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1 Introduction. *

The aim of this paper is to give a simple proof of local invertibility of functions v G
W^N(il,RN), where ft C RN is an open set and detVv(x) > 0 a.e. x G ft (Theorem
3.1). We show that the local inverse function w is Wltl and under suitable hypotheses
we improve regularity of w to Wlf* for some s > 1. Precisely, it is shown that v is locally
invertible almost everywhere in the sense that, for almost every x G ft there is an open
neighborhood D of x and there is a function w G Wl*l(v(D),D) such that v(D) is an
open set,

t>o u?(y) = y a.e. y£v(D), (1)

wov(x) = x a.e. x£D (2)

and
Vw(y) = ( V t ; ) - 1 ^ ) ) a.e. x G D, (3)

where (Vv)""1(u;(y)) is the inverse matrix of Vv(w(y)). Moreover, if we assume that
\2$fi$-\'detVv G I 1 (ft) for some 1 < s < +oo then as in [Sv], we prove that w G
Wh8(v{D),D). One can then deduce easily that if detVv(x) > 7 > 0 a.e. x G ft, v G
Wl'q(Q)N and q > N(N-l), then t;: D -> v(D) and w : r(£>) -» D are homeomorphisms.
(1) holds for every y € v(D), (2) holds for every x e D, w e W1^N(v(D),D) and t> is an
open mapping on ft \ L for a suitable L C RN which has zero measure (see Corollary 3.3).
In particular, we conclude that if JV = 2, t; € Wh2(Q)2 and detVv(x) > 7 > 0 a.e. x G ft
then it; G Wly2(v(D), D) and there is a set of measure zero L C RN such that t> is an open
mapping on ft \ L and we obtain a weaker version of [IS].

Conversely if v € W ^ f t ) * , for some q > JV, detVv(x) ^ 0 a.e. x G ft and if for
almost every x0 G ft v is locally almost invertible in a neighborhood of x0 in the sense of
(1) - (3), then there are open sets fti,ft2 C RN and a set of measure zero TV C RN such
that ft = fti U fti U N, detVv(x) > 0 a.e.x G fti and detVv(x) < 0 a.e. x G ft2 ( see
Corollary 3.2).

Note that a homeomorphism v G WlfOO(ft)N need not to satisfy detVv(x) ^ 0 a.e.x G
ft. Such an example is provided in [MZ] (see Remarks 3.4).

The result in this paper is in the same spirit as the work in [Ba] (1981), [CN] (1987),
[Sv] (1988) and [TQ] (1988). As far as we know, the existence and the regularity of the
local inverse function w is not an immediate consequence of these earlier results where
assumptions are placed either on the trace v|an or on |t>(ft)|. By an elementary lemma
(Lemma 3.5) and the invertibility result found in [TQ], one can obtain the existence of the
local inverse function ic; and then deduce its regularity. Due to his relaxed assumption q >
N — 1 (here we have q > N), Q. Tang used an elaborated method to obtain the existence
of an inverse w G W}£ under the condition introduced by [CN], fQ detVv(x)dx < \v{Q)\.



The proof that we present here concerning the local invertibility of v is independent
of the work by [Ba], [CN], [Sv], [TQ], and the method employed relies on basic properties
of the degree theory.

In the sequel of this paper, we fix a bounded, open set ft C R^ and we consider a
function v € Whq(Q)N. We denote by Vv the gradient of v i.e. the N x N matrix of the
partial derivatives of v and by adjVv the adjugate l of Vv.

As an application of the local invertibility property, we study the weak lower semicon-
tinuity of functional E of the form

E(u,v) =

defined on the set

Bv,q = {(u,v) € Wlj>(ft,RN) x Wh9{Cl,RN)\ detVv{x) = 1 a.e x € ft}

where 1 < p < +00, N <p< +00, J + ^f1 = * < 1. When TV = 3, Vu(ar) • (Vt;^))-1

represents the lattice of a neutral elasto-plastic change of state of a perfect cubic crystal.
u is the elastic deformation and v corresponds to the slip or plastic deformation, (for
details, see Ericksen [Er], Davini & Parry [DP], Fonseca & Parry [FP] and Dacorogna
& Fonseca [DF]). We prove that, under some convexity and growth assumptions on the
function W, E is weakly lower semicontinous on BPfq. If r > 1 and q ^ +00 we rely on
the div-curl lemma (see Tartar [Ta]) to prove that

Vue • (VtO-1 — Vu . (Vv)"1weakly in U

whenever
(ue,rc) -* (u,r) weakly in BPtq.

We notice, however, that the growth condition of W and the weak lower semicontinuity
of E on BPiQ do not always imply the existence of the minimum of E on BPiq. Indeed,
{(Vuc • (Vve)""1} being relatively compact in Lr does not imply that {(Vtxc} or {(VuJ-1}
are relatively compact in, respectively, LP^L^ (see [DF] Proposition 4.1).

The paper is organized as follows: in the second section we fix notations and recall
some definitions and well known properties related to Brouwer degree. In the third section
we prove the local invertibility property of the mappings t; € Wlf9(ft,RN),9 > N, under
the condition detVv(x) > 0 a.e. x € ft. In view of our applications, in addition we prove
that if ve -^ v weakly in Wl« q> N and detVv€(x) > 0 then, up to a subsequence, vt

and v are respectively locally invertible on open sets Dc(x) and D(x) for almost every
x 6 ft, where Dc(x) and D(x) are neighbourhoods of x, such that vc(Dc(x)) = v(D(x))
does not depend on t. The last section is devoted to the applications where we obtain the
weak lower semicontinuity for a class of functionals E on BPyq.

2we recall that if A is a N x N matrix, then adjA is a matrix such that A • adjA =



2 Preliminaries.

In the sequel we will use the following notations.
For x = (xu • • • ,xN) e R*, |x| stands for (|zi|2+- • -+\xN\2)? and |x|oo := max{ \xx|, •.. , \xN\ }.
If A C R^ \A\ denotes the Lebesgue measure of A, Ac denotes its complement, dist(x, A)
is defined by inf{|x — y\ : y 6 A } and p{x, A) is given by inf{|x — y^ : y € A }.
If ft C RN is an open set, t; 6 -L1(H)N, then Vr is the JV x N matrix of the distributional
derivatives Jjjj-v and detVv is the determinant of Vv.

We recall some properties of mappings.

Lemma 2-1 Let 0 be a bounded, open set in RN and v € {W^(Q))N such that detVv(x) >
0 a.e.x € H. Then v is a continuous mapping on it. Futhermore, if K is a compact set
and V is an open set such that K C V CC H, then there is a constant Cx depending only
on TV, such that

\v(x)-v(y)\<M*CNe(\x-y\)

for every x,y € K verifying \x — y\ < 6, where

M = J \Vv(x)\Ndx,

and

Proof. This lemma is an immediate consequence of Theorem 3.5, p 294, Proposition 3.3,
p 292 in [GR] and Theorem 4.4 p 339 in [Re] (see also [Man]). It can also be shown that,
under the above hypotheses, v is a monotonic mapping (see the definition of monotonic
mapping below).

