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Abstract. Recovery of 3D shape and motion of non-static scenes from a monocular
video sequence is important for applications like human computer interaction. If every
point in the scene randomly deforms at each frame, it is impossible to recover the
deforming shapes. In practice, many non-rigid objects, e.g. face under various expres-
sions, deform regularly and their shapes are, or approximately are, weighted combi-
nation of certain shape bases. Shape and motion recovery under such situations thus
has attracted many interests. Previous work on this problem [6, 4,12] utilized only the
orthonormality constraints on camera rotations (rotation constraints), but failed to
apply another constraints on the shape bases (basis constraints). This paper proves
that the solutions obtained using only the rotation constraints are inherently am-
biguous. The ambiguity arises from the fact that, the shape bases are not unique since
their linear transformation is a new set of eligible bases. To eliminate the ambiguity, we
introduce the basis constraints that implicitly determine the shape bases uniquely.
This paper proves that, under the weak-perspective projection model, once both the
basis and the rotation constraints are imposed, we achieve a closed-form solution to
the problem of non-rigid shape and motion recovery. The accuracy and robustness of
our closed-form solution is evaluated quantitatively on synthetic data and qualitatively
on real video sequences.
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1 Introduction

The many years of work in structure from motion have led to significant successes in recovery
of 3D shapes and motion estimates from 2D monocular videos to support modeling, rendering,
visualization, and compression. Reliable systems exist for reconstructing the 3D geometry of
static scenes. However, in real world, most biological objects and natural scenes are flexible
and often dynamic: faces carrying expressions, fingers bending, etc. Recovering the structure
and motion of these non-rigid objects from a single-camera video stream is a challenging task.
The effects of 3D rigid motion, i.e. camera rotation and translation, and non-rigid motion,
like deforming and stretching, are coupled together in image measurement. If every point
on the objects deforms arbitrarily, it is impossible to reconstruct their shapes. In practice,
many non-rigid objects, e.g. face under various expressions and scene consisting of static
building and moving vehicles, deform regularly. Under such situations, the problem of shape
and motion recovery is solvable.

One way to solve the problem is to use the application-specific models of non-rigid struc-
ture to constrain the deformation [2,3, 5, 8]. These methods model the non-rigid object shapes
as weighted combinations of certain shape bases. For instance, the geometry of a face is rep-
resented as a weighted combination of shape bases that correspond to various facial defor-
mations. The successes of these approaches suggest the advantage of basis representation of
non-rigid shapes. However, such models are usually unknown and complicated. An offline
training step is thus required to learn these models. In many applications, e.g. reconstruc-
tion of a scene consisting of a moving car and a static building, the models of the dynamic
structure are often expensive or difficult to obtain.

Several approaches [6,12,4] were proposed to solve the problem from another direction.
These methods do not require a prior model. Instead, they treat the model, i.e. shape bases,
as part of the unknowns to be solved. The goal of these approaches is to recover not only the
non-rigid shape and motion, but also the shape model. They utilize only the orthonormality
constraints on camera rotations (rotation constraints) to solve the problem. However, this
paper proves that, enforcing only the rotation constraints leads to ambiguous and invalid
solutions. Previous approaches thus cannot guarantee the desired solution. They have to
either require a prior knowledge on shape and motion, e.g. constant speed [9], or need non-
linear optimization that involves large number of variables and hence requires good initial
estimate [12,4].

Intuitively, the ambiguity of the solution obtained using only the rotation constraints
arises from the non-uniqueness of the shape bases: a linear transformation of a set of shape
bases is a new set of eligible bases. Once the bases are determined uniquely, the ambiguity
is eliminated. Therefore, instead of imposing only the rotation constraints, we identify and
introduce another set of constraints on the shape bases (basis constraints), which implicitly
determine the bases uniquely. This paper proves that, under the weak-perspective projection
model, when both the basis and rotation constraints are imposed, a closed-form solution to
the problem of non-rigid shape and motion recovery is achieved. Accordingly we propose a
factorization method that applies both metric constraints to compute the closed-form solution
for the non-rigid shape, motion, and shape bases.

