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1 Introduction.

The aim of this paper is to give a simple proof of local invertibility of functions v €
WIN(Q,RV), where 2 C RV is an open set and detVv(z) > 0 a.e. z € Q (Theorem
3.1). We show that the local inverse function w is W!? and under suitable hypotheses
we improve regularity of w to W+ for some s > 1. Precisely, it is shown that v is locally
invertible almost everywhere in the sense that, for almost every z € 1 there is an open
neighborhood D of z and there is a function w € W'1(v(D), D) such that v(D) is an
open set, ‘

vouw(y) =y ae. y € v(D), (1)
wov(z)=z ae. €D (2)

and
Vu(y) = (Vv) 7 (w(y)) ae. z €D, (3)

where (Vv)~!(w(y)) is the inverse matrix of Vv(w(y)). Moreover, if we assume that
|9§§—'Y—:1|‘deth € L'(Q) for some 1 < s < 400 then as in [Sv], we prove that w €
Wt*(v(D), D). One can then deduce easily that if detVuv(z) > v >0 ae. € Q,v €
Wh(Q)N and ¢ > N(N-1),thenv: D — v(D)and w : v(D) — D are homeomorphisms.
(1) holds for every y € v(D), (2) holds for every z € D, w € W¥(v(D), D) and v is an
open mapping on Q\ L for a suitable L C RN which has zero measure (see Corollary 3.3).
In particular, we conclude that if N = 2, v € W'?(Q)? and detVv(z) > v > 0 a.e. € Q
then w € W1?(v(D), D) and there is a set of measure zero L C R such that v is an open

mapping on 2 \ L and we obtain a weaker version of [IS].

Conversely if v € W (Q)N, for some ¢ > N, detVu(z) # 0 a.e. z € Q and if for
almost every zo € § v is locally almost invertible in a neighborhood of z,, in the sense of
(1) - (3), then there are open sets ;,€; C RV and a set of measure zero N C R such
that = Q; UN; UN, detVy(z) > 0 a.e.xz € ; and detVv(z) < 0 a.e. z € N, ( see
Corollary 3.2).

Note that a homeomorphism v € W1*(Q)N need not to satisfy detVu(z) # 0 a.e.x €
Q. Such an example is provided in [MZ] (see Remarks 3.4).

The result in this paper is in the same spirit as the work in [Ba] (1981), [CN] (1987),
[Sv] (1988) and [TQ] (1988). As far as we know, the existence and the regularity of the
local inverse function w is not an immediate consequence of these earlier results where
assumptions are placed either on the trace v|gq or on |v(Q2)|. By an elementary lemma
(Lemma 3.5) and the invertibility result found in [TQ], one can obtain the existence of the
local inverse function w and then deduce its regularity. Due to his relaxed assumption ¢ >
N —1 (here we have ¢ > N), Q. Tang used an elaborated method to obtain the existence
of an inverse w € W} under the condition introduced by [CN], J, detVv(z)dz < |v(9)].



The proof that we present here concerning the local invertibility of v is independent
of the work by [Ba], [CN], [Sv], [TQ], and the method employed relies on basic properties
of the degree theory.

In the sequel of this paper, we fix a bounded, open set 2 C RY and we consider a
function v € W(Q)N. We denote by Vv the gradient of v i.e. the N x N matrix of the
partial derivatives of v and by adj Vv the adjugate ! of V.

As an application of the local invertibility property, we study the weak lower semicon-
tinuity of functionals F of the form

E(u,v) =/0W(Vu(z)(Vv(:c))'l)d:z:
defined on the set
B,, = {(u,v) € W'?(Q,RY) x WH(Q,RY)| detVu(z) = 1 a.e z € 0}

where 1 <p < +00, N<p< +4oo, 1+ 822 =1 < 1. When N =3, Vu(z) - (Vo(z))™!
represents the lattice of a neutral ela.sto-plastlc change of state of a perfect cubic crystal.
u is the elastic deformation and v corresponds to the slip or plastic deformation. (for
details, see Ericksen [Er], Davini & Parry [DP], Fonseca & Parry [FP] and Dacorogna
& Fonseca [DF]). We prove that, under some convexity and growth assumptions on the
function W, E is weakly lower semicontinous on B, . If r > 1 and ¢ # +o00 we rely on
the div-curl lemma (see Tartar [Ta]) to prove that

Vu, - (Vv,)™! = Vu - (Vo) 'weakly in L’

whenever
(te, ve) — (u,v) weakly in B, ,.