Definition 2.2 flGR]) Let SI be a bounded, connected, open set in RN and v €
We say that v Is monotonic at the point x € ft if there is a number 0 < r(x) <
d{x,dQ)such that for almost every r € (0,r(x)) the pre-image of the intersection of the
set v(B(x,r)) with the unbounded connected component ofRN\v(dB(x,r)) is ofmeasvre
0 in J9(x,r). We say that v is a monotonic mapping in fl ifv is monotonic at every point

We make some remarks on the Brouwer degree theory. For details we refer the reader to
[Ll].



Let ft C RN be a bounded, open set and t; : ft —> RN, a continuous function. For
every p € RN \ v(#ft) the Brouwer degree <f(t;,ft,p) o/ v with respect to ft af p is a well
defined integer depending only on the boundary values of v. In particular if v G Cl{Cl)N

and p e RN \ (v(dft) U v(Zv)), we have

d(v,ft,p) = ]T signdetVv(x),
*€t/->(p)

w h e r e . , ri i f o o
< 1 S r " = l - l i f i<0

and v(Zv) denotes the image of the set {x € ft | detVv(x) = 0}.

We give some additional properties on the degree.

Proposition 2.3 flGR]J Let ft C RN be an open, bounded set, v € C°{Cl)N and let
p € RN \ v(dft). Let Cp be the connected component o/RN \v(dQ.) containing p. Then wt
have the following properties:

d(v,U,p) = d(u,il,p) ifu 6 C°(Cl)N and \u - u|TO < dist(p,v(dn)), (4)

<f(t>,ft,p) ^0=» 3x e ft such that v{x) = p, (5)

<f(V,ft,p) = d(U,ft,g) V 9 € C P , (6)

d(v,ft,p) = <i(^,ft,p) t/<^€ C°(ft)N o n ^ = uon9fi . (7)

Moreover, the degree is invariant under homotopy, i.e.

O),ft,p), (S)

for every homotopy H 6 C°(ft x [0,l])N «uc/i </iaf p ^ H(dtl,t), for every t € [0,1].
Finally, ifKcfl is a compact set and p £ v(K) then (excision property)

d(v,Q,p) = d(v,n\K,p) (9)

and t/ft = U^ftj , fti mutually disjoint open sets then (decomposition property)

ft<,p) = <f(t>,ft,p). (10)

Proof. We refer the reader to [LI].

Lemma 2.4 Let ft C RN 6c a bounded, connected, open set and v 6 W1 ̂ (ft)* such that
defVv(x) > 0 o.e. x € ft. Let f : RN —* R 6c a measurable function. Then
(i) for every measurable set E C ft, x —• fov(x) and y —• N(v,E,y) are measurable and

f o v(x)\detVv(x)\dx = JmN N(v, E, y)f(y)dy, (11)



where N(v,E,y) is the cardinality of the elements of the set {x £ E\ v(x) = y}.
(ii) If, in addition, f is a continuous, bounded function, then for every connected, open
set V CC ft such that \dV\ = 0

(Hi) If D CC ft is an open such that \dD\ = 0 and p€RN\ v(dD), then

d(v,D,p) = JDf(v(x))detVv(x)dx, (13)

where V is the connected component ofRN\v(dD) containing p and f is any nonnegative,
continuous real-valued function with compact support in V and satisfying JUN f{x)dx = 1.

Remarks 2.5 A function v : Q —> RN is said to satisfy the N-property (Lusin's property)
if

whenever £ C fi is a measurable set such that |£*| = 0 and v is said to satisfy the
TV^-property if

\v"l(A)\ = 0

whenever A C RN is a measurable set such that \A\ = 0.
a) It is known that if v £ WliN(Vt)N^ detVv(x) > 0 a.e. x £ VI then v satisfies the N and
the JV^-property (see [GR], p. 296-297).
b) Also, if v € Wli9{Ct)N with q > N then v satisfies the N-property (For details we refer
the reader to [MM]).

Proof of Lemma 2.4. We refer the reader to [GR], Theorem 1.8, p. 280, Theorem 2.6,
p. 288 or also to [Sv] for the proof of (11) and (12) in the case where D is a domain.
First we prove that (12) is still valid even if D is not connected and (13) is a by-product
of this fact. To achieve this, let us remark that by Vitali's covering theorem there are
{Di} a countable family of open balls mutually disjoint and a set N of measure zero such
that (U« A ) n AT = 0 and

Setting B = U t A, we have Ut-0A C dB. If y € RN \ (v(dB) U v(dD)), then by the
decomposition formula (10)

J2xv(Di)d(v,Di,y) = Yld(v,Di,y) = d(v,B,y). (14)

Let K = D\B. As K is a compact set and K C dDUN, if y £ v(K) then, by the excision
property of the degree (9), we obtain

d(v,D,y) = d(v,D\K,y) = d(v,B,y). (15)
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Using the fact that v has the JV-property (see Remark 2.5), D{ CC ft, \6D\ = |JV| =
\dDi\ = 0, by (12), (14) and (15) we obtain

/ / o v(x)detVv(x)dx = / / o v(x)detVv(x)dx
JD JB

fov{x)ddVv(x)dx

Since JmN f(x)dx = 1 and as the compact support of / is included V, we conclude that

o v(x)detVv(x)dx = d(v,D,p).

I

Definition 2.6 Let 17 C R^ be an open set, let v : il —+ R^ be a function and xo G fi.
1.- We say that v is completely differentiate at XQ if there is a number RQ > 0, a function
e : R —• R and a N x N matrix VV(XQ) such that

v(x0 + h) = v{x0) + Vv(xo)h + \h\e{\h\)

for every h G B(0, Ro) and lim*—ot(t) = 0. In this case we call detVv(x0) the Jacobian
ofv at XQ.

2.- We say that v is weakly differentiate at x0 if there is a set A C R and a N x N
matrix Vv(x0) such that l i m ^ ̂ ^ = 1 and

where

7*o(0 = sup{|—^ ^ Vv(xo)z\ | |z| = 1}.

In this case we call detVv(x0) the weak Jacobian ofv at x0.

Lemma 2.7 Let Q be a bounded open set in RN.
i)Ifv£ WlfN(il)N is a monotonic mapping, then v is almost everywhere in 17 completely
differentiate.
ii) Ifv£ Wl'q(£l)N

yq > Ny then v is almost everywhere in 17 completely differentiable.
Hi) Ifv £ Wlfq(fl)N,q > N — 1, then v is almost everywhere in Q weakly differentiate.

Proof. We refer the reader to [GR] Theorem 5.4, p. 175, to [Re] and to [MZ].
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3 Local invertibility in W1'9.

We first state the main result of this section (Theorem 3.1) and some of its corollaries.

Theorem 3.1 Let ft C RN be a bounded, open set and let v € WhN(Q)N be a function
such that detVv(x) > 0 a.e. x € ft. Then for almost every x0 G ft, t; is locally almost
invertible in a neighborhood of x^ in the sense that there exists r = r(x0) > 0, an open
set D = D(x0) CC ft and a function w : B(yo,r) —• /?, with j/o = t>(x0), such that

w o v(x) = x a.e. x € D

v o w(y) = y a.e. y € B(y0, r),

Vw(y) = (Vv)~l(w(y)) a.e. y € B(yo,r).

in addition, \^^\9detVv € Ll(Q) for some 1 < s < +oo then w € Wl**(B(y0,r), D).

Before proving Theorem 3.1 we list some of its consequences.

