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ABSTRACT. The phase field model for free boundaries consists of a system of parabolic dif-
ferential equations in which the variables represent a phase (or "order") parameter and tem-
perature respectively. The parameters in the equations are related directly to the physical
observables including the interfacial width c which we can regard as a free parameter in com-
putation. The phase field equations can be used to compute a wide range of sharp interface
problems including the classical Stefan model, its modification to incorporate surface-tension
and/or surface kinetic terms, the Cahn-Allen motion by mean curvature, the Hele-Shaw
model, etc. Also included is anisotropy in the equilibrium and dynamical forms generally
considered by materials scientists. By adjusting the parameters, the computations can be
varied continuously from single needle dendritic to faceted crystals.

The computational method consists of smoothing a sharp interface problem within the
scaling of distinguished limits of the phase field equations which preserve the physically im-
portant parameters. The two-dimensional calculations indicate that this efficient method for
treating these stiff problems results in very accurate interface determination without inter-
face tracking. We test these methods against exact and analytical results available in planar
waves, faceted growth and motion by mean curvature up to extinction time.

The results obtained for the single needle crystal show a constant velocity growth as
expected from laboratory experiments.

+ Supported by NSF Grant DMS-9002242 .



1. Introduction.
The problem of numerical computation of a moving boundary has been under active

study from a number of perspectives (see [Gl] for a survey). The phase field approach to
free boundaries has two salient features: (i) a broad spectrum of distinct problems can be
studied by means of a single set of equations, and (ii) the interface in these problems does
not need to be tracked explicitly, as the computations use a system of parabolic equations
in which the interface has been diffused.

The phase field equations specifically identify all macroscopic parameters, e.g. latent
heat, diffusivity, etc. and a parameter e which is a measure of interface thickness.

We begin by defining a set of sharp interface problems in a spatial region ft C Rn with
the interface defined as T(t) with t 6 R+. A basic problem is to find a temperature function
T{x,t) and a curve (or surface) T(t) C ft which satisfy the equations.

pc.pmTt=KAT inft\r(t)

plv = KVT • n]; on T(t)
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equilibrium melting temperature
latent heat per unit mass
thermal conductivity
surface tension between two phases
density
specific heat per unit mass
entropy difference between phases per unit volume

normal velocity (positive if motion is directed toward liquid)
sum of principal curvatures at the particular point on the interface

jump in the normal component of the temperature (from solid to liquid)
kinetic undercooling coefficient

By defining a dimensionless temperature, u := (T — TE)c9pm/£, a diffusion parameter
D := K/pc9pm and a "capillary length" d0 := (TCapm/([s]E^) one can rewrite (1.1) - (1.3)

as
ut = DAu in ft\T(<)

v = DVu • n]+ on T(t)

u = — <1QK — adov on T(t).

(1.2')

(1.3')

Note that the parameter D simply adjusts the time versus length scales in the problem.
Thus, one could set D := 1 by simply adjusting a (which has units of time/(space)2, as does
I/D). Within this scaling, the latent heat, £, has been incorporated into the dimensionless



temperature so that the coefficient of v in (1.2') is unity. For the limiting situations such as
Hele-Shaw in which latent heat approaches zero one must adopt a scaling such as (1.1)-(1.3)
which avoids division by £.

The oldest mathematical model for an interface between two phases, e.g. liquid and
solid, is known as the classical Stefan model which incorporates heat diffusion, (1.1) and the
latent heat due to fusion, (1.2). Furthermore it stipulates that the interfacial temperature
remains at the melting temperature [i.e. u = 0 replaces (1.2)]. This last condition, amounts
to setting a = 0 in (1.3) or do = 0 in (1.3'). Although the capillarity length, do, is often very
small compared to the other length scales in the problem, such as AC""1, it is nevertheless
very significant as a stabilizing force [Ch].

The classical Stefan model's neglect of surface tension and surface kinetics can be par-
tially remedied by the imposition of (1.3) with finite a and a. The numerical study of the
surface tension and kinetics model [(1.1) - (1.3)] then becomes even more challenging as a
consequence of the curvature term in (1.3).

Another sharp interface problem which arises in the context of a fluid between two
plates is the Hele-Shaw model which can be expressed as equations [(1.1) -(1.3)] with the
left hand side of (1.1) set at zero. For the Hele-Shaw problem, u describes pressure and
the constants £, K, etc. represent different physical quantities (see [Oc], [Cr] and references
contained therein).

Finally, one may consider the Cahn- Allen model of motion by mean curvature problem
[AC], in which the interface moves with normal velocity

v = — K (1.4)
a

at each point on the interface T(t).
Anisotropy may be considered in all of the problems above. In typical materials the

anisotropy is present in the surface tension a, and in the kinetic coefficient a so that (1.3')
becomes

u = -do(6)K - a(0)do(0)v (1.5)

where a is now a function of the orientation angle 0, and

The term 0(0) := a(0)do(0) is often called the mobility (see [Ta] for general discussion).
The orientation angle 0, may be defined as the angle between the normal to the interface
and a fixed direction, or the angle between a fixed direction and the line from a centred
point to a point of the interface.