We notice, however, that the growth condition of W and the weak lower semicontinuity
of E on B,, do not always imply the existence of the minimum of E on B, ,. Indeed,
{(Vu,-(Vv,)~1} being relatively compact in L' does not imply that {(Vu.} or {(Vv.)~ 1}
are relatively compact in, respectively, L?, L™ (see [DF] Proposition 4.1).

The paper is organized as follows: in the second section we fix notations and recall
some definitions and well known properties related to Brouwer degree. In the third section
we prove the local invertibility property of the mappings v € W'9(Q,RV), ¢ > N, under
the condition detVuy(z) > 0 a.e. z € Q. In view of our applications, in addition we prove
that if ve — v weakly in W% ¢ > N and detVv,(z) > 0 then, up to a subsequence, v,
and v are respectively locally invertible on open sets D.(z) and D(z) for almost every
z € 1, where D (z) and D(z) are neighbourhoods of z, such that v(D(z)) = v(D(z))
does not depend on €. The last section is devoted to the applications where we obtain the
weak lower semicontinuity for a class of functionals £ on B,,.

lwe recall that if A is a N x N matrix, then adjA is a matrix such that A - adjA = IndetA.
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2 Preliminaries.

In the sequel we will use the following notations.

For z = (z1,---,zn) € RV, |z| stands for (|, >+ - -+|zn[?)? and |z|e := max{ |z,],- - -, lzn |}
If A C RN |A| denotes the Lebesgue measure of A, A° denotes its complement, dist(z, 4)

is defined by inf{|z —y|: y € A} and p(z,A) is given by inf{|z —y|.: y € A }.

If @ C R is an open set, v € L(Q)V, then Vv is the N x N matrix of the distributional
derivatives g;—’: and detVv is the determinant of Vv.

We recall some properties of mappings.

Lemma 2.1 Let Q) be a bounded, open set in RN and v € (WEN(Q))N such that detVu(z) >
0 a.e.x € ). Then v is a continuous mapping on ). Futhermore, if K is a compact set

and V is an open set such that K C'V CC S, then there is a constant Cn depending only

on N, such that

lv(z) — v(y)| < MFCnb(|z — y))
for every z,y € K verifying |z — y| < 6, where

- N
M= /V |Vo(z)|Vdz,

2 1
1og(2)

(t) =

b

and

§ = min{2, %(dist(K, R\ V))?).

Proof. This lemma is an immediate consequence of Theorem 3.5, p 294, Proposition 3.3,
p 292 in [GR] and Theorem 4.4 p 339 in [Re] (see also [Man]). It can also be shown that,
under the above hypotheses, v is a monotonic mapping (see the definition of monotonic
mapping below).

Definition 2.2 (IGR]) Let  be a bounded, connected, open set in RN andv € WIN(Q)V.
We say that v is monotonic at the point z € Q if there is a number 0 < r(z) <
d(z,80)such that for almost every r € (0,r(z)) the pre-image of the intersection of the
set v(B(z,r)) with the unbounded connected component of RN \ v(8B(z,r)) is of measure
0 in B(z,r). We say that v is a monotonic mapping in Q1 if v is monotonic at every point
z €.

We make some remarks on the Brouwer degree theory. For details we refer the reader to

[L1].



Let @ C R" be a bounded, open set and v : & — RN, a continuous function. For
every p € RV \ v(9Q) the Brouwer degree d(v,f,p) of v with respect to Q at p is a well
defined integer depending only on the boundary values of v. In particular if v € C*(Q)
and p € RV \ (v(89) U v(Z,)), we have

d(v,Q,p)= Y signdetVu(z),
z€v=i(p)

where .
1 ift>0

signt = {—1 ift<0
and v(Z,) denotes the image of the set {z € | detVv(z) = 0}.

We give some additional properties on the degree.