Corollary 3.2 Let ft C RN be a bounded, open set, q > N, and v e Whq(Q,)N be a
function such that detVv(x) ^ 0 a.e. x £ ft.

a) Assume that fti,ft2 C RN are two open sets and N C RN is a set of measure zero
such that ft = fti U fti U N, detVv(x) > 0 a.e. x € ftj, and detVv(x) < 0 a.e. x € fi2.
Then for almost every XQ € ft v is locally almost invertible in a neighborhood of x0 in the
sense above.

b) Conversely, if q > N, v 6 W ^ f t ) ^ and if for almost every x0 6 ft v is locally
almost invertible in a neighborhood of x0, then there are open sets ftx,ft2 C RN and a
null set N C RN such that ft = fti U ft2 U JV, detVv(x) > 0 a.e. x € fti, and
detVv(x) < 0 a.e. x € ft2-

Corollary 3.3 Let q > N, let ft CR N be a bounded, open set and let v € W ^ f t ) * be
a function such that detVv(x) = 1 a.e. x € ft. Then the inverse function w of Theorem
S.I is such that

w € Wl>?&(v(D))N.

If, in addition, q > N(N — 1) then w o v(x) = x for every x 6 2?, v o w(y) = y for every
y € B(yo,r), v is a local homeomorphism and v is an open mapping on ft \ X for some
set L C ft of zero measure. In particular, if N = 2 then N(N — 1) = N = 2 and v i* a
local homeomorphism at XQ.

We make some remarks and state some lemmas needeed for the proofs of Corollaries 3.2
and 3.3, which will appear at the end of this section.
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Remarks 3.4
1.- Recall that t; € WlJ*(Q)N is said to be a mapping of bounded distortion if |Vv(x) \N <
K(detVv(x)) for almost every x e f t and for some constant K. It is well known that ev-
ery mapping of bounded distortion v € Wl9N(Q)N is locally a homeomorphism at almost
every point x0 € ft (see [Re] Theorem 6.6, pp. 187). Moreover mappings of bounded
distortion are open mappings or constant in ft (see [Re] Theorem 6.4, pp. 184).

2.- Note that, even if v £ Cl(Cl)N is such that detVv(x) > 7 > 0 Vz G ft, we can-
not expect a global invertibility of t; without any regularity assumptions on the trace of
v. As an example consider

ft = {(*i v) € R2 : K x2 + y2 < 2}, v(x, y) = {x2 - y2,2xy).

For every (x,y) G ft we have detVv(x^y) = 4(z2 + y2) > 4 although v(x,y) = v(-x. — y)
(see also [Ba]).

3.- Under the assumptions of Theorem 3.1, we cannot expect v to be locally invert-
ible everywhere. The following example is provided in [Ba]: let TV > 3 and consider the
cylinder

ft = {x € RN : 0 < R < 1, \xN\ < 2}

where x = (xu • • •, x#), R = yjx\ H h x%^ and v = (v1? • • •, v;v) is defined by

vN(x) = [2(|xN| - 1) + (2 - \xN\)Rp]signxN, 1 < |xN | < 2,

where N <q< N(N - 1), ^ - ^ < a < £=!, ^ = a{N - 1). It is shown in [Ba] that
v € Wl'9(ft)N, detVv(x) > 1 — a > 0 almost everywhere. However, one can easily see
that

and so t; cannot be locally invertible at any point (0, • • • ,0, A) for |A| < 1.

4.- An example of a mapping t; G WlfOO(ft)2, (ft C R2) is exhibited in [Ba], with
detVv(x) = 1 a.e. x € ft, for which there is no sequence vr 6 C^ft)2 such that
vr —• v uniformly and JVr(x) > 0 a.e. x € ft. Therefore, to prove Theorem 3.1 one
cannot approximate the function t; by a sequence of smooth functions vr, expecting the
functions vr to be locally invertible.

5,- Note that for every bounded, open set ft C RN , there exist a measurable set E C ft
of non-zero measure and a homeomorphism v G WliO°(fl)N such that detVv(x) = 0 for



every x € E. The following example is provided in [MZ], Remarks 3.7. Let E C [0,1] be
a Cantor set of positive one dimensional measure 0 < 1 — a < 1 and write

f
Joo

where \Ec is the characteristic function of the complement of E in [0,1]. Then v(x) =
(vi(x), x2, • • • >xN) is such that v € W1 '0 0^)", has detVv(x) = 0 a.e. x € £ x [0,1]*"1

and v is a homeomorphism of [0,l]N onto [0,a] x [0, l]^""1.

6.- Due to the previous remark, the assumption detVv(x) ^ 0 a.e. x € ft in Corollary
3.2 is essential.

Lemma 3.5 Let ft C RN be an open set, let v € C°(il)N and x0 € ft stzc/i that v is
completely differentiate at XQ. Assume that det(Vv(xo)) ^ 0. Then there is r0 > 0 svch
that for every 0 < r < r0 tfie following assertions hold:

v(x0 + h) ^ v(xQ) for every he B(0,r)\{0}. (16)

o)). (17)

Proof, Since v is completely differentiate at x0,

r(x0 + h) = v(*0)

for A € B(0, /?o), some ilo > 0 and limt_>o e(t) = 0. Let

Since det(Vv(xo)) ^ 0 we obtain that a > 0. Using the fact that limt—o t{t) = 0, we may
find 0 < r0 < Ro such that |c(t)| < f for every |t| < r0.

Claim 1: v(x0 + h) ^ v(x0) for every /i 6 B(0,ro) such that h ^ 0.
Indeed, if 0 < |A| < r0 then |e(|/i|)| < f and so

. „ 0
and we obtain (16).

Claim 2: d(v,B(xo,r)yv(xo)) = sign(detVv(x0)) for every 0 < r < r0.
Let us first notice that from (16), d(v, J5(0,r),i;(zo)) is well defined for every 0 < r < r0.
Fix 0 < r < r0 and set

u(x0 + /i) = v(x0) + Vv(xo)h, h 6 B(0, r).

10



The function u is a linear mapping defined on J3(xo,r). Since det(Vv(x0)) ^ 0 we
know that u is a one-to-one mapping and so u(x0) ^ u(x) for every x G dB(xo,r) i.e.
v(x0) ^ u(x) for every x G 0J3(xo,r). Therefore d(u,B(xo,r),v(xo)) is well defined and
d(u,B(xo,r),v(xo)) = sign(det(Vv(x0))). The application H defined by

+ (l-t)u(x) xGB(x o , r ) , <G[O,1]

is a homotopy between t; and u. Moreover, for every x G dB(xo,r) we have

,<) - v(xo)\ = r { |Vt ; (xo )£^ + t€{lx "" *o | ) l } ~ T > °
|X X 0 | I

Therefore v{x0) £ H(dB(xo,r),t) for every t G [0,1] and <*(#(., t),£(xo,r),v(xo)) is w e l 1

defined. By (8) we obtain that d(i/(-,t),i?(xo,r),t;(xo)) is independent of i, hence, taking
t = 0, t = 1 we obtain

and (17) is proved. I

Remark 3.6 The relation between complete differentiability and topological degree was
first observed by Reshetnyak ([Re]).