1.1 Previous Work

Recovering 3D object structure and motion from 2D image sequences has a rich history. Var-
ious approaches have been proposed for different applications. The discussion in this section
will focus on the factorization techniques, which are closely related to our work.

The factorization method was first proposed by Tomasi and Kanade [11]. First it applies
the rank constraint to factorize a set of feature locations tracked across the entire sequence.



Then it uses the orthonormality constraints on the rotation matrices to recover the scene
structure and camera rotations in one step. This approach works under the orthographic
projection model. Poelman and Kanade [10] extended it to work under the weak perspective
and para-perspective projection models. Triggs [13] generalized the factorization method to
the recovery of scene geometry and camera motion under the perspective projection model.
These methods work only for static scenes.

For non-static scenes, Costeira and Kanade [7] proposed a factorization technique to re-
cover the camera motion and shapes of multiple independently moving objects under the
orthographic projection model. This technique factorizes the feature locations to compute
a shape interaction matrix, then block-diagonalizes this matrix to segment different objects
and recover their shapes and motions. Han and Kanade [9] introduced another factorization
method to reconstruct a scene consisting of multiple objects, some of them static and the oth-
ers moving along fixed directions and at constant speed. Wolf and Shashua [14] presented a
more generalized solution to reconstructing the shapes that deform at constant velocity.

Bregler et al. [6] first introduced the shape representation as weighted combination of
bases to reconstruct non-rigid shapes and motion. Without assuming constant deformation
speed, they proposed the sub-block re-ordering and factorization method to determine the
shape bases, combination coefficients of the bases, and camera rotations simultaneously. This
approach enforces only the rotation constraints. As we proved, the solution is inherently am-
biguous and not optimal. To remedy the problem, Torresani and his colleagues [12] extended
Bregler's method to a trilinear optimization approach. At each step, two of the three types of
unknowns, bases, coefficients, and rotations, are fixed and the rest one is updated. Bregler's
method is used to initialize the optimization process. Brand [4] proposed a similar non-linear
optimization method that uses an extension of Bregler's method for initialization. Both the
non-linear optimization approaches still fail to impose the basis constraints, which is the es-
sential reason that the method in [6] does not work well. Therefore they can neither guarantee
the optimal solution. Note that both optimization processes involve a large number of vari-
ables, e.g. the number of coefficients to be computed equals the product of the number of
images and the number of shape bases. Their performances greatly rely on the quality of the
initial estimates of the large number of unknowns, which are not easy to achieve.

2 Problem Statement

Given 2D locations of P feature points across F frames, {(u, v)* \f = l , . . . , i\p = 1,...,P},
our goal is to recover the motion of the non-rigid object relative to the camera, including
rotations {R/\f = 1,...,F} and translations { t / | / = 1,...,F}, and its 3D deforming shapes
{(x,y,zffp\f=l,...,F,p=l,...,P}.

We follow the representation of [3,6]. The non-rigid shape is represented as weighted
combination of K shape bases {Bi, i = 1,..., K}. The bases are 3 x P matrices controlling the
deformation of P points. Then the 3D coordinate of the point p at the frame / is,

X /p = (:r, y, z)T
fp = E?=1cfihip / = 1,..., F,p = 1,..., P (1)

where bip is the pth column of Bi and Q/ is its combination coefficient at the frame /. The
image coordinate of Xfp under the weak perspective projection model is,

x /p = (w, v)Jp = sf(Rf • X /p + t/) (2)

where Rj stands for the first two rows of the fth camera rotation and t/ = [tfxtfy]
T is

its translation relative to the world origin. Sf is the nonzero scalar of the weak perspective
projection.



