectory.

we need only consider functions in the span of kernels at
states that actually occurred in the sample trajectories. This
result is maintained (actually strengthened to uniqueness)
by minimizing the risk regularized by the norm of the func-
tion < f ,f >k(,)- This result is very powerful, and pro-
vides the rigorous basis for us to extend policy search to
non-parametric policies.

2.1 Stochastic Gradient Methods

One general policy-search approach in reinforcement
learning is to perform stochastic gradient ascent on J us-
ing sampled paths. The REINFORCE class of algorithms
use the likelihood ratio method to approximate the gradient
using the identity:

p(
p()

Here we must consider stochastic gradient descent in the
function space Hk{.r). Functional gradient methods have
been considered for classification and regression in [9] and
[7]. In reinforcement learning the distribution of samples
changes with the choice of function defining the policy,
so we must consider the derivative of this distribution, not
simply the derivative of the empirical cost function as in
[7]. This reflects a fundamental difference in the formula-
tion of reinforcement learning as compared to classification
or regression. Although the functional gradient may in fact
be very complicated, as with the maximizer of Jem P, our
best approximation by sampling will only depend on ker-
nels centered at points in our sampled trajectories.

First, we define the gradient f F (f) of a functional F on
the Hilbert space H k (.r) as the linear deviation of the func-
tional for a perturbation (g) :

We note the important result that the reproducing property
immediately implies that f h (yi) = k (yi, •). That is, the
functional gradient of a function in the Hilbert space ap-
plied at a point is simply the kernel itself at that point.

To perform stochastic gradient descent, we "roll-out" a tra-
jectory using the current policy (defined by f) and then
compute:

)emp
f Pf (i)

Pf (i)
r(±)

Gradient ascent takes a step in this direction. Fortunately, it
proves easy to compute f

f
p* (

}
i}. In particular, the deriva-

tive depends only on the controller probabilities and can be
written as:

^ Uf(ut|yt)

This is simply a consequence of the equivalent of the
product-rule for functional derivatives. All terms, for in-
stance p (xt+ i |xt ,u t), that are independent of the parame-
terizing function cancel out.

Let us consider the simplest example of a functional pol-
icy where]i is a distribution over two actions (u in {-
1,1}), f is a one dimensional function and we compute
\i (u = 1 |y) = 1/ (1 + ef (y)) for our stochastic policy.
These policies provides simple to visualize examples (and
is the form of policy we use in our experimental section).
Further, the sigmoidal policy easily generalizes to non-
binary actions as y. (u |y) = efu (y) / (T\ ^i (y)) where we
provide a different function f ± for each action.

We need one more result from functional analysis to com-
plete the computation of the gradient. It is the functional
equivalent of the chain rule:

fg(F

Given this, and the preceding notes about the reproducing
property, one can see the important result that:

f Uf (ut |yt)/Uf = - sign (ut) (1- (ut |yt))k (yt, •)
(1)

That is, for each step along the trajectory we get a kernel
basis center on that point with a coefficient related to the
action chosen, and the appropriate probability of that ac-
tion. To increase the reinforcement functional, we simply

add to the current f the product of a learning rate and the
computed stochastic gradient.

Adding a regularization term that penalizes functions by
their norm < f, f > k {.r) amounts to, in the stochastic gra-
dient framework, shrinking the coefficients of all previous
kernels by multiplying them by some constant c (0,1).
We can see this by noting that adding - ^ < f ,f > to
our reward function and then taking the functional gradient
gives us back - f. The update is then

4= 4=

ft+1 5= f t+
f t+ r(fUf

Uf
(2)

where r () is the total reinforcement for the current trajec-
tory.

2.2 Metric Computation

It is interesting to observe that the functional gradient dif-
fers (and is simpler!) from that which one would compute
[7] by simply adding kernels at each point along the trajec-
tory and computing partial derivatives with respect to the
coefficients on these kernels. Such an algorithm has no ob-
vious convergence properties as it is continuously adding
basis functions. Our algorithm, in contrast, has a clear in-
terpretation as searching in a compact space of functions.