The precise nature of anisotropy and its interaction with undercooling (liquid below the
equilibrium freezing temperature) is important in determining the shape of the interface,
and one can obtain both a single needle crystal and cubic crystal growth from a cubic
symmetry (see Section 5 for details).



Another approach to free boundary problems involves the use of a phase or "order"
parameter, <̂>, which specifies the phases ((̂  ^2 1 is liquid, <p sc — 1 is solid) while the level
set if = 0 is now the interface. This approach has its origins in Landau theory [LL], Cahn-
Hilliard type equations [CaHi], [La], and the application of mean field theory to critical
phenomena [HH].

Phase field theories are generally rooted in the idea that each molecule or "spin" is under
the influence of all others which effectively constitute an average "field" of interactions.
This, of course, is a vast simplification over evaluating the sum over all possible states to
calculate the partition function and, thereby, the free energy. Preliminary reports on a
system of equations closely related to those discussed here (but with a different scaling
which does not precisely attain any of the sharp interface models defined above) include
[Ca], [F].

The variable tp represents the mean field or "averaged" description of the phase at each
point (<,x) in time-space. This mean field approach has been used with some, but not
complete, success in the subtle area of equilibrium critical phenomena. The application
to ordinary phase transitions is actually quite different in that the correlation length (i.e.
mean distance of which molecules Eire "aware" of one another's presence) is very small
whereas it is very large in the critical region. In fact, the large correlation length provided
the original justification for this approach. (See references in [Ca2] for further discussion.)
Another difference between the critical region and ordinary phase transitions is that critical
phenomena can rely on universality which states that the critical exponents should be
independent of the details of the system. For solidification, it is generally desirable to
specify all material parameters and to obtain quantitatively reliable results.

Using the scaling introduced in [Cal] we write the phase field equations in the form

capmTt + i<pt = -AT (1.6)
2 p

- « ( ? - ¥ > ) + « (T-TE) (1-7)

where e is a parameter which is a measure of the interface width, and all other constants
are as defined earlier. In 1985 it was shown [Cal] using asymptotics that the major free
boundary problems could be attained as distinguished limits of the phase field equations
in the form [(1.6), (1.7)]. In particular, if c approaches zero while all other parameters
including a are held fixed, then the asymptotic solutions of [(1.6), (1.7)] are governed to
leading order by the surface tension and kinetics model [(1.1)-(1.3)].

The classical Stefan model can be similarly recovered in the distinguished limit as both
t and a vanish with e/a —> 0. The formal asymptotics has been made mathematically
rigorous in some cases of special symmetry such as travelling waves [CN] and general Id
and radially symmetric [CC]. Other important free boundary models such as the Hele-Shaw
equations and motion by mean curvature are also obtained from the phase field equations
(Ca2j.

Using the variables defined before [(1.1') - (1.3')] the equations [(1.6)-(1.7)] can be
written in the form

DA (1.6')



htp - 93) + r-U (1.7')
2 3do

With d0 and/or a possibly depending on 0, the solutions of [(1.6'), (1.7')] approach those
of [(1.1'), (1.2'), (1.5)]. In a philosophical sense this approach to solidification computation
problems is similar to artificial viscosity methods [PT] in gas dynamics in that the success
of the method depends on whether the interface development is independent of e for some
range (0,e0).

The boundary conditions imposed on [(1.6'), (1.7')] are the same as the sharp interface
problem for u, with compatible conditions for (p. In particular, if one imposes Dirichlet
conditions u = UQ± then the corresponding values of <p are the roots of

l(<P±-<P*±) + ^rua± = 0 (1.8)
Z OCLQ

where the plus and minus denote the liquid and solid portions of the boundary, respectively.
In this paper we discuss the numerical study of the phase field equations with the aim of

demonstrating that single system of equations can be used to compute a broad spectrum
of phenomena which axe generally associated with the sharp interface problems defined
above. The advantages of the phase field model include the following. (A) The variety of
phenomena ranging from motion by mean curvature to stable anisotropic cyrstal growth
to single-needle dendrites are all obtained by simply varying parameters. (B) The system
of equations has smooth solutions and does not involve explicit conditions on the interface.
Hence, the interface is simply the level set tp = 0 and interface tracking is not required.
(C) All of the physical parameters are clearly identified so that the system can be used
to obtain quantitatively reliable numbers. (D) Computations involving self-interactions of
the interface do not pose difficulties for the phase field model.

To illustrate how intersections create problems, we consider the following example.
Two solid spheres with a small space between them are surrounded by the liquid which
is undercooled so that the spheres grow slowly. At some point the spheres touch and
begin to solidify together. If one models this situation using [l.l)-(1.3)j then there is
the appearance of a mathematical singularity due to (1.3) when the spheres touch. This
is a mathematical artifact, however, as the equation (1.3) is not a physically complete
description of the interfaces in this complex situation , since condition (1.3) has not been
defined when the classical normal is not defined. On the other hand, the phase field
equations axe guaranteed to have a smooth solution (^, T) if the initial and boundary
conditions axe sufficiently smooth. Thus, the phase field model naturally describes the
evolution of intersecting interfaces, such as this example, as it is based on a free energy
description of the phases rather than a macroscopic derivation for a particular (smooth)
geometry. The situation may be summarized by stating that the sharp interface problems
such as [(1.1)-(1.3)] or (1.4) are a macroscopic approximation for simple geometries, so that
a discrepancy between these models and the phase field is generally resolved by noting that
the sharp interface model is not a correct approximation for the physical problem when
the conditions for their derivation axe no longer valid.