Replacing X/p using Eq. (1) and absorbing s/ into c/« and t/,

bi

(3)

Suppose the image coordinates of all P feature points across F frames are obtained.
We form a 2F x P measurement matrix W by stacking all image coordinates. Then W =
MB 4- T[ll...l]. where M is a 2F x SK scaled rotation matrix, B is a SK x P bases matrix,
and T is a 2F x 1 translation vector,

M = I : : : I , B= I : : : I , T = [tj ... tT
F]T (4)

As in [9,6], we position the world origin at the scene center and compute the translation
vector by averaging the image projections of all points. We then subtract it from W and
obtain the registered measurement matrix W = MB.

Since W is the product of the 2F x SK scaled rotation matrix M and the SK x P shape
bases matrix B, its rank is at most mm{3X,2F,P}. In practice, the frame number F and
point number P are usually much larger than the basis number K. Thus the rank of W is at
most SK and K is determined by K — rank(W)/S. We then perform SVD on W to get the
best possible rank SK approximation of W as MB. This decomposition is only determined
up to a non-singular 3K x SK linear transformation. The true scaled rotation matrix M and
bases matrix B are of the form,

M = MG, B = G~1B (5)

where G is called the corrective transformation matrix. Once G is determined, M and B are
obtained and thus the rotations, shape bases, and combination coefficients are recovered.

Since all the procedures above, except obtaining G, are standard and well-understood [3, 6],
the problem of nonrigid shape and motion recovery is now reduced to: Given the measurement
matrix W, how can we solve the corrective transformation matrix Gl

3 Metric Constraints

In order to solve C, two types of metric constraints are available and should be imposed:
rotation constraints and basis constraints. Using only the rotation constraints [6, 4] leads
to ambiguous solutions. Instead imposing both constraints results in a closed-form solution.

3.1 Rotation Constraints

The orthonormality constraints on the rotation matrices are one of the most powerful metric
constraints and they have been used in reconstructing the shape and motion for static objects
[11,10], multiple moving objects [7,9], and non-rigid deforming objects [6,12,4].

According to Eq. (5), MMT = MGGTMT. Let us denote GGT by Q. Then,

M2*i-l:2*iQMLj-l:2*j = EkLlCikCjkRi * Rj ,i,j = 1, . . .F (6)

where M2*i-i-.2*i represents the ith two-row of M. Due to the orthonormality of the rotation
matrices,

M2M-l :2* iQM 2
T . i - l :2« = £fcilC? f cI2x2 , 1 = 1 , - , F (7)



where 12x2 is a 2 x 2 identity matrix. Since Q is symmetric, the number of unknowns in Q
is (9K2 H- 3A')/2. Each diagonal block of MMT yields two linear constraints on Q,

(8)

M2*i-iQMli = 0 (9)

For F frames, we have 2F linear constraints on (9AT2 -f 3A)/2 unknowns. It appears that,
when we have enough images, i.e. F > (9K2 4- 3A)/2, there will be enough constraints to
solve Q via the standard least-square methods. However, this is not true in general. Many
of these constraints are redundant. We will show later that no matter how many frames or
feature points are given, the linear constraints from Eq. (8) and Eq. (9) are not sufficient to
determine Q.

3.2 Why are Rotation Constraints not Sufficient?

When the scene is static or deforms at constant velocities, the rotation constraints are suf-
ficient to solve the corrective transformation matrix G [11,9,14]. However, when the scene
deforms at varying speed, no matter how many images are given or how many feature points
are tracked, the solutions of the constraints in Eq. (8) and Eq. (9) are inherently ambiguous.
The degree of freedom of the solution space is 2A 2 — K.

Definition 1. A 3A x 3A symmetric matrix Y is called a block-skew-symmetric matrix, if
all the diagonal 3 x 3 blocks are zero matrices and each off-diagonal 3 x 3 block is a skew
symmetric matrix.

( ° vw yw\ T T
Yij = -Viji 0 Vij3 = -Y73 =Y?, I + j (10)

\-Vij2 -yij3 o /

Ylt=03x3l iJ = l,...J< (11)

Each off-diagonal block consists of 3 independent elements. Since Y is symmetric and has
K(K — l ) /2 independent off-diagonal blocks, it totally includes 3K(K — l) /2 independent
elements.