Further, this naive algorithm of adding kernels and then
computing partial derivatives ignores the interaction the
different kernel basis functions have with each other, which
the function space approach takes explicitly into account. It
can also be seen that this naive algorithm of simply adding
kernels and computing the gradient has an O (n3) scaling
as well, as it requires computing the inverse of the matrix
K y = k (yi/Yj). This is because the kernel defines a dif-
ferent Riemannian metric than the Euclidean one on the
space of coefficients. This metric can be considered a kind
of prior on policies- implying policies should be similar
where the kernel function is large. The regularization term
enforces just this similarity.

The notion of metric begs the question of whether there
is, in some sense, a canonical metric. Recent work [1]
[6] has consider what such a metric should be, concluding
that the natural metric should be related to the distribution
of paths induced by the controller \x. A particularly well-
justified choice is a metric derived from the Fisher informa-
tion matrix on the distribution of paths. Future work will
investigate the benefits of approximating the inverse of the
Fisher operator Ep{ > DutEr(-^f-^ >^rcr)] <w h e r e

Outer designates the outer product) in RKHS to compute
this natural gradient direction.

2.3 On-line implementation

For time additive cost functions (including average or dis-
counted reward), one can make another addition to make
the procedure fully online. This is the observation that con-
trols at a given time don't influence the past of that trajec-
tory. It lowers the variance of the estimate to include only
the future reward of the trajectory. Further, by allowing the
policy to shift during the trajectory we can make our algo-
rithm a fully online one like REINFORCE. We present the
non-parametric version of REINFORCE (rather GPOMDP
since we give an average reward infinite-trajectory length
formulation) below.

Algorithm 1 (Online Non-parametric Policy Search) <

• t=0

• Begin with an empty list of kernels k.

• Begin with an empty list of eligibility coefficients e.

• Begin with an empty list of gradient coefficients A .

• Repeat until done:

- Choose an action according to]if (u |yt+ i) .

- Observe reward R t

- Shrink each eligibility constant by - (a discount fac-
tor or bias/variance tradeoff parameter)

- Add a new kernel k (y t, •) to the list

-Add the corresponding coefficient of k (y t, •) from

u U (uIwl) comPuted as *n equation (J) to the eli-

gibility7 list as e±

- Set all A i coefficients to A ± (1 - 1 / (t+ 1)) + R te±/ (t+
1)

• Return kernel list and matching coefficient list A

3 Multi-sample version

In practice it may be valuable to get more accurate gradient
estimates before changing our policy. This may potentially
be more stable, allow us to apply more sophisticated step
length heuristics, and will lower the computational burden.
To do so, we consider batch processing a functional gra-
dient computed from a reasonably large number of sample
trajectories.

3.1 Sparse Representation

There are difficulties in manipulating functional gradients
consisting of large numbers of kernel basis. To make mat-
ters more tractable, we consider approximations that com-
press the functional gradient to a more parsimonious rep-
resentation. Such an approach is composed of two pieces.
The first chooses a basis set, and the second computes the
closest approximation given this set. (Algorithms may in-
terleave these steps as well.) Although surely an area of
interesting research, we have found that quite trivial strate-
gies may suffice for basis selection. The simplest of all,

random subset, seems to be adequate for at least some prob-
lems. Given the basis, we simply compute the least squares
approximation to the gradient g in the RKHS:

where g lies in the span of our reduced basis. The RKHS
approach makes such computations very simple.

In coefficient form, the functions are g =]TV ik(yi, •)
with the true gradient lying in the span of a different set of
kernels g =]T\ jk(yj / •) . This isn't necessary for the
general presentation, but suffices for our use. Then

< g - g / g - g > k (- , -) = g k (- , -) - 2 < g , g > k (. , .) + g k (. f .)

The final term is irrelevant to maximize with respect to g
so we have in terms of the kernel representation:

Figure 2: This image depicts a KD-TREE being used to compute
the gradient evaluation at a point, (center) Parts of the computa-
tion get cutoff (outside the range depicted in the circle) as it can be
shown they must have negligible effect on the query. This com-
putational reduction makes the algorithms feasible for very large
data-sets.

k(.