The numerical study of equations [(1.6), (1.7)] must confront the issue that the true
physical size of c (which is of the order of the width of the interface) is about 10""8 cm



while the overall domain of interest may vary between 10"""1 cm for dendritic growth and
102 cm for casting of metals. Since the grid spacing cannot be significantly smaller than e
without large errors [CSl,2], a simple application of the phase field equations with physical
parameters would imply a grid of at least 107 x 107 for dendritic growth and 1010 x 1010

for casting for example. This grid size is prohibitive for practical computations. With this
motivation [CSl,2] studied the ansatz that e can be made orders of magnitude larger (i.e.
the interface can be spread) within the limitations (a) and (b) below, without significant
error, provided that this stretching is done within the proper scaling limits [Cal,2] so that
the crucial quantities such as the surface tension are not altered even by a small amount.
The two key restrictions are that: (a) e must be smaller than the radius of curvature; (b) e
cannot be large enough to destroy the double-well nature of the potential \(v~ V?3)± f JZU-
The restriction (b) is easily remedied with a modification such as that introduced in [CC]
where u is multiplied by a factor (1 — <̂ >2)2 or a similar function. This has the effect of
trivializing the role of temperature outside of the interfacial region where it is usually very
small. On the other hand restriction (a) is fundamental and is intrinsic to the physical
problem. In particular, independent of the specific method, one does not expect to resolve
an interface with a radius of curvature, R, by means of a mesh spacing, Ax, which is
greater than R. Within this natural limitation, [CS1,2] showed that quantitatively reliable
calculations could be performed using the equations [(1.6)-(1.7)].

In particular, [CSl,2] studied the one-dimensional and radially-symmetric equations
corresponding to [(1.6), (1.7)], and compared the computations with the exact solutions for
the limiting sharp interface problem and examined them through self-consistency. Subject
to the radius of curvature limitation, it was established that the interface could be stretched
by orders of magnitude without significant loss of accuracy, even in physically delicate
situations. On the other hand, even a 10% change in surface tension resulted in dramatic
changes in the evolution of the interface.

In the current paper, our primary aim is to show that in two-dimensions a range of sharp
interface problems with distinct patterns can be computed using the phase field equations.
A secondary objective is to verify that the interface can be stretched with quantitative ac-
curacy when the computations are truly higher dimensional (instead of radially symmetric
equations). In the higher dimensional case, the issue of interface stability is also relevant
so that enlarging e is predicated on the expectation that it does not significantly alter
stability properties. We confirm this in both the planar and spherical cases, and, again
use self-consistency and comparison with exact solutions.

We begin by considering planar travelling waves for the phase field equations within
the modified Stefan limit. Since the velocity of the travelling waves for the sharp interface
problem is known [CCh] from the analytic solution, we compare our computations with the
exact results. The travelling wave is then perturbed with a sine wave so that the stability
properties can be examined in the context of the sharp interface problem. We find that
a typical unstable mode in the sharp interface problem is also unstable in the phase field
equations.

In Section 3 we consider the problem of the critical radius, which is an unstable equilib-
rium in solidification [Ch] and obtain quantitative agreement with the analytical results.
Anisotropic surface tension is then considered as we observe the change in interface shape



as a function of both equilibrium and dynamical anisotropy. In equilibrium, these results
can be compared with well established results such as the WulfF construction approach
[Wu,Ta,CH].

In Sections 4-6 we demonstrate that a broad spectrum of sharp interface problems can
be approximated by the phase field model in the distinguished scaling limits as indicated in
[Cal,2]. Section 4 features the limit of motion by mean curvature in which the interface is
often characterized by reduction of curvature by becoming more circular, and then shrink-
ing until extinction. The extinction time from a circle is readily calculated analytically
so that quantitative agreement of the numerical computations is verified along with the
qualitative.

In Section 5 we consider solidification in the case of the single needle crystal. The
computations result in a single needle which moves at essentially constant velocity. Fur-
thermore, this velocity is independent of the initial conditions. This is consistent with the
known experimental [GS,SG] and theoretical [BP,L,KKL] results.

Finally, in Section 6, we consider solidification tinder conditions which favor more stable
growth, so that the faceted crystal growth is observed in the anisotropic situation. It is
noteworthy that a completely smooth set of equations with smooth initial data render
faceted shapes, e.g., cubic. The results obtained are consistent with those obtained from
the classical WulfF construction methods.

Throughout this study we use finite difference methods ([CL], [CS2]) with a fixed grid in
order to isolate the issues that are of specific interest. In principle, a combination of phase
field methods and adaptive grids with finite elements should provide similar accuracy at a
lower cost.