Lemma 3.7 Let Cl CHN be an open set, let v G WhN(il)N be such that detVv{x) > 0
a.e. x G ft. Then for every Xo G ft such that v is completely differentiable at x0 and
detVv(xo) > 0 there is RQ = JRO(XO) such that for every 0 < R < Ro the following holds:

N(v,B(xo,R),y)) = 1 for almost every y G CR, (18)

d(v,B(xo,R),y) = 1 for every y E CR, (19)

d(v,B,y) = 1 for every y G v{B)\v(dB), (20)

for every non empty, open set B C V~X(CR) fl B(xo,R) such that\dB\ = 0,

where CR is the connected component ofRN \v(dB(xo,R)) containing y0 := v(x0) and
N(v,E,y) is the cardinality of the set {x G E\ v{x) = y}.

Proof. By lemmas 2.2 and 2.7, t; is continuous and monotonic on ft and is completely
differentiable at almost every point x G ft. Fix x0 G ft such that t; is completely differen-
tiable at xo and detVv(xo) > 0.

Proof of (19). By lemma 3.5 there is Ro > 0 such that B{x0, RQ) CC ft and d(v, B(zo<R), y0)
1 for every 0 < R < RQ and (19) follows from (6).

Proof of (18). Using the fact that detVv(x) > 0 a.e. x G ft, (11), (12) and (19) yield (18).

11



Proof of (20). As t; satisfies the N-property (see Remark 2.5) \v(dB(x0, Ro))\ = 0 and
|t>(#B)| = 0. Since B is a non empty open set, by (11) we have that \v{B)\ ^ 0 and
so \v(B) \ v(dB)\ ± 0. Let y e v(B) \ v(dB) and C be the connected component of
R^ \ v(dB) containing y. As \v(dB(xo^Ro))\ = 0 and since d(v, J5, •) is a constant on C,
we may assume without loss of generality that y £ v(dB(xOyRo)). Let pt € C°°(RN) be
such that

0 < Pi(y), Vy 6 RN, V£>0

j) (21)

supppt C B(0, e), Vc> 0

JuNP<(y)dy = l Ve>0.

Since y G v(B) there is x € B such that y = v(x). By (6) we have

- y)detVv(z)dz = d(v,B,y) (22)

and using the continuity of v at x, we deduce that for every c > 0 there is 6 > 0 such that
\v(z) - y\ < | for every z € J3(z,£). Recalling that deiVv(z) > 0 a.e. z € B{x,6). by
(21) and (22) we obtain

d(»,fl,y)>0. (23)

Finally as the degree d(v, -,y) is a non decreasing function of the set, using (19) and the
fact that B C V-1(CR) 0 B(x0, R) we obtain

d{v,B,y) < d{v,B(xo,R),y) = 1 (24)

which together with (23) and the fact that the degree is an integer number, yields (20). I

Lemma 3.8 Let ft, v, Ro andxo be as in Lemma S.I, (18), (19). Let CR^ be the conneded
component ofRN \v(dB(xOyRo)) containing y0 := v(xQ). Then for every r > 0 such that
B(yo,r) CC CR*, ifO := v-l(B(yo,r)) nB(xo,Ro) CC B(xo,Ro) then

v(O) = £(yo,r), v(dO) C dv(O) = dB{yo,r). (25)

Proof. It is clear that v(O) C £(y0,r). Conversely, if y € B(y0,r), by (19) d(v, B(x0, Ro),y)
1 and so by (5) there exists x € B(XO,RQ) such that y = v(x), implying y € v(O). Let
x 6 dO and let {an} C O, {bn} C -B(x0, Ro) \ O be such that

lim an = lim bn = x.
n-*+oo n-*+oo

We have v(an) € v(O) = v{v"l(B(y0,r))) = B(yo,r) and v(bn) <£ v{O) = B(j/0,r). Using
the contintiity of t; at s, we have

v(a:) = lim v(an) = lim v(6n)

and this gives x € dv(O). I
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Lemma 3.9 Let v € Wl^{il)N, detVv(x) > 0 a.e. x € ft and let x0 e D be such that
v(x) ^ v(x0) for every x € B(xo,Ro) \ {*(>}• LetO < R < Ro and let C be an open set
containingy0 = v(x0). Then there isr > 0 such thatv"l(B(y0,r))nB(x0,R) CC B{xo,R).

Proof. Define

d{6) = supflx - xo| : x € B{xo,R), \v(x) - v(xo)| < 6}.

Since v(x) ^ v(x0) for every x € J?(x0, ̂ Xjxo} and v is uniformly continuous on £(z0 , R)
we have

Take now r > 0 such that d(r) < j . We have

—»1 / Ty / m~W ^\ r^/ r%\ —̂ n( -_ \ s~ r~ f / / rr- E^

I

Proof of Theorem 3.1 Let ft' be the set of points x0 € ft such that v is completly diffei-
entiable at x0 and detVv(x0) > 0. By Lemmas 2.7 and Lemma 2.2 we obtain |ft \ ft'| = 0.
In the sequel, we fix x0 € ft', we set y0 = v(xo) and show that t; is locally invertible at
xo. By Lemma 3.5 and Lemma 3.7 there is Ro > 0 such that B(x0, Ro) CC ft,

7V(i;,J5(xo,i2o),y) = 1 a.e. y € CRQ, (26)

where Cj^ is the connected component of RN \ v(dB(x0, Ro)) containing y0, with
N(v, J?(XQ, Ro),yo) = 1- By Lemma 3.9 we deduce that there is r > 0 such that

\ (27)

and
(28)

Setting D = v-1(^(yo,r))nJ5(xo,/io), by (27) and (28) we have D C tT^
and by Lemma 3.8

v(D) = B(yo,r), V(dD) C dv(I>) = dB(yOlr). (29)

By the JV^-property of v (see Remark 2.5 and (29) ), we have \dD\ = 0 which together
with (20) yields

d(v,D,y) = l Vyev(D)\v(dD). (30)

Using the definition of D, the fact that D C B(xOyRo), (26) and (28), we obtain

I>,y) = l a.e. yEv{D). (31)

13



Let N := {y € v(D) = B(yo,r)\ d{y,D>y) ^ 1} and define the candidate for local inverse
function, u>, by

w(y) = x if y 6 v(Z>) \ TV, and v(x) = y,x 6 D (32)

u>(y) = x, if y € TV, »(*) = y (33)

x £ D being chosen by the axiom of choice.

Claiml: w € ^
We have w(y) € /? C ft for every y € v(Z>) and so w is uniformly bounded in v(D). To
prove that w is Lebesgue measurable, fix a € R and show that the set

A:={y£v(D): Wi(y) > a}

is measurable. We obtain A = A\ U A^ where

Ax := {y e v(D) \ N : Wi(y)>a},

A2:={y£N: Wi(y)>a}.

Since \A2\ = 0 we deduce that A2 is measurable. Using the fact that the restriction of v
to r~1(t;(£)) \ N) is one-to-one, one can see that

Ai ={v(x): xev~l(v(D)\N), xt > a}

= (v(D) \N)D (ut=ov{* € B{xo,Ro),a + n < xt < a + n + 1}).

Using the fact that for every n € N, {x G B(xo,i2o), a + n < xt < a + n + 1} is a
compact set, v is a continuous function and v(D) \ N is measurable we obtain that A\ is
measurable and we conclude that w 6 L°°{B{yo^r))N.

Claim 2:

v o w(y) = y for every y € v(-D) = #(y0 , r), (34)
u; o r(x) = x for every x 6 D \ v'1(N). (35)

This follows immediatly from (32) and (33). One notice that, due to (30) and Remark
2.5, \v-l(N)\ = 0.