Proposition 2.3 (IGR]) Let @ C RN be an open, bounded set, v € C°(Q)" and let
p € RV \ v(89). Let C, be the connected component of RV \ v(9) containing p. Then we
have the following properties:

d(v,9,p) = d(u,Q,p) ifu € COQ)N and |u — v]o < dist(p,v(09)), (
d(v,Q,p) #0= Iz €N such that v(z) = p, (5
d(v,Q,p) = d(v,9,q) V g€ C,, (
d(v,Q,p) = d(¢,9,p) if p € C°()" and ¢ = v on . (

Moreover, the degree is invariant under homotopy, i.e.
d(H(-,1),Q,p) = d(H(,0),Q,p), (8)

for every homotopy H € Co(§ x [0,1))N such that p ¢ H(89,t), for every t € [0,1].
Finally, if K C Q) is a compact set and p € v(K) then (ezcision property)

d(v,Q,p) = d(v,\ K, p) (9)
and if Q = UL Q;, Q; mutually disjoint open sets then (decomposition property)
>_d(v,,p) = d(v,Q,p). (10)

Proof. We refer the reader to [Ll].

Lemma 2.4 Let 2 C RN be a bounded, connected, open set and v € WM (Q)N such that
detVu(z) > 0 a.e. z €N Let f:RY — R be a measurable function. Then
(t) for every measurable set E C 2, z — fouv(z) and y — N(v, E,y) are measurable and

Jo I ov(@)ldetVu(z)ldz = [ N(v, E9)f )y, (11)
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where N(v, E,y) is the cardinality of the elements of the set {z € E| v(z) = y}.
(ii) If, in addition, f is a continuous, bounded function, then for every connected, open
set V CC N such that |0V| =0

./V fov(z)detVu(z)dz = ./. )d(v, V,y)f(y)dy. (12)

N\v(8V
(iii) If D CC N is an open such that |8D| =0 and p € RV \ v(8D), then

d(v,D,p) = [ f(v(a))detVo(a)dz, (13)

where V is the connected component of RY \v(0D) containing p and f is any nonnegative,
continuous real-valued function with compact support in V and satisfying fgn f(z)dz = 1.

Remarks 2.5 A function v: 2 — R" is said to satisfy the N-property (Lusin’s property)
if

[v(E)| =0
whenever E C 0 is a measurable set such that |[E| = 0 and v is said to satisfy the
N-1property if
v (4)| =0

whenever A C R” is a measurable set such that |A| = 0.

a) It is known that if v € WM (Q)V, detVu(z) > 0 a.e. z € N then v satisfies the N and
the N~1-property (see [GR], p. 296-297).

b) Also, if v € W(Q)N with ¢ > N then v satisfies the N-property (For details we refer
the reader to [MM]).

Proof of Lemma 2.4. We refer the reader to [GR], Theorem 1.8, p. 280, Theorem 2.6,
p. 288 or also to [Sv] for the proof of (11) and (12) in the case where D is a domain.

First we prove that (12) is still valid even if D is not connected and (13) is a by-product
of this fact. To achieve this, let us remark that by Vitali’s covering theorem there are
{D;} a countable family of open balls mutually disjoint and a set N of measure zero such

that (U,‘D,‘) NN =0 and
(U.'D,‘) UN=D.

Setting B = U;D;, we have U;8D; C 8B. If y € RV \ (v(8B) U v(dD)), then by the
decomposition formula (10)

ZXV(Di)d(v, Dia y) = Zd(v’ Di, y) = d(v’ Ba y) (14)

Let K = D\ B. As K is a compact set and K C dDUN, if y € v(K) then, by the excision
property of the degree (9), we obtain

d(v,D,y) =d(v,D\ K,y) = d(v, B,y). (15)
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Using the fact that v has the N-property (see Remark 2.5), D; cC Q, |0D| = |[N| =
|8D;| = 0, by (12), (14) and (15) we obtain

/D fov(z)detVy(z)dz = /B fov(z)detVu(z)dz
= E/ fov(z)detVu(z)dz

= E/(D.)\u(aD. D;, y)f(y)
= d(v, B,y)f(y)dy

v(B)\v(8B)

= d(v, D, d
(ON\(oD) ( y)f(y)dy

Since g~ f(z)dz =1 and as the compact support of f is included V, we conclude that

./D f ov(z)detVv(z)dr = d(v, D, p).