To maximize this with respect to the parameters, we com-
pute the gradient and set it to zero. Using this, and the defi-
nition of the kernel inner product, we get in vector notation:

K K = 0

thewhere K • is the kernel matrix for the y± and K
kernel matrices for the y± with the y-j. (i.e. K ^ =
k(yj ,y±)). By inspection, the second term is simply the
function g applied at the points in our approximation. Thus
the final answer is simply: ± = (K ')"1g(yi)

The matrix inverse is only the size of our reduced basis, so
this may be computationally tractable. The evaluation of
the kernel function at each of the points may remain quite
non-trivial.

3.2 Efficient computation

The central computational difficulty of the approach we
outline in this work is the evaluation of the functional gradi-
ent. Although the compression method above helps lighten
this burden, we are still forced to do work linear in the num-
ber of observations seen per batch at least once when we
evaluate g (xi) for the compression. In general, we would
like to keep as faithful a recreation of the kernel gradient as
possible, but doing so will generally make the computation
more expensive.

We may make the gradient evaluations tractable, even when
potentially millions of kernel basis spangle our observation
space, by noting that the evaluation can be viewed a kind of
weighted n-body problem.[5] As such, data-structure and
algorithm tricks from physics and computational geome-
try have the potential to render the approach tractable. For
our research, we used the classical kd-tree. [10] In effect,
we create a tree that divides the samples in the observation
space into regions.

Whenever called upon to make an evaluation, we descend
into the tree adding samples from regions that are near our
evaluation point. Throughout the tree, we cache the weight
of all the kernels that fall underneath it. In such a way,
we can compute whether at any given query a node in the
tree (and all the observations it contains) can have an ef-
fect on our query. We compute the maximum and mini-
mum impact, and if the difference between the two is small
enough that it will have negligible influence on our pre-
diction, we simply use the average value. Whenever this
cannot be ruled out, we recurse further into the tree.

Geometric data-structures have seen wide-spread use in
certain areas of machine learning- like density estimation
and locally-weighted learning. [10] We believe that this ap-
proach has great potential in alleviating the computational
burden of kernel methods in more general contexts than the
reinforcement learning application we discuss here. For
example, kernel logistic regression and kernel least squares
classification both may be solved as special cases of the
algorithm we present here and may utilize the same data
structures.

Figure 3: Here we depict a learned policy for the mountain car
problem. High points represent high probability of applying for-
ward control and low points represent high probability of applying
backward control. Note how our kernel method concentrates rep-
resentational power where it is required. The regions where the
function is flat correspond to regions where f is regularized to 0
as the car spends no time there.

Figure 4: Here we depict a policy learned on the portfolio prob-
lem. The metric here is the modified Sharpe ratio metric we de-
scribe in the text. High regions indict where the trader will in-
crease its market state, and low regions the reverse. The policy has
the property that at high volatilities the trader prefers the riskless-
asset.

4 Experiments

4.1 Mountain-Car

We provide here two experiments which we hope can pro-
vide further insight into the methods we have developed.
First, we applied our method to the well-understood Moun-
tain Car domain. [10] This is a simple dynamics problem,
where the goal is to get an under-powered car up an in-
cline. The problem is interesting in that it requires "non-
minimum phase" behavior- that is, we must retreat from
the goal before we can reach it. We use the standard dy-
namic equations, except that to make the problem some-
what more difficult; we count going out the back of the
state-space as a penalty of - 1. A time-discounted reward
of + 1 is applied for making it to the top of the hill.

Mountain car is a valuable domain because much intuition
can be gained by visualizing solutions. In Figure (1) we
show a stochastic gradient computed during the stochastic
gradient ascent algorithm. It is noticeably jagged and only
partially agrees with the true gradient at that point in policy
space.

The learned controller for the Mountain car problem
achieves near- optimal performance for the standard start-
ing point within a small number of gradient steps. A typical
number for our second algorithm is 5 steps. In Figure (3)
we illustrate a policy during the process of learning control.
This figure demonstrates the kernel approach concentrating
its representational power where the policy actually spends
time. In this example, the car starts at about (x=17,v=5). It
follows the trench of low probability backwards and then
begins going forward, from whence it follows the ridge of
high probability of the forward action all the way to the
goal.