Some of the other numerical studies of solidification include [LF,SS,K,RT].

2. Plane fronts, stability and the emergence of single needle dendrites. We
study first the travelling wave solutions for the phase field equations [(1.6), (1.7)], the
existence of which was established in [CN]. Next, we perturb the planar fronts in order to
examine the stability properties of the interface (for which there are no analytical results).
In particular, we present the growth of needle type crystals from perturbations. These
computations bridge the gap between the initial Mullins-Sekerka instability [MS] and the
steady-state dendrites [PB] which evolve from them.

We consider the (1.6'), (1.7') in the distinguished limit of the surface tension and kinetics
model (1.1') — (1-3'), i.e. e approaches zero with all other variables fixed. For the sharp
interface problem, one can verify the existence [CCh], [DHOX] of the following travelling
wave solutions with velocity v* and u(t, oc) = ucoo\:

* > . « ( 2 1 )

(2.2)

{
"cool + 1 X <V t



In order to ensure the positivity of the velocity t;*, one must assume

"cool + K 0. (2.3)

Note that the velocity v* and the temperature at the interface ucooi +1 (and in fact for all
x in the solid region, x < v*t) are both determined by the temperature at oo, i.e. ucooi-
Also, the latent heat is just unity for our temperature scale.

In order to state the analogous problem for the phase field equations (1.6'), (1.7') one
must impose conditions on (̂  as well as ix. A natural set of conditions [CN] is

<^(-oo) = ^ 9(00) = tple (2.4)

1I(-OO) = UCool + 1 U(OO) = tZcool (2.5)

in terms of the moving coordinate z := x — vt where v is to be determined. Here, the
values ^±00 must satisfy the compatibility condition (1.8).

In terms of the moving coordinates, the phase field equations have the form

fV-r = *e2vvz + ~(<p - 93) + j^u = 0 (2.6)

DuZ2+v(u2 + ^<p2) = 0 (2.7)

It was proven in [CN] that there exist a unique solution of [(2.6), (2.7)] subject to (2.4),
(2.5) for small €, and the velocity t; (which depends on c) approaches v* given by (2.2).
The far-field temperature ucooi not only determines the velocity, but the other boundary
conditions in (2.4) - (2.5) as well [CN]. In the limit of c —+ 0, the temperature u in (2.6),
(2.7) converges to the temperature (2.1) of the sharp interface model uniformly with respect
to the distance measure given by the moving coordinate, z. Other analyses of travelling
waves for phase field equations in other scaling limits have been performed in [Wi], [BS],
[LBT].

An important question which is not resolved by the theoretical results is the rate at which
the velocity v(e) converges to u* as e approaches zero. Stated differently, the physically
realistic value of e is on the order of Angstroms, whereas in practical computations, one
would need to make e larger by orders of magnitude.

Hence our first goal is to determine if the computation of plane waves are still reliable
in the above situation. If so, by taking values of e which are small but still much larger
than the true physical value, the front velocities and stability properties should not differ
significantly from the velocity of the sharp interface model.

In our experiments we set the parameters to be D = 1.0, a = 1.0, d0 = 0.01 and
Uoo = —1.05, which yield a theoretical velocity v* = 5.0. We then examined the nature of
the convergence to the exact solution of the sharp interface model, by halving e as shown
in Table 1.

We perform the same computation with each value of c, and examine the relative error
of the interface.



z( theoretical) — x( experiment al)
z(theoretical)

at a characteristic point (t = 0.0051). Note that while t is cut in half between experiments
1 and 2, the relative error in the interface position is reduced to one-fourth. Similarly, the
relative error in velocity is reduced from 0.543 for e = 0.00495 to 0.093 for e = 0.00247. Be-
tween experiments 2 and 3 the relative error in the interface is similarly reduced. Since the
approximations used in determining velocity are less accurate than those of the interface,
there appears to be a finite limit to the relative error in velocity.

TABLE 1: RELATIVE ERROR WITH DIFFERENT VALUES OF e

# 1
# 2
# 3

€

0.00495
0.00247
0.00124

Relative Error
In Interface
at t = 0.0051

0.162
0.048
0.015

Relative Error
In Velocity
at t = 0.0051

0.543
0.093
0.081

Maximum Relative
Error In Velocity

0.911
0.353
0.153

In an earlier work [CSl,2], we studied plane fronts in the distinguished limit of the
classical Stefan model (there are no travelling waves in this case), using a one-dimensional
formulation. The significant difference between one and two-dimensional computations
necessitate the testing of plane fronts and travelling waves in the actual two spatial di-
mensions. In our 2d experiments, we reproduced the exact classical Stefan results with a
relative error of 0.0008 with 200 mesh points and c = Ax. The two sets of computations
(Id and 2d) agreed to the first 12 digits, thereby confirming the absence of extraneous grid
effects in 2d.