Claim 3: / o w is measurable for every / : D —> R measurable.
Knowing that every Lebesgue measurable set is a union of a Borel measurable set and a
set of measure zero, to show that / o w is measurable, by claim 1 it suffices to show that
w"l(R) is measurable for every R C D so that \R\ = 0. Let R be a subset of D such that
\R\ = 0. We have by (34)

w~\R) C v(
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and since \R\ = 0, by the N-property of v, we obtain that |«j~1(il)| = 0. Thus w 1(R) is
measurable.

Let g : v(D) = B(yo, r) —• R be defined by

\adjVv{w(y))\
detVv(w(y)) '

Claim 4: g € L^D)).
By claim 3 g is measurable. By Lemma 2.4 (11) where we set / = Xv(D) the indicator of
the set v(D), by claim 2, and (31) we obtain

/ \9(y)\dy = I \gov(x)\detVv(x)dx = [ \adjVv(x)\dx.
Jv(D) JD JD

Therefore g € L}{v(D)).

Claim 5: w € W"(v(D))N and Vtv(y) = (gj?$g})T .
To prove claim 5, we fix <t> G C™(v(D)) and set K = suppcj). We show that

I4 L
Set 6 = dist(K,dv(D)) > 0. Using the uniform continuity of v on D C £(20./lo) w e

choose c > 0 such that

\v{x) - v(x')\ < - for every x,x' e D, \x - x'\ < c. (36)

Let {vn} C C°°(D)N be such that

t>n-4t> in C ° P ) N (37)

and
vn — v in WhN(D)N.

By (37) we can assume without loss of generality that

|« - v»|oo < j for every n 6 N. (38)

By the fact that v(dD) C Bv(D) (see (29)), by (36) and (38) we have that

dist(x,dD) < c implies 4>(vn(x)) = 0

and so
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In the sequel we denote by AJ
Q the component of the j-row and the a-column of the N xN

matrix A. By (11), (31) and (35) and the fact that for every n G N, £a=i d{ad^n)i = 0
for every j = 1, • • •, N we have

m L * M * ) > |
= lim

*« Xj

<f>(v(x))dx

(adjVv(wo v(x))j

= - / V . _ . 7-Tf^<l>(
JD deiVv(wov(x)) v

(adjVv(w(y))Y

This equality together with claim 4 yields claim 5.

Claim 6: Vw £ Wh8(v(D)) if and only if \g o v\'detVv 6 Ll{v(D)) for 1 < s < +oo.
Recall that (/(y) = '^^(^(y))1 M d t h a t ^ € L 0 0^!?))^. Thus V ^ G W^'XZ))) if and
only if Vw 6 2/(i?(.D)). The result now follows from claim 5 and (11). I

Remarks 3.10 It is possible to show that if v 6 Whq(Q)N, q > N - 1, adjVv 6
L̂ T̂ (fi), <fe<Vt>(x) > 0 a.e. in fl and if v is continuous, then there is local invertibility
a.e. in ft, i.e. for a.e. x0 6 ft there exists r > 0 such that v|B(xo,r) is almost everywhere
injective with the inverse w € -Btyoc(v|v(B(*ofr))»''N) anc* ^ e r e exists a set E C v(5(x0 , r))
such that

E is an open set of t;(S(xo,r)),
\v{B{z(hr)\E\ = 0,

vou;(y) = y a.e. y G r(

iyot;(x) = x a.e. x

To see this, we recall that by Lemma 2.7 iii) v is weakly differentiate a.e. in ft and by
adapting the proof of Lemma 3.5 accordingly, it is possible to show that

d(v,B(xo,r),v(xo)) = 1
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for some r > 0. Let Co be the connected component of RN \ v(dB(xo,r)) which contains
v(x0). Then

d(V ,£(s0 ,r) ,y) = l (39)

for every y £ Co and so, if we choose 0 < r' < r such that

) C £(x o ,r) n tT l(C0)

then by (39) and since detVv > 0 a.e. we have

d(v,B(xoJ),y)<l

for every y e RN \ v(dB(xOjr')). It suffices now to use the results in [TQ], (1.3) - (1.5),
(2.26) and Theorem 3.7 (i). Note, however, that in [TQ], it is assume that adjVv 6 Lr,
r > ̂ j and if N - 1 < q < Ny then ^ > jjL-.

As it turns out, [TQ]'s results still hold for r = jf^ as remarked by [MTY] (see
Theorem 5.3 in [MTY]).

Proof of Corollary 3.2.
Proof of a) We have

v £ W^tfltf, detVv{x) > 0 a.e. x £ fla

and
t; G WhN{Sl2)

N, detVv(x) < 0 a.e. x € ft2-

It suffices to apply Theorem 3.1 to t; and to RQV in 1̂ 2, where RQ is a constant rotation
with <fe£Ro = — 1.
Proof of b) We now assume that t; € Whq(tl)N, q> N detVv(x) ^ 0 a.e. x € ft and
for almost every XQ € ft, v is locally almost injective in a neighborhood of x0 in the sense
that there is an open set D = D(x0) CC ft and there is a function w : v(D) —> D such
that

w o v(x) = x a.e. x e D. (40)

By Vitali's covering theorem there is a countable family of non-empty, open, mutually
disjoint balls {!?,, t € N} and there is a sequence of functions tu, : v(B{) —+ ft such that
Bi C ft and

wov(x) = xa.e. x € Bi. (41)

The task ahead will be to partition Bi into three subsets B},B? and Ni such that Bj.Bf
are two open sets, #,- is a set of measure zero,

detVv(x) > 0 a.e. x£B},
detVv(x) < 0 a.e. xeBf.
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Using the fact that v € W^q(Bi)N, q > Ny by Lemma 2.7 and (41) we deduce that there is
a set A([ C B{ of measure zero such that v is completely differentiable at every x G 2?t \ A^

w o v(x) = x for every x G £, \ A{ (42)

<fe<Vt;(x) ^ 0 for every x G £, \ At.

Let {C} be the countable collection of the (open) connected components of RN \ v(dBi).
By Remark 2.5 a), c) we have

\v-l(v{dBiUAi))\ = O. (43)

We claim that

Claiml d(v,Bi,v(x)) = signdetVv(x) for every x € Bt \ v~l{v(dBi U A,-)).
Fix x e Bi\v'l(v(dBiU A{)).
stepl We prove that <f(v,B(x,ro),t;(x)) = signdetVv(x) for ro small enough. Using the
fact that v is completely differentiable and detVv(x) ^ 0, by Lemma 3.5 we deduce that
there is r0 > 0 such that for every 0 < r < r0 we have

step2 We show that <f(v,B,-,t;(x)) = signdetVv(x). Indeed, setting K = J5t \ J5(x,r0), A'
is a compact set included in «Bt- and by (42) v(x) £ *>(#) because v(x) ^ v{At). B\- the
excision property of the degree (see Proposition 2.3) we obtain

d(v,Bi,v(x)) = d(v,B(x,ro),v(x)) = signdetVv(x).

Claim2 5^nde<Vt;(x) = signdetVv(x') for every x,x' € v " ^ ^ ) \ v " 1 ^ ^ , - U At)).
Assume that x,x' € r~1(C<;)\v''1(v(55tUAt)). Using claim 1 and the fact that the degree
d(V)Bi, •) is constant on each CJ\ we obtain that signdetVv(x) = signdetVv(x').