Definition 2.6 Let  C RN be an open set, let v:Q — RN be a function and z, € Q.
1.- We say that v is completely differentiable at z, if there is a number Ry > 0, a function
€:R— R and a N x N matriz Vv(z,) such that

v(z0 + b) = v(zo) + Vo(zo)h + [hle(|])
for every h € B(0, Ry) and lim;_o¢€(t) = 0. In this case we call detVv(zo) the Jacobian
of v at zo.

2.- We say that v is weakly differentiable at z, if there ts a set A C R and a N x N
matriz Vv(zo) such that lim,_,o MQM =1 and

lim inf 4, (t) = 0,

t—0,t€A
here (20 +t2) = v(zo)
T Z) — V(T
Yoo () = sUP{|=—————— — Vo(z0)z] | |2| = 1}.

In this case we call detVv(zo) the weak Jacobian of v at z,.

Lemma 2.7 Let Q be a bounded open set in RV.

i) If v e WWN(Q)N is a monotonic mapping, then v is almost everywhere in Q completely
differentiable.

i) Ifv e W(Q)N,qg > N, then v is almost everywhere in Q completely differentiable.
iii) Ifv e W(Q)N g > N — 1, then v is almost everywhere in Q weakly differentiable.

Proof. We refer the reader to [GR] Theorem 5.4, p. 175, to [Re] and to [MZ].

7



3 Local invertibility in W*"?,

We first state the main result of this section (Theorem 3.1) and some of its corollaries.

Theorem 3.1 Let ft C R" be a bounded, open set and let v € W™(Q)" be a function
such that detVv(x) > 0 a.e. x € ft. Then for almost every xo, G ft, t; is locally almost
invertible in a neighborhood of x* in the sense that there exists r = r(xg) > 0, an open
set D =D(xg) CC ft and afunction w : B(yo,r) —e /?, with jlo = t>(xg), such that

w € W(B(yo,r))"
wov(x) =x ae. X€D
vowly) =y ae Yy<€B(yr),
vwy) = (W)~'W(y)) ae y € B(yol).
If, in addition, \"\"\°detVv € L'(Q) for some 1 <_s < +00 then w € W**(B(y,r), D).

Before proving Theorem 3.1 we list some of its consequences.

Corollary 3.2 Let ft C R" be a bounded, open set, > N, and v e W%Q)" be a
function such that detVv(x) » 0 a.e. X £ ft.

a) Assume that fti,ft2 C R" are two open sets and N C R" is a set of measure zero
such that ft = fti U fti UN, detVv(x) > 0 a.e x € ftj, and detVv(x) < 0 ae x € fi,.
Then for almost every XQ € ft v is locally almost invertible in a neighborhood of Xq in the
sense above.

b) Conversdly, ifg > N, v 6 WA ft)" and if for almost every xo, 6 ft v is locally
almost invertible in a neighborhood of xo, then there are open sets ft,,ft, C RY and a
null set N C R" such that ft = fti U ft, UV, detVv(x) > 0 ae x € fti, and
detVv(x) < 0 ae x € ft2-

Corollary 3.3 Let g > N, let ft CR" be a bounded, open set and let v € WA ft)* be
a function such that detVv(x) = 1 a.e. x € ft. Then the inverse function w of Theorem
S.I issuch that
w e W>2&(v(D)".

If, in addition, g> N(N — 1) then wov(x) = x for every x 6 2?, vow(y) =y for every
y € B(yo,r), v is a local homeomorphism and v is an open mapping on ft \ X for some
set L C ft of zero measure. In particular, if N =2 then NN— 1) =N =2 andv i* a
local homeomor phism at XQ.

We make some remarks and state some lemmas needeed for the proofs of Coroallaries 3.2
and 3.3, which will appear at the end of this section.
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Remarks 3.4

1.- Recall that v € WM (Q)V is said to be a mapping of bounded distortion if |Vo(z)|N <
K (detVu(z)) for almost every z € 2 and for some constant K. It is well known that ev-
ery mapping of bounded distortion v € W!¥(Q)V is locally a homeomorphism at almost
every point zo € 2 (see [Re] Theorem 6.6, pp. 187). Moreover mappings of bounded
distortion are open mappings or constant in § (see [Re] Theorem 6.4, pp. 184).