Hence, our basic conclusions for the Id travelling waves [CSl,2] in the surface tension
and kinetics limit remain valid within the 2d context. The overall <̂> profile is essentially
identical with the Id calculations. The boundary conditions (p± are determined by (2.4)
in correspondence with (1.8). The (̂ -level curves are all parallel to the interface and <p
is approximately given by the function tanh(£YT^) as indicated by the theoretical results
[CN]. The transition layer is thus O(e) as in the Id case. More specifically, if we take
ip = ±.9 as the cutoff in the transition layer then the transition layer has a width 6e; for
cutoff 'sp = ±.99 it is lOe. Of course, we know from the theoretical results that the order c
correction to y is crucial in the selection of the interface velocity, so that a correct interface
velocity is confirmation of the order e <p profile.

It is also noteworthy that the numerical error does not cause shape instability of the
planar front, unlike the perturbation discussed below. This is consistent with the phase
field theory since the stability properties of the [(1.6), (1.7)] are the same as those of [(1.1)
- (1.3)] to leading order [J] and the latter can be expected to be stable for perturbations
with wavelengths which axe on the size of the mesh used. The precise conditions axe given
in [CCh] and [J].



Next, we consider a planar wave whose interface is perturbed by a sinusoidal function,
so that the interface location is given by

x(y) = a + b cos my

The parameters and boundary conditions, remain the same as in experiment 1 with the
initial temperature set tx^ + 1 in the solid and exponential decay to the boundary in the
x-direction.

In Figure 2.1 we show snapshots of the time evolution of the interface at t = 0.0,
0.00367, 0.00826, 0.01286, 0.01745, 0.022041, 0.03122. In this experiment m = l,a = 0.21
and 6 = 0.1485. It can be clearly observed how the initial perturbation evolves into a needle
type shape.

Hence, the development of instabilities where one expects them on physical and theo-
retical grounds, and the absence of extraneous instabilities due to numerical error indicate
the suitability of using phase field equations to study interfaces.

It was noted in [CSl,2] that there are questions of optimization in choosing e with
respect to the mesh spacing, Ax. For a fixed grid, practical constraints impose a lower
bound on Ax. For a fixed Ax, the question of the optimal choice of e is more subtle. If e is
too small compared to Ax, then the surface tension, which is proportional to J(V(^-n)2cix,
will not be calculated accurately since there will be too few grid points in the interfacial
region. This is easily illustrated with the tanh function which approximates tp, so that
surface tension is essentially proportional to J sech2(r/2e)dx. Recalling that the transition
layer is about 6-10 e, depending on the precise cutoff point, a grid spacing of about Ax = c
would result in 6-10 grid points on the interfacial region. Clearly, any fewer than 6 points
would mean that the surface tension is not accurately computed. Since surface tension is
crucial for the stability properties of the interface and this integral also has a key role in
determining the O(e) terms in the solution, this is an important constraint.

Alternatively, if e is too large then (a) it diffuses the interface so that geometries with
radii of curvatures smaller than e would not be captured, and (b) the O(e) dynamics be-
comes a more significant factor limiting the quantitative accuracy of the interface velocity,
as indicated by the asymptotic analysis.

In the two-dimensional problems we found the optimal value of the ratio e/Ax to be
0.75 < e/Ax < 1.1, as in the Id problems. This is not very surprising in view of the asymp-
totic analysis, in which the size of e is significant primarily in the direction perpendicular
to the interface.

For the remainder of this paper we will use the ratio e/Ax = 1. Performing the same
empirical optimization in some of the low symmetry examples implies a similar range for
e/Ax.

The computation in Figures 2.1, 3.1, 4.1, 5.1, 6.2, 6.3 were done using a CRAY YMP
with 200 mesh points per side. Computations performed with 400 mesh point were very
similar though much more costly. We use the same type of explicit schemes as in [CS1,2]
and similar time scales. The time step in all cases is the largest allowed by numerical
stability considerations. The numerical runs continued until complete solidification or
melting.
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3. The Critical Radius and Unstable Equilibrium. A well-known instability in
materials science is the critical radius ([Ch] p. 67) in which a solid sphere with the sum of
principal curvatures equal to AC0 is in equilibrium with its melt at temperature UQ with

u0 = -d0 /c0 (3.1)

Under suitable conditions, e.g. Dirichlet boundary conditions and, £, A""1 sufficiently
small, a perturbation of the sphere to a larger one results in complete solidification and
analogously for melting (see [CS2] for more discussion). The numerical computations
assuming spherical symmetry confirmed this unstable equilibrium and showed that a small
change in K or a produces a dramatic difference (melting to freezing or vice-versa) while a
large change in c only produces a small change in velocity.

We study this problem now in the fully two dimensional geometry (without imposing
spherical symmetry), and find that the spherical geometry is preserved. The values of
A*,£, etc. are identical to those reported in [CS2] and again there is a 12-digit agreement
between the one-dimensional and two-dimensional results for the location of the interface.
Again, this confirms the absence of artificial grid effects.

Thus, the two dimensional calculations confirm the existence of this physical instabil-
ity without causing artificial numerical instabilities nor necessitating the use of explicit
equations of motion for the interface. Furthermore, in Figure 3.1 we illustrate the results
obtained when the initial interface is the perturbed circle r = 0.3(1 + (cos80)/3). The pa-
rameters correspond to a critical radius ro = 0.01732, and as predicted by equation (1.5)
the interface evolves to a spherical shape and continues to freeze.