Definition 2. A 3A x 3AT symmetric matrix Z is called a block-scaled-identity matrix, if
each 3 x 3 block is a scaled identity matrix, i.e. Zjj = A ĵI3x.-37 where Xij is the only variable.

since Z is symmetric, the total number of variables in Z equals the number of independent
blocks, K{K+ l)/2.

Theorem 1. Let H be the summation ofY and Z. Q = GHGT is the general solution of the
rotation constraints in Eq. (8) and Eq. (9), where G is the desired corrective transformation
matrix.

Proof. Since G is a non-singular matrix, the solution Q of Eq. (8) and Eq. (9) can be rep-
resented as Q = GAGT. Now we need to prove that A must be in the form of H, i.e. the
summation of Y and Z.

According to Eq. (7),

= atl2x2 ,i = l , . . . , F (12)

where QJ is an u n k n o w n scalar . Divide A in to 3 x 3 blocks, Akj (k,j=l,...,K). Combin ing
Eq . (4) a n d E q . (12),

Ri££=1{c2
ikAkk + U^ik+12clkc2J(Akj + Al^Rj = atl2x2 ,1 = 1, . . . ,F (13)



Denote the 3 x 3 symmetric matrix E^=1(c^kAkk + £f=k+i2cikCij(Akj + A^)) by F{. Let

r? be the homogeneous solution of Eq. (13), i.e. RiFiRj = 02x2- Note that Rj consists of
only the first two rows of the ith rotation matrix. Let 7̂ 3 denote the third row. Due to the
orthonormality constraints, Fi is determined by,

FiRf = [rf3 6irf3] (14)

where Si is an arbitrary scalar. Apparently F^ — a^l3X3 is a particular solution of Eq. (13).
Therefore the general solution of Eq. (13) is,

F% = E^=1{cfkAkk + Z*lk+l2ctkctJ(Akj + Alj)) = a tl3x3 + ft A (15)

where fa is an arbitrary scalar. Since Q = GAGT is the general solution of the rotation
constraints, Eq. (13) and Eq. (15) must be satisfied for any set of coefficients and rotations.
If /3j for some frame i is not zero, for another frame that is formed by the same coefficients
but different rotation, Eq. (15) and Eq. (14) are not satisfied. Therefore, /3j has to be zero for
every frame, i.e.,

M ? Alj)) = aj3x3 (16)

Since Eq. (16) must be satisfied for any set of coefficients, the solution is.

Akk = Afcfcl3x3 (17)

Akj + Alj = Xkjl3x3 , k = 1,..., K- j = h + 1,..., K (18)

where Xkk and Xkj are arbitrary scalars. According to Eq. (17), the diagonal block Akk is
a scaled identity matrix. Since the diagonal block of Z, Zkkl is a scaled identity matrix and
the diagonal block of Y, Ykk, is a zero matrix, Akk = Zkk + Ykk. Let Akjab, a: b = {1,2, 3},
denote the elements of an off-diagonal block Akj. Due to Eq. (18), the diagonal elements
are Akjn = Akj22 = Akjss = Xkj/2 and the off-diagonal elements satisfy Akji2 = -Akj2i7

Akju = —iifejjn, and Akj23 — —Aky,\2. Therefore Akj equals the summation of a scaled
identity block, Zkj, and a skew-symmetric block, Ykj. This concludes the proof: A equals / / ,
the summation of a block-skew-symmetric matrix Y and a block-scaled-identity matrix Z,
i.e. the general solution of the rotation constraints is Q — GHGT'.

0
Since H consists of 2K2 - K independent elements: SK(K - l)/2 from Y and K(K + l)/2

from Z, the solution space has a degree of freedom of 2K2 — K. Now the question is: is every
solution in the space a valid solution of Q? If so, even if the ambiguity exists, one can compute
an arbitrary solution in the space to solve the problem. However, it is not the case. The space
composed of two components, Y and Z, contains both valid and invalid solutions. Specifically,
the solutions consisting of only Z, Qz — GZGT, are valid solutions. The variety of Qz refers
to different linear transformations of the shape bases and any of Qz can be used to recover
the rotations and other unknowns. The solutions involving Y, Qy = GYGT or G(Y 4- Z)GT,
are invalid solutions. Since a valid solution Q = GGT must be positive semi-definite and a
block-skew-symmetric matrix Y is not positive semi-definite, Qy are invalid solutions.