4.2 Portfolio Optimization

Another valuable validation experiment is comparing our
work to the motivating application of [12]. This paper is
the perhaps the closest in spirit to our own work, as it devel-
ops some theory for non-parametric methods, albeit in the
value-function framework. As such, the problem they con-
sider, a financial portfolio strategy problem seemed quite
appropriate to consider.

In essence, the problem considers an investor trying to de-
cide what fraction of their assets at each time step to devote
to a stock market S t and to a riskless money-market. As
in [12] we consider discrete investment levels in the stock
A = {0.0,0 J.,.. .1.0}. The market is assumed to move
according to an Ito-type stochastic differential equation:

dS t = uS tdt+ v tS tdB t

dvt = (v- v t)S tdt+ v t dB*t

where dB t and dB t̂ represent independent Brownian mo-
tions. The first equation describes the movement in the
market price of the stock. This is a standard equation
describing a geometric Brownian motion with a varying
volatility. The second equation describes the underlying
volatility of the stock price, and can be seen to be mean-
reverting with noise. The parameters are p. = 1.03, v =
0 3, = 10 and = 5.0.

It is assumed that the whole system is mean-adjusted so
that the riskless asset provides zero interest. Given, this the
reward to the system can be defined as the wealth of the in-
vestor at the end of the period relative to their initial wealth.
In this case, we consider a risk averse investor with a con-
cave utility function- in this case Dog. This is convenient

Figure 5: Another policy is shown here. This one corresponds to
the simple log-reward maximization in the middle of the learning
processes. This also outperforms the best fixed strategy.

for dynamic programming solutions as it makes the reward
look additive:

(s t + 1 - s t) x

for a sufficiently small time discretization.

Unfortunately, this problem as described in [12] isn't a true
sequential decision making problem. Instead, the agent can
simply chose their investment level at each time indepen-
dently to maximize their one step gain, as they have no
impact on the market. To make the problem more inter-
esting, we have modified it so that decision are instead re-
quired to be small modifications in the portfolio. This is a
very reasonable restriction as it allows us to represent both
capital limitations of the investor and the problem of "mov-
ing the market" that happens with large position changes in
somewhat illiquid markets. Perhaps most importantly, this
restores the sequential decision process to the problem, as
the agent is forced to reason about how changing its posi-
tion now will affect it further in time.

It is difficult to make quantitative comparison with [12] as
we have made the problem significantly more challenging,
and because only a fairly small sample set is represented
there. Here we show performance over a two-month win-
dow, against the popular "buy-and-hold" strategy where
one invests completely in the risky asset. With even a small
number of gradient steps, our algorithm outperforms this
baseline. We present results comparing a modified Sharpe
ratio of each strategy. The Sharpe ratio, a common perfor-
mance measure in the financial literature, divides our mea-
sure of performance by the average volatility (std. dev.)
over the time period in consideration. This has the advan-
tage of penalizing "luck" on the part of the investor due to
high volatility swings in the risky asset. For time periods
with a net loss, it is not a sensible metric to interpret. We
do not have any wish to down-weight high-volatility invest-

Figure 7: This graph illustrates the performance of our algo-
rithm learning the portfolio strategy as a function of iterations.
Error bars are negligible on the baseline performance of the best
stationary strategy.

ments that cost us. That is, it is better that our metric down-
weight good luck, but not down-weight bad luck. There are
many cost-functions that implement this- our simple ver-
sion which we label as Sharpe ratio in Figure (7) simply
uses the mean volatility whenever the investment amounts
to a net loss. One nice aspect of the policy search algo-
rithms is that they are able to directly optimize such path-
dependent reinforcement functions.

We also visualize the resulting policies for the portfolio op-
timization problem. The policies here can depend on the
full state-variables. Here we a slice of the policy allowing
the the control (A t) and volatility (vt) to vary. We are un-
able to declare that the details of the policy are in any way
obvious, but it does have the intuitively gratifying property
that for high volatilities, it prefers the riskless asset. (Figure
6)

5 Extensions and Conclusions

For the sake of clarity, we explicitly kept to "fully ker-
nelized" algorithms; that is, without any parametric part.
In reality, of course, this may be foolish- if a good para-
metric guess is available it should be added to the func-
tion f in defining the probability of actions. This kind of
semi-parametric type approach gives us the best of both
worlds- combining the domain knowledge advantage that
parametric policy search brings with the flexibility of the
non-parametric approach.