The introduction of anisotropy with respect to a fixed angle in the surface tension
changes (3.1) into

(3.2)

This expression for the curvature implies that the equilibrium shape is a dilation of the
Wulff region. Figure 3.2 depicts the Wulff crystal for pivalic acid. This will be discussed
in greater detail within the context of crystal growth in Section 5.

The 2d computations on the critical radius and the perturbed circle (Firgure 3.1) axe
also useful in demonstrating that grid effects do not introduce artificial anisotropy. In
particular, the grid effects would be most pronounced for the critical radius problem since
the initial configuration is borderline between melting and freezing, so that any extraneous
effects would be magnified.

4. The single-needle crystal. In Sections 4-6 we use the phase field equations to study
a spectrum of problems which involve different physical parameters and behavior. One
set of numerical experiments (see Figures 3.1. 4.1, 5.1, 6.3) are performed with identical
initial conditions in order to illustrate the wide range of applicability.

The first of these is the single-needle crystal solidification at high velocities. Anisotropy
is generally regarded to be important for this problem as both a and a vary with respect
to orientation angle, 0. A series of physical experiments [SG, GS] indicate that the role
of anisotropy is to select the direction of the growth rather than to determine the shape
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or velocity of the tip. are not as pure as [GS]. For example, the extent of anisotropy in
the surface tension is 10 times greater for pivalic acid than succinonitrile, yet the shape
and dimensionless velocity (as a function of undercooling) are essentially idential [GS.]
However, other measurements suggest that the anisotropy of these materials is closer than
that by [SG, GS]. These measurements are for samples which are not as pure as [GS]. In
an earlier work [CL] the anisotropy in o has been studied. In these numerical experiments,
we study the effects of dynamic anisotropy, which is not as well understood in terms of the
physical experiments. As a precise physical form for dynamical anisotropy has not been
established, we use a (phenomenological) function which is strongly anisotropic along the
diagonal. In particular

Q otherwise

where d is the distance to the diagonals (between £ and y axes). Note that the dynamic
anisotropy will not generally have a form such as (1.5'), which arises from the second
derivatives in the Laplacian.

In a part of the interface in which the temperature and curvature does not vary signifi-
cantly, the velocity is given by

v S - a " 1 (const) (4.2)

so that the diagonal is the preferred direction of growth. Figure 4.1 displays a time sequence
in which the initial condition is a circle which is strongly perturbed by a sine function with
values of ao = 0.1. The growth is chiefly in the preferred direction. The diagonal was
chosen as the preferred direction in order to ensure that anisotropic growth would not be
the result of grid effects. In fact, the absence of anisotropic growth when a"1 is isotropic
indicates that grid effects are not significant.

There is considerable experimental [SG, GS, DG], and theoretical evidence [BP, LKK, L]
which suggests that the velocity of the single-needle should be constant. This is confirmed
by our numerical experiments, even though only linear interpolation is used to determine
both the interface location and its velocity.

Furthermore, this velocity is found to be independent of the initial conditions which is
consistent with the experimental and theoretical results cited above. Figure 4.2 depicts
the convergence to a selected velocity from distinct initial conditions. The velocity, 44.13,
is constant to within 0.62%.

5. Faceted Crystal Growth. The geometric patterns and facets which arise from crystal
growth have posed intriguing questions for many years. A very early scheme to describe
the equilibrium interface is known as the Wulff construction [Wu], which will be described
later in this section. The propagation of facets and the development and elimination of
corners has been studied extensively in recent decades from the minimal surfaces and
related approaches [Ta].
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In such studies, the corners are explicitly part of the numerical scheme. The evolution
of faceted crystal growth poses a particularly strong challenge for a smooth set of parabolic
equations, such as the phase field" Given a smooth initial data (e.g. first frame of Fig-
ure 5.1) a material with anisotropy must eventually develop corners and facets and must
propagate along planar fronts dictated by the geometry and anisotropy.

The anisotropy in the phase field equations can involve both a(9) and a(6) where 6 is
now defined to be the angle between the normal to the interface and the z-axis, i.e.

cos 0 = ^ . 5 (5.1)

We study the anisotropy by assuming a and/or a are of the form

o{8) = <70[l + So cos M(S - Bff)\ (5.2)

M{6-9O)) (5.3)

where M is an integer (M = 4 for cubic anisotropy), 8a,&a € R+ are the amplitudes of
the anisotropies and 0a,6Q are the "preferred" angles. The latter will be defined more
precisely below.

The phase field equations we study are then (1.6'), (1.7') with d0 and a given by (1.5'),
(5.2), (5.3). In the asymptotic limit as e approaches zero, the solutions to these phase
field equations are governed to leading order by those of [(1.1'), (1.2'), (1.5), (1.5')]. Since
these dimensionless equations are related to the fully dimensional equations by simple
substitution, every parameter in our system including those involving anisotropy, e.g. £<,,
can be obtained directly from experimental data. Of course we wish to "stretch out" the
parameter e, as discussed earlier, for computational convenience.