3.3 Basis Constraints

For static scenes, a variety of approaches [11,10,13] utilize only the rotation constraints and
succeed in determining the correct solution. Now we are dealing with non-static scenes with a
certain assumption of the non-rigidity, i.e. representable by direct combination of the shape
bases. Under such situations, enforcing only the rotation constraints results in a solution space
that contains ambiguous and invalid solutions. Are there other constraints that we can use



to determine the desired solution in the space? Intuitively, since the only difference under
non-rigid situations from under rigid situations is that the non-rigid shape deforms as direct
combination of a certain number of shape bases, can we impose certain constraints on the
bases and eliminate the ambiguity?

Since any non-singular linear transformation on the shape bases yields a new set of eligible
bases, the bases and the corresponding combination coefficients are not unique. However, their
composition, i.e. the non-rigid shapes, are unique. Thus the bases and coefficients depend on
each other. Once one of them is determined, another is also decided. If we can obtain any K
frames including independent shapes and treat the shapes as a set of bases, both the bases
and coefficients are determined uniquely. Without the loss of generality, we assume the shapes
in the first K frames are independent on each other1. The K shapes are then treated as the
bases. This step determines the first K frames of coefficients as,

Ctl = l , i• = l . . . . J <

ClJ = 0, i^ j , i = 1,.... K, j = 1,..., K (19)

For any three-column of C, g^, k = 1,..., K, according to Eq. (5),

Mgk=\ .- k = l,...,K (20)
cFkRFJ

We denote gk9kT by Qk- Then,

M2*,--l:2*iQfcM£j-l:2*j = CikCjkRiRj (21)

Combining Eq. (19) and Eq. (21), we obtain another 4(K — 1)F basis constraints on Q^:

luJe£ (22)

lQJ^ (23)

(iJ) euiori=j = k (24)

M2iQkMLj-i = 0, (hj) eu;lOri=j = k (25)

where uj\ = {(i,j)\i = 1,...,/^, j = 1,...,F and i ^ k}. The basis constraints eliminate the
ambiguity of the rotation constraints and determine a closed-form solution to Qk-

4 A Closed-Form Solution

Section 3.2 proves that the general solution of the rotation constraints is GHGT = GYGT +
GZGT', where G is the desired corrective transformation matrix, Y is a block-skew-symmetric
matrix, and Z is a block-scaled-identity matrix. The solutions have a degree of freedom of
2K2 — K. This section will prove that enforcing the basis constraints eliminates the ambiguity
and determines a closed-form solution.

By definition, each 3 x 3 block E^ (i,j = 1,..., K) of H is composed of four independent
entries,

/ hi h2 h3\
HtJ = -h2 h, h4 (26)

\-h3 -h4 hj

If the first K shapes are not independent, we can find K frames in which the shapes are indepen-
dent, by examining the singular values of their image projections. We then reorder the sequence
by moving these K frames to the top.



L e m m a 1 Hjj is a zero matrix if,

R,Ht]Rj = (p^j Hti {rn
T rj2) = 02x2 (27)

Proof. First we prove that the rank of H{j is less than 3. Due to Eq. (27) and the orthonor-
mality constraints,

H^ ( r3l
T rj2 ) - ( a ! r i 3

T a2rf3 ) (28)

where r^ = rn x 7^2. Qi and a2 are two arbitrary scalars. Therefore,

— If both ai and c*2 are not equal to 0, the linear system f/jjX = rf^ has at least two
independent solutions rj^/ai and rj^/a2. Hence Hjj is not a non-singular matrix and its
rank is less than its dimension, 3.