2.- Note that, even if v € C*(Q)" is such that detVv(z) > v > 0 Vz € Q, we can-
not expect a global invertibility of v without any regularity assumptions on the trace of
v. As an example consider

Q={(z,y) €R’: 1<z’ +y* <2}, v(z,y) = (2* —y? 2zy).

For every (z,y) € 2 we have detVu(z,y) = 4(z? +y?) > 4 although v(z,y) = v(—2.—y)
(see also [Ba)).

3.- Under the assumptions of Theorem 3.1, we cannot expect v to be locally invert-
ible everywhere. The following example is provided in [Ba): let N > 3 and consider the
cylinder

Q={zeRV:0< R<1,|zn| <2}

where z = (z,,---,2zn), R = \/x} +-.--+2%_, and v = (vy,---,vN) is defined by

vi(z) =R °z;, 1=1,.--,N-1,
vn(z) = RPzn, |zn| <1,
on(z) = [2(lzn] — 1) + (2 = |zn|)RP]signzy, 1< |zn| <2,

where N < ¢ < N(N - 1), 75 —% <a< ’—Vq;l, B = a(N —1). It is shown in [Ba] that
v € WH(Q)V, detVu(z) > 1 — a > 0 almost everywhere. However, one can easily see
that

v71(0) = {(0,---,0,A): |A[ <1}

and so v cannot be locally invertible at any point (0,---,0,)) for |A| < 1.

4.- An example of a mapping v € W'*(2)?, (2 C R?) is exhibited in {Ba), with
detVv(z) = 1 ae. z € §, for which there is no sequence v, € C'(£2)? such that
v, — v uniformly and J,,(z) > 0 a.e. z € ). Therefore, to prove Theorem 3.1 one
cannot approximate the function v by a sequence of smooth functions v,, expecting the
functions v, to be locally invertible.

5.- Note that for every bounded, open set  C RV , there exist a measurable set £ C
of non-zero measure and a homeomorphism v € W1 (Q)" such that detVuv(z) = 0 for



every z € E. The following example is provided in [MZ], Remarks 3.7. Let E C [0,1] be
a Cantor set of positive one dimensional measure 0 < 1 — a < 1 and write

n() = vila, - aw) = [ xee(t)at

where xge is the characteristic function of the oorriplement of E in [0,1]. Then v(z) =
(vi(z),22,- -+, zN) is such that v € W*(Q)N has detVv(z) =0 a.e. z € E x [0,1)V-!
and v is a homeomorphism of [0,1]" onto [0, ] x [0, 1]¥-1.

6.- Due to the previous remark, the assumption detVv(z) # 0 a.e. z € Q in Corollary
3.2 is essential.

Lemma 3.5 Let @ C RN be an open set, let v € C°(Q)N and zo € Q such that v is
completely differentiable at zo. Assume that det(Vv(zo)) # 0. Then there is ro > 0 such
that for every 0 < r < rq the following assertions hold:

v(zo + h) # v(zo) for every h € B(0,r)\ {0}. (16)
d(v, B(zo,7),v(z0)) = sign(detVv(zy)). (17)
Proof. Since v is completely differentiable at z,,
v(zo + k) = v(z0) + Vu(zo)h + |hle(|R]),
for h € B(0, Ry), some Ry > 0 and lim,_¢ €(t) = 0. Let
a = inf{|Vv(zo)h|, h €RN,|h|=1}.

Since det(Vv(zo)) # 0 we obtain that a > 0. Using the fact that lim,_.¢ €(t) = 0, we may
find 0 < ro < Ry such that |e(t)| < § for every [t]| < ro.

Claim 1: v(zo + h) # v(zo) for every k € B(0,ro) such that h # 0.
Indeed, if 0 < |h| < ro then |€(|h])| < § and so

'0(30 + h) -
I

20> 1Vo(ao) il - Ie1hD] 2 § > 0

and we obtain (16).