Next, we consider the issue of preferred direction, which is similar for the phase field
and sharp interface models, in view of the remarks above. Consider the sharp interface
problem [(1.1'), (1.2'), (1.5), (1.5')] in equilibrium so that temperature is constant. Then
(1.5) (1.5') implies (for some constant C2)

C2

( 5 4 )

a{6) + a"(0) = <70[l - (M2 - \)6<, cos M{9 - 0,)] (5.5)

Hence, if we assume 6ff satisfies (M2 — 1)<5̂  < 1 then the curvature has its maximum when
6 = da. For cubic anisotropy (M = 4) with 0a := 7r/4 this means that the equilibrium
shape of the interface is such that the solid protrudes further in the diagonal directions.

This brief illustration is one implication of the Wulff construction [Wu] and can be

obtained from the Cahn-Hoffman [CH] £ vector approach or the Herring spheres approach.
Note that when a + cr" changes sign, then one has facets in the equilibrium shape as a
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consequence of missing angles or orientations. The values of 6a for two materials used in
dendritic experiments are 0.05 for pivalic acid and 0.005 for succinonitrile [GS].

The dynamical situation is more complicated even if the kinetic term ado in (1.6) is
neglected completely. On the other hand, in a limiting case in which curvature is neglected
and a ^ 0 , one can acquire a basic understanding of the effects of this kinetic term. This
analysis amounts to a comparison of velocities of planar fronts with different orientations,
so that (1.5), (1.5') imply

C2

V ~ a{8)[*{0) + *

Once again, for small Sa and £a, and 6* = $Q, the velocity is maximum at 6 = 69 = 6Q.
Hence, in the cubic case (M = A,8a = 6Q = TT/4) the growth is fastest in the diagonal
directions.

These two calculations illustrate the following expectations. An initially spherical solid
with cubic anisotropy will tend to grow fastest in the diagonal directions. If the boundary
conditions are such that equilibrium is reached (e.g. appropriate Neumann conditions)
then the interface will correspond to the WulfF shape which is shown in Figure 3.2, i.e. a
square with rounded corners. Note that while the equilibrium result (5.4) is exact, the
dynamic result (5.6) is only suggestive since the temperature will not be exactly constant
and curvature is not precisely zero. Furthermore, one has a natural expectation that the
dynamics will be less stable than equilibrium, thereby exaggerating growth in the favored
directions. Thus, it is possible that the dynamical problem will have facets for smaller
anisotropies than those required by the vanishing of the denominator of (5.6) which would
be the condition for "corners" or missing angles in equilibrium according to the WulfF
construction.

While we consider the usual case in which 6a = 6Q it is worth noting that some ma-
terials exhibit dynamical anisotropy with a different preferred direction than that of the
equilibrium.

In our numerical computations, we study a material with anisotropy given by (5.2) or
(5.3) (with ha = 0.05 or 6Q = .818 and M = 4 and 6a = TT/4 or 6Q = TT/4.). Note
that the dynamic anisotropy appears to be larger but the coefficient of 6ff is multiplied by
M2 — 1 = 15. Our value of 6a corresponds exactly to that reported by [GS] for pivalic acid.
The computations show that a material with such anisotropy will evolve into a shape with
four-fold symmetry, regardless of the initial pattern. In particular, Figure 5.1 displays 12
frames in the phase field computations [(1.6'), (1.7')] using (5.3) (i.e. with do(6) defined
by (1.5'). Similar results are obtained with (5.2). The fact that such different sources
of anisotropy [(5.2) versus (5.3)] result in very similar patterns is an important physical
conclusion which is not obvious from the form of the equations. The initial shape is the
same perturbed circle used in the formation of the single needle dendrite. By frame 3,
this interface develops some corners and facets, some of which correspond to the favored
directions discussed above, while others form as an immediate consequence of the initial
conditions. In frames 3 - 9 these latter facets axe gradually eliminated at the expense of
the dominant facets distinguished by (5.4) and (5.6). In the last few frames (i.e. 10 -
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12) these dominant planes become extended until they meet at the x — y diagonal with a
slightly smoothed out right angle. The solidification then continues without any change in
shape.

A rigorous result [So] has established that an interface moving in accordance with (1.3')
alone, with constant ti, would retain the anisotropic shape. While there are no rigorous
results for the full set of equations involved in solidification, our numerics show that this
is indeed the case for the phase field equations. Since these equations are asymptotically
governed by (1.1') - (1.3') to leading order, the same conclusion remains valid for the sharp
interface problem.

6. Motion by Mean Curvature. The problem of motion by mean curvature (see [Br]
and references contained therein) is to determine a (d — l)-dimensional surface (or curve)
Ta(t) in Q C Rd, such that the (normal) velocity, t>(*,z), at each point on the surface
satisfies

v(t,x) = -a~lK(t,x) (6.1)

where K is again the sum of principal curvatures and a"1 is a constant or a function of
orientation angle.