— If either aj or a2 equals 0, say cii, the linear system Hjj*. = O;?x i has at least one non-zero
solution r j r Hjj is thus singular and its rank is less than 3.

Next, we prove h\ = 0. Since the rank of Hjj is less than its dimension, 3, its determinant,

hi(J2t=i hi2)i equals 0. Therefore h\ must be 0 and Hjj is a skew-symmetric matrix.
Finally, we prove /i2 = h-A = h± = 0. Since h\ — 0, we rewrite Eq. (27) as follows:

• (h x r3l) m • (h x rj2) \ _ n ((?Q,

where h = (—/14 /13 —I12). Eq. (29) means that the vector h is located in the intersection of the
four planes determined by (r^, Tji), (r^i, rj2), (r^? rji)7

 a n d (rz25
rj2)- Under non-degenerate

situations, ^ 1 , ^ 2 , ^ 1 , and r j2 do not lie in the same plane, hence the four planes intersect
at the origin, i.e. h = (—/14 /13 — /i2) = 0ix<}. This proves that H^ is a zero matrix.

Due to Lemma 1, we derive the following theorem,

Theorem 2. If Qk satisfies both basis constraints and rotation constraints, Qk equals gugk1\
where g^ is the kth three-column of G.

Proof. Since Qk satisfies the rotation constraints, Qk = GHGT and MQkMT = MHMT.
Thus,

_1 : 2 # j = Z^Z^^Cjki^Hk^Rj, i,j = 1,...,F (30)

According to Eq. (19),

M2^-l:2^HMt3-l:2*3 = RiHijRj
T

1 ij = 1, ..., K (31)

Due to the basis constraints in Eq. (22) to (25),

RkHkkRkT = I2x2 (32)

RiHl3R3
T = 0 2 X 2 , i,j = 1,...,K, andi^k, j + k (33)

By definition, Hkk — ̂ fcfcl.3x35 where A^^ is a scalar. Due to Eq. (32), Xkk = 1 and Hkk — 1:3x3-
From Lemma 1 and Eq. (33), H^ is a zero matrix when i,j = 1,...,/5T, and i ^ k, j ^ k.

Therefore Qk = GHGT = \9I,...,9K\H\9II..;9K]T = [0, . . , 0 , ^ , 0 , ...0][^, . . . , p x ] T = gkgl.

0
According to Theorem 2, enforcing both rotation constraints and basis constraints leads to a
linear closed-form solution of Qk = gk9^\ k= 1,...,K. Then gk, k = 1,..., K can be recovered
via SVD. We project them to the common coordinate system and determine the corrective
transformation G = [gi, ...,9K]- According to Eq. (5), we recover the shape bases B = G~1B,
the scaled rotation matrix M = MG, and thus the rotations and coefficients.



5 Performance Evaluation
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Fig. 1. A static cube and 3 points moving along fixed directions: (a) the input image; (b) the ground
truth 3D shape; (c) reconstruction of the closed-form solution; (d) reconstruction of Bregler's method;
(e) reconstruction of Brand's method: (f) reconstruction of the tri-linear method.

The performance of the closed-form solution is evaluated in a number of experiments. First,
we compare its performance with that of previous work. Second, we evaluate its robustness
and accuracy quantitatively on synthetic data. Third, we apply it on real image sequences to
examine it qualitatively.

5.1 Comparison with Previous Work

Previous methods enforce only the rotation constraints and thus have limitations. [6] re-
orders and factorizes each two-row of A/ to compute the coefficients and rotations. Then the
rotation constraints are applied to compute a 3x3 corrective transformation Gs as in [11]. This
process is equivalent to assume the desired G as diag(Gs,..., Gs). Whereas this assumption
is correct for static scenes, it does not hold when the scene is non-rigid. Brand [4] extended [6]
by applying the rotation constraints to compute different corrective transformations for each
three-column of M independently. It is equivalent to assume G as diag(Gsi,..., GSK), where
the diagonal blocks are different. This assumption often does not hold, because M can be
from an arbitrary linear transformation of the true M and its three-columns usually are mixed
up. The regularization term to minimize the deformation bases will not help much, since one
can have arbitrarily small bases but large coefficients and achieve the same reconstruction.
The tri-linear algorithm [12] does not assume certain form of G, but involves a large number
of unknowns, e.g. the number of coefficients is FK. It enforces only the rotation constraints
and there exist many local optima. Its performance depends on good quality of the initial
estimate, which is not easy to achieve, especially for such a huge number of unknowns.