We now conclude the proof of b). Let / = {j G N\detVv(x) > 0 a.e. x € Vl(CJ)}
and J = {j € N,<fe<Vt;(x) < 0 a.e. x G V 1 ^ " ) } . Set

and
JV4 = ft \ (5? U Bf).

Then ft = B] UBfuNi and setting Qi = U.BJ, J)2 = U,B? and TV = fi \ (fij U n2). then
\N\ = 0 and ft 1,̂ 2 have the required properties. I
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Proof of Corollary 3.3: To obtain that w 6 Whf^{v{D),D) we take s = - ^ i
Theorem 3.1. If q > N{N - 1) then w € W1"

and so, by Lemma 2.2 we deduce that to is continuous. Hence v and w are homeomor-
phisms and v is an open mappings in ft' for some ft' C ft open, where (ft \ ft'| = 0.
I

4 Semicontinuity involving variation of the domain.

The variational treatment of crystals with defects leads to the study of functionals of the
type

where ft C RN is a reference domain, W is the strain energy density, u is the elas-
tic deformation and v represents the slip (rearrangement) or plastic deformation with
det(Vv(x)) = 1 a.e. x 6 ft. The underlying kinematical mode for slightly defective
crystals was introduced by Davini [Dav] and later developed by Davini and Parry [DP].
As it turns out, matrices of the form

Vu(x)(Vv{x))-1

represent lattice matrices of defect-preserving deformations (neutral deformations) and
taking the viewpoint that equlibria correspond to a variational principle, Fonseca &; Parry
[FP] studied the structure of some kind of generalized minimizers (Young measure solu-
tions) for the energy JE(-, •) ( related variational problems were also investigated in [DP]).

Using the Div-Curl Lemma it follows that if un -* u in Wl>°° w* and vn — v in
Wl>°° w* then

1 -1 in L°° w * .

Lower semicontinuity and relaxation properties of £(•,•) were adressed only under ad-
ditional material symmetry assumptions on W. Existence and regularity properties for
minimizers of !£(•,•) were obtained in [DF]. Following this work, we stress the fact that
the direct methods of the calculus of variations fail to apply to this problem, as sequential
weak lower semicontinuity of £(•,•) is not sufficient to guarantee the existence of mini-
mizers. Indeed with W(F) = \\F\\T^ it is shown in [DF] that there are no minimizers in
{(u,v) € Wl>°° x W^°°\ u{x) = x on dft, det(Vv(x)) = 1 a.e.} if 0 < r < N = 2, while
for r > N existence is obtained for smooth (u,v) ( Theorem 2.3 [DF]).
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It is clear that if {(txn, vn)} is a minimizing sequence and if, ||Vun(Vt;n)""1 ||r is bounded
in Ll then

Vun(Vt;n)"1 — L in Lr,un\d0 = uo,det(S7vn) = 1 a.e.

and so if some type of lower semicontinuity prevails, then

/ W(L)dx < liminf / W(Vun{Vvn)-
l)dx. (44)

Q JO

It would remain to show that L would still have the same structure, precisely

L = 1

where u|an = uo, det(Vv) = 1 a.e. Note that (44) is always satisfied if W is a convex
function. On the other hand, formally, as det(Vv) = 1 a.e. and setting it; = u(v'1) then
the energy becomes

which is now an energy functional involving variations of the domain. Hence, under this
new formulation, quasiconvexity seems to be more appropriate than convexity (see [AF],
[Ba] and [Da] ).
Suppose that W is a quasiconvex function, i.e.

where Q = (0,1)N, <j> € W^'°°(Q)N and let Vti^Vvn)"1 — L in U. Can we say that

/ W(L) < liminf / WfVunCVuJ-1)?
Jn Jo

As an example, consider
W(F) = \\F\\* + \det(F)\.

Although we are unable to answer this question, we prove the following result which is
the main theorem of this section.

Theorem 4.1 Let W : MNxN —• R be a quasiconvex function such that

for some constants CUC2 > 0,r > s > 1, p > 1, q > N, J + ^f- = \ ( W > 0 if
r = s = l). Ifun^u in Wl*(Sl)N, vn -^ v in W^W, and det(Vun) = 1 a.e. in Q
then

I iy(Vu(Vr)-1)<fx < liminf / W(Vun(Vvn)-*)dx.
Jo Jn

Before proving Theorem 4.1 we make some remarks.
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Remarks 4.2 1. It is dear that if it € W1'*, v € Wl« and detVv = 1 a.e. then
Vu(Vv)-1 € V.

2. If r > 1 then 5 < r is a necessary condition as the counterexample by Murat and
Tartar shows (see [BM]). Here r = s = 2 = Ar,ft = (0,l)2 , W(F) = det{F), un - u in
Hl(Sl), vn(x) = x and

/ de*Vu j£ liminf / detVun.
Jo Jo

3.The growth condition cannot be dropped even if W is polyconvex and nonegative.
Precisely if the relation between p, g, r and s does not occur, the conclusion of Theorem 4.1
may be false. Indeed, using the example by Maly ([Ma]) with q = +oo, p < TV—1, W(F) =

, N = r = 5, we may find un —* u in WliP, tz(x) = x with rn(z) = x and

/ \det(Vu)\ > liminf / \det(Vun)\.
Jo Jo

Moreover the growth condition prescribed in Theorem 4.1 is the well known growth con-
dition ensuring weak lower semicontinuity of E(u,id) in Wl>p (see [AF] and [Da]).

4. We may ask if these results can be extended to the case ^ - j - < q < N, since, due
to Muller's result ([Mu]), if we assume that DetVv = 1 a.e. then DetVv = detVv a.e. in
n.

5.Having obtained lower semicontinuity of the energy in Theorem 4.1, the question
now amounts to showing that one can find a minimizing sequence {Vun(Vi;n)""1} where
{un} is bounded in Wl* and {vn} is bounded in Wl*q. Actually, one only needs to show
that there exists a sequence {/n} C Wl'°°(fl}il) such that vnofn is bounded in Wl* and

f detVfn(x) = 1 a.e. x 6 f t

t /»(*) = i x € an.
Due to the examples provided in [DF], we know that this may not be possible since the
infimum of E may be zero, which prevents the existence of minimizing sequence bounded
in Wl* x Wl«.

As usual in variational problems for which existence of minimizers is not guaranteed (such
as variational problems for material that change phase and, here, for slightly defective
materials), rather then studying the macroscopic limit of Vun(Vz;n)~1 we focus on the
properties of the minimizing sequences.

The following may help to understand better why boundedness of {Vun(Vvn)~ l} may
not entail the boundedness of {Vun} and {Vvn}. Using Theorem 4.1 we show that we may
construct a minimizing sequence {Vu^VrJ^1} with ||Vuc||p = 0(^r), ||Vrc||9 = 0(~) .
for any a, f3 > 0.
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Consider the "perturbed" family of variational problems

H9

where u|ao = t*o, detVv = 1 a.e., ^ / n v(x)dx = 0. Using the direct method of the
Calculus of Variations, Poincare's inequality and Theorem 4.1, it follows immediatly that
there exists (uc, v€) € Wl'p x W1* such that

c(u,t;): (u,v) eW1* xWl«, detVv = 1 a.e.}.