Our current implementation is rather naive in that the num-
ber of kernels either grows linearly in the number of sam-
ple steps we observe, or is sub-sampled by trivial algo-
rithms. Larger problems will presumably require sparse,
greedy choices of basis for approximation. This is fruit-
ful research because we must consider approximations that
preserve kernels where the current policy spends time- that

Figure 6: The above images depict trajectories encountered while learning. Note that when market volatility is high, the trader lowers
the fraction invested in it to reduce its risk.

is, our approximation accuracy must be considered as a
function of the paths that are induced by the controller.

A number of generalizations are natural for the non-
parametric approach we have described here. For instance,
algorithms that re-use (importance weighted) old trajecto-
ries [14], can be easily derived by simply changing the cost
function to reflect the probability of these paths. If we can
bear the computational burden, these trajectories can lower
the experience cost of the algorithms. Next, simple modifi-
cations allow us to consider reinforcements that depend on
both control and next observation, allowing us to guide pol-
icy search by simultaneously learning value-function ap-
proximations [2] [11]. The algorithms described here also
can be changed to be more appropriate to the average re-
ward setting in a number of ways.

In summary, we have described a simple generalization of
likelihood-ratio type policy search to allow search over Re-
producing Kernel Hilbert Function Spaces. Our hope is that
we can effectively apply kernel policy search to problems
where intuition fails us in coming up with an appropriate
parametric policy space, yet we are able to define a natural
notion of similarity by means of a kernel. We believe many
interesting problems will have this property.

References

[1] J. Bagnell and J. Schneider. Covariant policy search. In to
appear in International Joint Conference on Artificial Intel-
ligence, 2003.

[2] L. Baird and A. Moore. Gradient descent for general rein-
forcement learning. In Neural Information Processing Sys-
tems 11, 1998.

[3] J. Baxter, L. Weaver, and P. Bartlett. Direct-gradient-based
reinforcement learning I: Gradient estimation algorithms.
Technical report, Computer Sciences Lab, Australian Na-
tional University, 1999.

[4] D. Goldberg, V. Cicirello, M.B. Dias, R. Simmons, S. Smith,
T. Smith, and A. Stentz. A distributed layered architecture

for mobile robot coordination: Application to space explo-
ration. In Proceedings of the 3rd International NASA Work-
shop on Planning and Scheduling for Space, 2002.

[5] Alexander Gray and Andrew Moore. N-body problems in
statistical learning. In Todd K. Leen and Thomas G. Diet-
terich, editors, Advances in Neural Information Processing
Systems. MIT Press, 2001.

[6] S. Kakade. A natural policy gradient. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems 14, Cambridge, MA, 2002.
MIT Press.

[7] J. Kivinen, A. J. Smola, and R. C. Williamson. Online
learning with kernels. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, Cambridge, MA, 2002. MIT Press.

[8] M. Littman. Algorithms for Sequential Decision Making.
PhD thesis, Brown University, 1996.

[9] L. Mason, J.Baxter, P. Bartlett, and M. Frean. Functional
gradient techniques for combining hypotheses. MIT Press,
1999.

[10] A. Moore. Efficient Memory-Based Learning for Robot
Control. PhD thesis, University of Cambridge, November
1990.

[11] A. Ng, D. Harada, and S. Russell. Policy invariance under
reward transformations: Theory and application to reward
shaping. In International Conference on Machine Learning,
1999.

[12] D. Ormoneit and P. Glynn. Kernel-based reinforcement
learning in average cost problems: An application to opti-
mal portfolio choice. In Advances in Neural Information
Processing Systems 13, Cambridge, MA, 2001. MIT Press.

[13] B. Schoelkopf, R. Herbrich, A. J. Smola, and R. C.
Williamson. A generalized representer theorem: Nc-tr-00-
081. Technical report, NeuroCOLT Technical Report, 2000.

[14] C. R. Shelton. Importance Sampling for Reinforcement
Learning with Multiple Objectives. PhD thesis, Mas-
sachusetts Institute of Technology, 2001.