Claim 2: d(v, B(zo,t),v(0)) = sign(detVu(zo)) for every 0 < r < ro.
Let us first notice that from (16), d(v, B(0,r),v(zo)) is well defined for every 0 < r < .
Fix 0 < r < ro and set

u(zo + k) = v(zo) + Vv(zo)h, h € B(0,r).

10



The function u is a linear mapping defined on J3(Xo,r). Since det(W(x))) ~ 0 we
know that u is a one-to-one mapping and so u(xp) ™ u(x) for every x G dB(X,r) i.e
V(Xg) N u(x) for every x G 0J3(X,,r). Therefore d(u,B(X,r),v(X,)) is wel defined and
d(u,B(Xo,r),v(x0)) = sign(det(Vv(xp))). The application H defined by

H(z,t) =tv(z) + (-)u(x) xGB(Xo,r), <G[O1]]

is a homotopy between t; and u. Moreover, for every x G dB(x,,r) we have

ra
|H(I,<) - V(XO)\ — r{|Vt,(XO)£A +HE{IXx nn 0|} = T > o |
X Xof |
Therefore v{xo) £ H(dB(X,r),t) for every t G [0,1] and <*(#(., t),E(Xo,I),V(Xo)) "ot
defined. By (8) we obtain that d(i/(-,t),i?(xo,r),t;(x0)) isindependent of i, hence, taking
t=0,t =1 weobtan

d(v, B(zo,7},v(20)) = d(u, B(%o,7), v(z0)) = stgn(det(Vv(zo)))
and (17) is proved. I

Remark 3.6 The relation between complete differentiability and topological degree was
first observed by Reshetnyak ([Re]).

Lemma 3.7 Let Cl CH" be an open set, let v G W™(il)N be such that detVw{x) > 0
ae x G ft. Then for every Xo G ft such that v is completely differentiable at x, and
detVv(xo) > 0O there is RQ = ROX0) such that for every O < R < Ro the following holds:

N(v,B(Xo,R),y)) = 1 for almost every y G Cg, (18)
d(v,B,y) = 1for every y G v{B)\v(dB), (20)

for every non empty, open set B C v~*(CR) fl B(xo,R) such that\dB\ = 0,

where CR is the connected component of R \v(dB(x.,R)) containing yo := V(Xo) and
N(v,E,y) is the cardinality of the set {x G E\ V{x) = y}.

Proof. By lemmas 2.2 and 2.7, t; is continuous and monotonic on ft and is completely
differentiable at almost every point x G ft. Fix Xo G ft such that t; is completely differen-
tiable at xo and detVv(xo) > 0.

Proof of (19). By lemma3.5 thereis Ro > 0 such that B{x,, RQ) CC ft and d(v, B(z<R), Yo) =
1 for every 0 < R< RQ and (19) follows from (6).

Proof of (18). Using thefact that detVv(x) > O ae. x G ft, (11), (12) and (19) yield (18).
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Proof of (20). As v satisfies the N-property (see Remark 2.5) |v(8B(zo, Ro))| = 0 and
[v(@B)| = 0. Since B is a non empty open set, by (11) we have that [v(B)| # 0 and
so |v(B) \ v(0B)| # 0. Let y € v(B) \ v(3B) and C be the connected component of
RN \ v(8B) containing y. As |v(8B(ze, Ro))| = 0 and since d(v, B, -) is a constant on C,
we may assume without loss of generality that y ¢ v(0B(zo, Ro)). Let p. € C®(RV) be
such that

0 < p(y), Vy €RY, Ve>0

1
5 S py), Wy € BO,3) (21)

suppp, C B(0,¢), Ve >0
/ pe(y)dy =1 Ve > 0.
RN

Since y € v(B) there is € B such that y = v(z). By (6) we have
lim | po(v(2) - y)detVe(z)dz = d(v, B,y) (22)

and using the continuity of v at z, we deduce that for every € > 0 there is 6 > 0 such that
|v(2) — y| < § for every z € B(z,$). Recalling that detVv(z) > 0 a.e. 2 € B(z,6). by
(21) and (22) we obtain

d(v,B,y) > 0. (23)