Then, given an admissible pair (u, v)

E(uyv) = lim JEc(u,t;)

> lim sup £c(uc,t;c)
€-•0+

> lim sup E(utJvt),

Doing the same with liminfc_>o+j£(uove) ^^^ taking the infimum in (u, v) we conclude
that

i n f £ = lim E(ucyvc)

and HVue||p = O(^), HVv.lU = 0(^r).

The following two lemmas will be useful to prove Theorem 4.1.

Lemma 4.3 Let ft', ft be two open sets ofRN such that ft' CC ft, let q> N and v,vn 6
Wl'q(Q)N be such that detVv(x) = detVvn(x) = 1 a.e. x G ft. Assume that vn — v in
Whq($l)N. Then there exists a subsequence of {vn} (not relabelled) such that for almost
every x0 6 ft' there exist open sets D,Dn C ft; containing z0, there exist n0 € N, r0 =
r(x0) > 0, w : B(yo,ro) -> D,wn: B(yOjro) -4 Dn , with y0 = v(x0) such that for n>n0

vn o u?n(y) = y /or every y € B(y0, r0) and vn(I>n) = B(y0, r0)

u; o v(x) = x a.e. x 6 D and v(x0) ^ v(x) for x e D,x ^ x0

v o w(y) = y /or every y 6 B(yo,ro) and v(D) = £(y0 , r0),

Proof. Using Lemma 2.2 and the Ascoli-Arzela Theorem we obtain that, up to a sub-
sequence, vn converges to t; uniformly in ft'. By Lemmas 3.7 and 2.7 for almost every
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€ ft', there is RQ > 0 such that

JV(v,£(xo,/2o),y)) = 1 ^or a^m o s t every y €
d{v,B(xo,Ro),y) = 1 for every y € C^,

<*(v,£,y) = 1 for every y£B\v(dB),

for every non empty open set B C v"1(C«0) n jB(ar0, RQ) such that |t>(djB)| = 0,

where CR^ is the connected component of RN\v(dB(xQ,Ro)) containing y0 := v(x0). Since
t; is completely difFerentiable at x0 and detVv(xQ) ^ 0 we may assume without loss of
generality that JV(t>,£(xo,-Ro),yo)) = *• ^ix 0 < c < d(yo,v(dB(xo, RQ))) and choose
n0 € N such that |vn — r|oo < c. Set

Ae := {y G C/^ : dist(y,v{dB{xo,RQ))) > e}.

It is obvious that A± is a non-empty open set.
Claim 1 d(rn, jB(xo,/2o),y) exists and is equal to 1 for every y G At and every n > 7?0.
By Proposition 2.3 (4), together with the fact that d(v, B(x0, RQ), y) = 1 for every y G Cj^,
we have

d(t;n,£(xo,iio),y) = l (45)

for every y € Ac and every n>n0.

By Lemma 3.9 there is 0 < r0 < RQ such that

% r o ) C C A e and tT^Bdfo.ro)) n B(xo,i2o) CC B{XO,RQ)). (46)

Claim 2 We claim that
B(yo ,r o )CCC^ (47)

where Cj^ is the connected component of RN \ vn(95(xo,i2o)) containing y0.
We prove first that A e C R J V \ vn(dB(xQ^Ro)). Assume on the contrary that there is
y € A* PI vn(dB(xQ, RQ)) and choose x € 8B(XQ^RQ) such that y = vn(x). We would have
|t>n(x) — v(x)\ = |y — v(x)\ > t > \vn — t;|oo which yields a contradiction. Fix r' > r0 such
that 2?(yo,r;) C Ac. We have B(yo,r

f) is a connected set included in RN \ vn(dB(x0, RQ))
and containing y0. We deduce that B(yo,r') C C^ and J5(yo,ro) CC Cp^.

Set Z> = v-l(B(»,,rto)) n B(xo,i2o) CC ft' and Dn = v;l(B(y0,r0)) n B(XO,RQ) CC H'.
By (45), (46), (47) and using arguments similar to the ones of the proof of Theorem 3.1,
together with Corollary 3.3 we deduce that for n>n0 there is wn : B{y0, r0) —> Dn< there
is w : B(yo, ro) —• D such that
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u>n ° vn(x) = x a.e. x € Dnj

vn o wn(y) = y a.e. y € B(yo,ro),

wo v(x) = x a.e. x 6 D and v(xo) ^ v(x) for

v o tz;(y) = y a.e. y 6 B(yo,ro).

Finally by Lemma 3.8, vn(Dn) = r(Z>) = J3(yo,ro).

Remarks 4.4

1. It follows from the proof above that if the conclusion of Lemma 4.3 holds for
r = r(x0) > 0 then it holds also for 0 < r' < r. Thus, as v is continuous on D, v(x) ^ v(x0)
foi x E D and x ^ xo, we deduce that

limmax{|x —xo|, x € D,v(x) € B(yo,ro)} = 0.

5. It is possible to show that limn^+oo \DADn\ = 0. We divide the proof into two
cases.
Claim 1 limn-*+oo \D \ Dn\ = 0.
Let F€ = B(yo,ro - e) and Oc = v " 1 ^ ) fl D. We prove first that for each t fixed there
exists n0 s no(e) € N such that n > n0 implies Ot C Dn. Indeed, since {vn} converge
to t; uniformly, there exists no = ^o(̂ ) € N such that \v — un|oo ^ f for every n > ??0. If
x € Oe, we obtain

K(z) - yo| < b(^) - !fo| + b(x) - vn(x)\ < r0

and so x 6 Dn . As UCO€ = D and the sequence (O£) is non-increasing, we have

Um|Z)\O£| = 0
c * O

which, together with the fact that \D \ Dn\ < \D \ Ot\ for n > no, yields claim 1.
Claim 2 limn^+oo \Dn \ D\ = 0.
For c > 0 take no = no(c) € N such that \v - vn|oo < f for every n > n0. For n > n0, we
have

{x € B(xo,Ro) : r - | < |vn(x) - y o | < r} C {x € B(xo,-Ro) : r - c < |v(x) - yo| < r + e}

and since t; has the TV"1 property (see Remark 2.5) we obtain

|n t{x € B(xo,i2o) : r-e < \v(x)-yo\ < r + c}| = |{x € B(x0,Ro) • \v(x)-yo\ = r}\ = 0.

To conclude the proof of claim 2 it suffices to remark that for n > no we obtain

Dn \ D C {x € JB(X0, RO) : r - c < |«(x) - yo\ < r + c}.
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Lemma 4.5 Let p > 1, q > N, r > 1 be such that J + ^ = \. Assume that ft C RN

is an open, bounded set, un,u € W^(il)N, un ^ u in W^ttf, vn,v € Wl«Sl)N,
detVvn = detVv = 1 a.e. in ft and vn —̂  v in Wl*(Sl)N. Let x0 € ft, and wn, w be,
respectively the local inverse function o/vn, r, in the open neighborhoods Z)n, D of XQ, let
I/o = v(xo) and B(yo,ro) be as in Lemma 4-8 and Remark 4-4- Then the following hold:

i) unown£ Whr(B(yo,ro))
N and V(un o wn)(y) = Vun(wn(y))(Vvn(wn{y)))-1 a.e.

ii) unown-±uow in Wl'r(B(y0,ro))
N if r > 1,

tit) unown-*uow in L1(B(y0,ro))
N

and {un own} is bounded in Wlfl(B(y0,r0))
N if r = 1.