A closely related problem is to find that the level set

) = O} (6.2)

where <p is a solution to the single parabolic equation

2 ^ ^ - < ^ 3 ) ( 6 . 3 )

Equation (6.3), which was introduced by Cahn and Allen [CA][AC] in the context of
antiphase boundaries is a limiting case of the phase field equations. As the latent heat,
C. approaches zero while the initial and boundary conditions imposed on u axe also zero,
the phase field equations [1.6'), (1.7')] have solutions which are governed by those of (6.3)
and consequently (6.1) to leading order. Thus, the leading order asymptotics for [(1.6'),
(1.7')] is just a special case of (1.5) in which ix = 0 [Ca2]. In recent years, the connections
with materials science through the phase field equations have stimulated a resurgence of
interest in the mathematical theory of equation (6.3) and other regularizations of (6.1).
From a formal analysis it is clear that an initial interface of the form of frame 1 in Figure
6.3 will tend to approach a circle and then shrink until extinction. The time of extinction
from a cricle is easily calculated. Rigorous theorems have established these results under
general conditions [So].

Our numerical calculations consist of studying [(1.6), (1.7)] in the limit of small £, with
zero boundary and initial conditions for u and the standard conditions of <̂> described in
(2.10) so that (,?+ = +1 on the (exterior) liquid and (,?_ = —1 in the (interior) solid in
this case. In our first experiment we compared the numerical results with a theoretical
solution. We took a = l,£ = 0, zero boundary and initial conditions for u, and the initial
solid seed to be a circle of radius 0.3. The theoretical solution gives a circle with radius
r(t) = (0.09 - 2t)1/2 which has an extinction time To = 0.045.
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In Figure 6.1 we depict the computed and theoretical radius of the circle as a function
of time. There is an agreement of two or more digits up to t = 0.0345 and the accuracy
deteriorates approaching TQ. The computational extinction time is between 0.04575 and
0.0465. Figure 6.2 depicts the evolution at times

t =0.0,0.00675,0.01425,0.02175,0.02925,0.03675

0.04425,0.04565,0.0465.

The initial condition in frame 1 of Figure 6.3 is identical to those which we used for faceted
crystals and stable solidification. In frames 1 -4 the interface moves toward a circle (frame
5) with a radius which is approximately that of the perturbed circle in frame 1. The
interface acts in a way to minimize the surface tension during this phase. The surface
tension in (6.3) or (1.7) is determined to leading order by the coefficients of A<p and the
|((^-V?3) term.

The anisotropic analog of (6.1) involves replacing the constant a by a function of orien-
tation angle as discussed earlier in the single needle or faceted crystal growth cases. Note
that the anisotropy involved in the surface tension is not relevant in this limit since a
cancels in the asymptotics. In the anisotropic case the evolution of the interface is similar
except that the convergence of the interface is toward the appropriate Wulff shape rather
than the sphere.
Acknowledgements: The authors thank the Pittsburgh Supercomputing Center for com-
puting time and use of facilities.
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FIGURE CAPTIONS

Figure 2.1: Single needle crystal growth due to instability of a planar front. Initial interface
at x = 0.21 + 0.1485 cosy. Parameters are D = 1.0, a = 1.0, d0 = 0.01 and u^ = -1.05,
which yield a Stefan planar front velocity v* =5.0.

Figure 3.1: Stability of permutations in the case of unstable equilibrium at critical radius.
Initial interface at r = 0.3(1 + £cos 80). Parameters are: a = 1.0, D = 1.0, £ =
0.01, [s]E=4. , € = 0.005 and a = 0.034651 with critical radius r0 = 0.01732.

Figure 3.2: Wulff crystal for pivalic acid.

Figure 4.1: Single needle crystal growth due to anisotropic mobility (4.1) with a0 = .1.
Initial interface at r = 0.3(1 + \ cos 80). Parameters are D = 1.0, £ = 0.01, [s]E = 4, e =
0.005 and a = 0.034641.

Figure 4.2: Needle crystal tip velocity convergence to a constant independent of initial
interface. Initial interfaces at r = 0.3, r = 0.3(1 + \ cos m{8 - j ) ) and r = 0.3(1 +
\ cos m9) for n? = 4,8. Parameters are D = 1.0, t = 0.01, [s]E = 4, c = 0.005 and
a = 0.034641.

Figure 5.1: Faceted crystal growth due anisotropic mobility [a""1 = .065(1 + 0.818 cos 4(0—
— ))], is the angle between interface normal and x-axis. Initial interface at r = 0.3(1 +
i cos 80). Parameters are D = 1, t = 0.01, [s)E = 4, c = 0.005 and a = .03464.

Figure 6.1: Motion by mean curvature. Computed and theoretical interface locations for a
circular initial interface. Exact radius is r(t) = (0.09 - 2*)1/2 0 < t < 0.045. Parameters
are D = 1.0, C = 0, [s]E = 4. e = 0.005 and a = 0.866025.

Figure 6.2: Motion by mean curvature. Cyrstal evolution corresponding to the computa-
tion of Figure 6.1.

Figure 6.3: Motion by ipean curvature. Crystal evolution for initial interface r = 0.3(1 +
\ cos 80). Parameters are the same ELS in Figures 6.1 and 6.2.
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