Finally as the degree d(v,-,y) is a non decreasing function of the set, using (19) and the
fact that B C v=!(Cgr) N B(zo, R) we obtain

d(v, B,y) < d(v, B(zo, R),y) =1 (24)
which together with (23) and the fact that the degree is an integer number, yields (20). il

Lemma 3.8 Let (), v, Ry and zo be as in Lemma 8.7, (18), (19). Let Cr, be the connected
component of RV \ v(8B(zo, Ro)) containing yo := v(zo). Then for every r > 0 such that
B(yo,r) CC Chy, if O := v~}(B(yo,7)) N B(zo, Ro) CC B(zo, Ro) then

v(0) = B(yo, ), v(80) C 3v(0) = 8B(yo,7)- (25)

Proof. It is clear that v(O) C B(yo,r). Conversely, ify € B(yo,r), by (19) d(v, B(z0, Ro),y) =
1 and so by (5) there exists z € B(zo, Ro) such that y = v(z), implying y € v(O). Let
z € 00 and let {a,} C O, {b,} C B(zo, Ro) \ O be such that

lim a,= lim b, ==z.
Nn—+400 N-—s+400

We have v(a,) € v(0) = v(v"'(B(yo,r))) = B(yo,r) and v(b,) € v(0) = B(yo,r). Using
the continuity of v at z, we have

o(e) = lim ofe) = lim_o(5)

and this gives = € dv(0). |
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Lemma 3.9 Let v e WWN(Q)N, detVu(z) > 0 a.e. = € ) and let 2o € D be such that
v(z) # v(zo) for every z € B(zo, Ro) \ {zo}. Let 0 < R < Ry and let C be an open set
containing yo = v(zo). Then there ist > 0 such that v=(B(yo,r))NB(zo, R) CC B(zo, R).

Proof. Define
d(6) =sup{lz —zo|: z € B(xo, R), |v(z) - v(zo)| < 6}

Since v(z) # v(zo) for every r € B(zo, R)\ {20} and v is uniformly continuous on B(zo, R)
we have

limd(6) = 0.
§—0
Take now r > 0 such that d(r) < ?. We have
R
v™!(B(y0,7)) N B(o, R) C B(zo, 3) CC B(zo, R)-
|

Proof of Theorem 3.1 Let Q' be the set of points zo € Q such that v is completly differ-
entiable at zo and detVu(zo) > 0. By Lemmas 2.7 and Lemma 2.2 we obtain |2\ Q'| = 0.
In the sequel, we fix zo € ', we set yo = v(zo) and show that v is locally invertible at
zo. By Lemma 3.5 and Lemma 3.7 there is Ry > 0 such that B(zo, Ry) CC Q,

N(v’B('th RO): y) =1ae y€ CRo’ (26)

where Cg, is the connected component of RV \ v(8B(zo, Ro)) containing yo, with
N(v, B(zo, Ro),y0) = 1. By Lemma 3.9 we deduce that there is r > 0 such that

v™Y(B(yo,r)) N B(zo, Ro) CC B(zo, Ro) (3

o
-1
N

and
B(yo,r) CC Cpg,- (28)

Setting D = v=*(B(yo,r))NB(z0, Ro), by (27) and (28) we have D C v=!(Cgr,)NB(zq, Ro)
and by Lemma 3.8

v(D) = B(yo,r), v(0D) C 0v(D) = 0B(yo,7). (29)

By the N~1-property of v (see Remark 2.5 and (29) ), we have |dD| = 0 which together
with (20) yields
d(v,D,y) =1 Vy € v(D)\ v(dD). (30)

Using the definition of D, the fact that D C B(zo, Ry), (26) and (28), we obtain
N(,D,y)=1 ae. y€uv(D). (31)
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Let N := {y € v(D) = B(yo,r)| d(v,D,y) # 1} and define the candidate for local inverse
function, w, by

w(y)=z if yev(D)\N, and v(z)=y,z€ D (32)
w(y)=z, f yeN, v(z)=y (33)
z € D being chosen by the axiom of choice.
Claiml: w € L®(B(yo,r))V.