Let us demonstrate that the weakness of the above approaches actually results in erroneous
solutions even for a simple noiseless example. Figure 1 shows a scene consisting of a static
cube and 3 moving points, marked as diamonds, triangles, and squares. The measurement
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Fig. 2. Reconstruction errors: (a) Bregler's method; (b) Brand's method; (c) the tri-linear method.

consists of 10 points: 7 visible vertices of the cube and 3 moving points. The 3 points move
along the three axes respectively at non-constant speed. The scene structure is composed of
K = 2 shape bases, one for the static cube and another for the moving points. Their image
projections across 16 frames from different views are given. One of them is shown in Figure
l.(a). The corresponding ground truth scene shape is demonstrated in Figure l.(b). Figure
l.(c) to l.(f) show the reconstructed scene structures using the closed-form solution, Bregler's
method [6], Brand's method [4] and the tri-linear method [12] both after 4000 iterations.
While our closed-form solution achieves the exact reconstruction, all three previous methods
result in apparent reconstruction errors, even for such a simple and noiseless setting. Figure 2
demonstrates the reconstruction errors of the previous work on rotations, shapes, and image
measurements. The errors are computed relative to the ground truth.

5.2 Quantitative Evaluation on Synthetic Data

Our approach is quantitatively evaluated on the synthetic data. We evaluate the accuracy and
robustness on three factors: deformation strength, number of shape bases, and noise level. The
deformation strength shows how close to rigid the shape is and it is represented by the ratios
of the powers (Frobenius Norm) of the bases. Larger ratio means weaker deformation, i.e.
the shape is closer to rigid. The number of shape bases represents how flexible the shape is.
Bigger basis number means more control variables on the shape need to solve for. under the
noiseless situations, a good approach should provide the exact solution, no matter how strong
the deformation is and how big the basis number is.

In real applications, the data are often contaminated by noise. Under such situations, a
good method should be robust enough to provide reasonably accurate solutions, regardless
of strong deformation or big basis number. Assuming a Gaussian white noise, we represent
the noise strength level by the ratio between the standard deviation and the power of the
measurement W. Under the same noise level, weaker deformation leads to better performance,
since some deformation mode is more dominant and the noise relative to the dominant basis
is weaker. When the powers of the bases are close to each other, bigger basis number results
in poorer performance, because the noise relative to each individual basis is stronger.

Figure 3. (a) and (b) show the performance of our closed-form solution under various
deformation strength and noise levels. Two bases are used. The ratios between their powers
are 2°, 21, ..., and 28. Four levels of Gaussian white noise are imposed on W. Their standard
deviations are 0%, 5%, 10%, and 20% of the power of W. We test 100 trials for each setting
and compute the average reconstruction errors on the rotations and 3D shapes, relative to
the ground truth. Figure 3.(c) and (d) show the performance of our method under different
number of shape bases and noise levels. We use 2, 3, ... , and 10 shape bases respectively.
The bases have equal powers and thus none of them is dominant. The same noise as in last
experiment are imposed.



(a) (6)

Fig. 3. (a)&(6): Reconstruction errors on rotations and shapes under different levels of noise and
deformation strength; (c)&(d): Reconstruction errors on rotations and shapes under different levels
of noise and various basis numbers. Lower curve refers to weaker noise.