Proof. We remind that by Lemma 4.3 we have

wn,w € Wl>T&(B(yo,ro))
N, v{D) = B(yo,ro),vn(Dn) = B(j/o,ro), (48)

a.e. y e % , r 0 ) , (49)
= l a.e. y€B(yo ,ro), (50)

t/; o v(x) = x a.e. x € D, wno vn(x) = x a.e. x € J9n. (51)

First step. We prove that u o u>, un o u;n € W l ir(5(yo, ^o))N-
In fact by the change of variables formula (11), (48), (49), (50) and (51) we have

/ \uow(y)\*dy = / luou^rA^i ) ,^
•'B(vo.ro) Jv(D)

= / \u(x)\rdx < +oo.

Thus
u o w, unowne Lr(B(y0, ro))

N.

Let <f> € C^(B(yo,ro)). By (11), (48), (49), (50), (51) and using the fact that each vector
row of adjVv is divergence free, we have

36 [ dd>
dy = / u(x)J

f 36 [ dd>

f u, o w{y)—-dy = / u,-(x)— o v{x)d
B(w,ro) dy, JD 'dy.

i •

Thus

and

a.e. in

25



We have a similar result for unown.
Second step. We conclude that {un o wn} is bounded in Wl'r(B(yo,ro))

N.
Indeed

/ |uB o wn(y)\rdy = / \un(x)\rdx < f \un(x)\'dx.
o,ro) JDn JO

Since r < p and {un} is bounded in W^1>>'(fi)iV we deduce that {un o wn) is bounded in
L'(B(y(hr0))

N.
Also

/ |Vun o wn(y)\rdy = /

| n ( ) r ] [ / \ n ( ) \ ] C

for some constant C which does not depend on yo,r and n. Thus {izn o wn} is bounded in

Third step. We prove that, up to a subsequence, unown converges strongly in Ll{B{y0, r0))
touow. Let / 6 C(B(yo,ro)). By Remark 4.4 limn-,+oo \DADn\ = 0 and so

XDn(x) - • Xo(a:) a.e.x € ft.

Using the fact that un -* u in W1'p(n)N, vn —> v in W 1 ^ ^ ) ^ and assuming, without
loss of generality, that un —> ti a.e., rn —> v a.e. we obtain by (11) and the Lebesgue
Dominated Convergence Theorem that

lim / unown(y)f(y)dy = lim / un(x)f(vn(x))dx
n—+oo JB{yo,ro) n—+00 y£)n

uow(y)f(y)dy.
)

Therefore unown converges strongly to uow in measure and applying the Sobolev Imbed-
ding Theorem to the bounded sequence {un o wn} in Wltr(Sl), we conclude that, up to a
subsequence, un o wn converges strongly in Ll(B(y0,r0)) to uow.
Fourth step. Using the second and the third step we conclude that {Vun own} is bounded
in H^r(n)N

f
n — uow in Wl'r((l)N if r > 1

and
t*n ° v>n —•" t« o ty in I^ft)^ if r = 1.

We now give the proof of Theorem 4.1.
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Proof of Theorem 4.1. Without loss of generality (and, if necessary, after extracting a

subsequence of {(un,vn)}), we assume that

liminf / W(Vun(x){Vvn{x))~l)dx = lim / M^r(Vun(x)(Vi;n(x))-1)dx < +00.

Fix e > 0 and let Qc CC ft be an open set such that |ft \ ftc| < c. By Lemma 2.2 and

the Ascoli-Arzela Theorem, without loss of generality, we assume that vn converges to v

uniformly in ftc. Set

C = {x € ftc \v is completely differentiate and almost invertible at x},

A = {J9(x)|x 6 C,D(x) is an open set of fte, v(D(x)) is an open ball}

and

ft'e = UD€AD.

As in the proof of Lemma 3.9, it is easy to see that

inf {diamD(x) \ D(x) G A} = 0,
for every x G C. By Lemma 4.3 and Vitali's covering theorem (see [Fe] Theorem 2.8.17,
p. 151) there exist {xJ, j € N} C fto {-DJ, j € N} a family of mutually disjoint, open
neighborhoods of, respectively, Xj, N a set of measure zero such that,

i

and v : Dj' —> J5(yJ,W) admits an inverse tî 7 6 VVrl?^"(J5(j/J,rj),JD
j), in the sense of

Theorem 3.1, for some rj > 0 and with yJ = v(xJ). Recall that

V(uot^)(y) = VtxK(y))(Vt;K(j/))r1 a.e. y G JB(yJ',H),

tî  o i?(x) = x a.e x 6 DJ,
voxvi(y)-y a.e y€B(t/J ,H)

and Dj = t;-1(B(yj,ri))nJ5(xJ, JR '̂) for some i# > 0. Fix k G N. By Lemma 4.5 we obtain
for each j = 1, • • •, k and up to a subsequence, the existence of w3

n G Wli^(B(y\ rJ) )A

which is the inverse function of Vnl^ where D3
n = v~l(B(yJ,r3)) D B(xJ,RJ). Recall that

^ d l

^ o vn(x) = x a.e. x G

= V«nK(y))(VvnK(y)))-1 a.e.,

U n o ^ - u o t ^ in Wlfr(B(yi
yr

i))N if r > 1,
unow>n-*uoxv> in L1(B{yi

tr
i)ft

{unou^} is bounded in Wl'l(B(yi,ri))ff if r = 1,

Urn |I
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Fix
0 < 17 < min{ri : j = 1, • • • , * } .

There exists 71(17) € N such that for every n > 71(17) we obtain

max{|t>n(x) - v(x)| \ x € ft,} < 77.

Since I*' = tTl(B(y»,H)) f~l B{x>,R>), we deduce that for every n > 71

£ (̂77) := Dj n t ; ^ W , H - ,)) C DJ

and so D; n Dj; = 0 if t ^ ;. Set

We divide the rest of the proof of Theorem 4.1 into two cases.

First case We assume that 1 = r = - + ^^ and there is a constant C such that
0 < W(F) < C{\ + \F\) for every F e M^xN. Since W > 0 and
are mutually disjoint for every n € N, we have by [FM]

/ ( ^ J C ) ^ ) ) J2J

liminf
4

Letting ly go to zero, ik go to infinity and then e go to zero we have

E(uyv) < liminf E(un,vn).
n—*+oo

Second case We assume that 1 < r = i 4- ^ ^ and there are some constants C\, C2 >
0,1 < 5 < r such that - d ( l + |F|') < W(F) < C2(l + |F|r) for every F 6 MN x V .
The proof follows as in the first case, where on step (52) we use the lower semicontinuity
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results of [Da] instead of [FM]. Since {Vun(x)(Vvn)-1(x))} is weakly relatively compact
in fl, we have

W((Vuow>)(y))dy
>,T>-T,)

< £ liminf/ W((VunouPn)(y))dy
^ n-+oo JB(y>,r>-t,)

£ /

- I W(Vun{x){Vvn)-\x))dx)

iminf / WiVu^x^Vvn^ix
n—*>+cx> JDJ

1 + |Vun(a;)(Vt;n)-
1(x))|s)cfx

r^f n

< liminf

Letting TJ go to zero, k go to infinity and then t go to zero we conclude that

E(u,v) < liminf E(un,vn).
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