In both experiments, when the noise level is 0%, the closed-form solution always recovers
the exact rotations and shapes. When there exists noise, it achieves reasonable accuracy,
e.g. the maximum reconstruction error is less than 15% when the noise level is 20%. As we
analyzed, under the same noise level, the performance gets better when the power ratio is
larger and gets poorer when the basis number is bigger. Note that in all the experiments,
the condition number of the linear system consisting of both basis constraints and rotation
constraints has order of magnitude O(10) to 0(1O2), even if the basis number is big and the
deformation is strong. Our closed-form solution is thus numerically stable.

5.3 Qualitative Evaluation on Real Video Sequences

(e) (/)

Fig. 4. Reconstruction of three moving objects in the static background. (a)Sz(d): two input images
with marked features; (6)&(e): reconstruction by the closed-form solution; The yellow lines show the
recovered moving trajectories till the present frames. (c)&(/): reconstruction by Brand's method.
The yellow circle shows that the plane is mis-located.

We examined our approach qualitatively on a number of real video sequences. The first
sequence was taken of an indoor scene by a handhold camera. Three objects, a car, a plane,
and a toy person, moved along fixed directions and at varying speeds. The rest of the scene
was static. The car and the person moved on the floor and the plane moved along a slope.



The scene structure was composed of two bases, one for the static objects and another for the
moving objects. 32 feature points tracked across 18 images are used for reconstruction. Two
of the images are shown in Figure 4.(a) and (d).

The rank of W was estimated in such a way that after rank reduction at least 99% of
the energy was kept. The basis number is automatically determined by K = rank(W)/S.
Figure 4.(b) and (e) show the images warped to a common view based on the reconstruction
by the closed-form solution. The wireframes show the structure and the yellow lines show
the trajectories of the moving objects till the present frames. The reconstruction is consistent
with our observation, e.g. the plane moved linearly on top of the slope. Figure 4.(c) and (f)
show the reconstruction using Brand's method [4]. The shapes of the boxes are distorted and
the plane is incorrectly located underneath the slope, as shown in the yellow circles.

The second sequence was taken of a human face by a static video camera. It consisted of
236 images and contained various facial expression and head rotations. 68 feature points were
manually picked in the first frame and then tracked automatically using the Active Appear-
ance Model method [1]. Figure 5. (a) and (d) display two of the images with marked features.
According to the reconstructed shapes by our method, we warp the images into a common
view, as shown in Figure 5.(b) and (e). Their corresponding 3D wireframe models shown in
Figure 5.(c) and (f) demonstrate that the non-rigid facial motions such as mouth opening
and eye closure were recovered successfully. Note that the feature correspondence in these
experiments was noisy, especially for those features on the sides of face. The reconstruction
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Fig. 5. Reconstruction of face shape with various expressions. (a)&(d): input images with marked
features. (6)&(e): images warped to a common view based on our reconstruction. (c)&(/): The
wireframe model of recovered structure. Eye closure and mouth opening are recovered.

6 Conclusion and Discussion

This paper proposes a closed-form solution to the problem of non-rigid shape and motion
recovery from video, under the weak perspective projection model. It consists of three main
contributions: first, we prove that enforcing only the rotation constraints results in ambiguous



and invalid solutions; second, we identify and introduce the basis constraints; Third, we prove
that imposing both rotation and basis constraints leads to a closed-form solution to non-rigid
shape and motion recovery.

A deformation mode is degenerate, if it limits the shape to deform in a plane, i.e. the
rank of the corresponding basis is less than 3. Such a case occurs in practice, e.g. if a scene
contains only one moving object that moves along a straight line, the basis referring to the
linear motion is degenerate, since the motion vector is of rank 1. Under degenerate situations,
the basis constraints cannot determine the degenerate bases. As a result, the ambiguity of
the rotation constraints cannot be completely eliminated and thus enforcing both metric
constraints is insufficient to produce a closed-form solution. The degeneracy problem can be
solved using an alternating linear optimization method.

In applications such as motion capture, the acquired data are usually composition of the
3D non-rigid structures and their corresponding poses. One has to decouple the originally
acquired data so as to capture the accurate 3D shapes. The proposed method can be easily
extended to solve this problem.
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