We have w(y) € D C Q for every y € v(D) and so w is uniformly bounded in v(D). To
prove that w is Lebesgue measurable, fix a € R and show that the set

A:={yev(D): wiy) >a}
is measurable. We obtain A = A, U A, where
A :={y€ev(D)\N: w(y) > a},

Ay:={ye N: w(y) 2 a}.

Since |A;| = 0 we deduce that A, is measurable. Using the fact that the restriction of v
to v~!(v(D) \ N) is one-to-one, one can see that

A, ={v(z): z€ev ' (v(D)\N), z;>a}
=(v(D)\N)N (U::(’,v{:c € B(zo,Ro),a+n<z;<a+n+ 1})

Using the fact that for every n € N, {z € B(z0,Ro), a+n<z; < a+n+1}isa
compact set, v is a continuous function and v(D) \ N is measurable we obtain that A, is
measurable and we conclude that w € L®(B(yo,7))".

vouw(y) =y for every y € v(D) = B(yo,7), (34)
wov(z) =z for every z € D\ v }(N). (35)

This follows immediatly from (32) and (33). One notice that, due to (30) and Remark
2.5, [v"}(N)| =0.

Claim 3: f o w is measurable for every f : D — R measurable.
Knowing that every Lebesgue measurable set is a union of a Borel measurable set and a
set of measure zero, to show that f o w is measurable, by claim 1 it suffices to show that
w™!(R) is measurable for every R C D so that |[R| = 0. Let R be a subset of D such that
|R| = 0. We have by (34)

w”!(R) C v(R),
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and since |R| = 0, by the N-property of v, we obtain that [w=!(R)| = 0. Thus w=!(R) is
measurable.

Let g : v(D) = B(yo,r) — R be defined by

|adj Vv(w(y))|
) = detVo(w(y))

Claim 4: g € L'(v(D)).
By claim 3 g is measurable. By Lemma 2.4 (11) where we set f = x,(p) the indicator of
the set v(D), by claim 2, and (31) we obtain

/v(D) lg(y)ldy = /D |g o v(z)|detVy(z)dz = /D ladj Vv(z)|dz.
Therefore g € L*(v(D)).

Claim 5: w € W (v(D))¥ and Va(y) = (55757,
To prove claim 5, we fix ¢ € C§°(v(D)) and set K = suppg. We show that

o6 (adi V(@)
/.,(D)w"(y)a_y;(y)dy__/uw) detvi(uly) W

Set 6§ = dist(K,8v(D)) > 0. Using the uniform continuity of v on D C B(zo. Ro) we
choose € > 0 such that

lv(z) = v(2')| < g forevery r,z’ € D, |z —z'| <e. (36)
Let {v.} C C=(D)N be such that
v, — v in C°(D)VY (37)

and
v, = v in W"N(D)N,

By (37) we can assume without loss of generality that

v — vploo < -Z- for every n € N. (38)
By the fact that v(0D) C dv(D) (see (29)), by (36) and (38) we have that
dist(z,0D) < € implies ¢(v,(z)) =0

and so

éov, € C°(D).
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In the sequel we denote by A the component of the j-row and the a-column of the N x N

matrix A. By (11) (31) and (35) and the fact that for every n € N, TN_, %& =0
for every j =1,- N we have

Loy 05 @My = [ wa(w(e) 3 (o)) detVo(a)d
= "ETOO/ za?(vn(z))dethn(z)d:c
= "_.+°° / zaz(ad]Vv,,(z)) ¢(vﬂ(x))dx

- _ lim (adva.,(z))a¢(vn(x))dm

n—+co JD '
= —L(adva(z))iqS(v(:c))dx
djVv(w o v(z)) ’
= —./D (adZth(w . v(z)3°¢(ov(z))detVU(m)d1

J
(adjVo(w(v)))
- /.,(D) detvolu))  PWd
This equality together with claim 4 yields claim 5.

Claim 6: Vw € W'*(v(D)) if and only if |g o v|*detVv € L!(v(D)) for 1 < s < +ox.
Recall that g(y) = 58744l and that w € L*(v(D))". Thus Vw € W*(v(D)) if and

only if Vw € L*(v(D)). The result now follows from claim 5 and (11). |

Remarks 3.10 It is possible to show that if v € W(Q)N, ¢ > N — 1, adjVv €
L™= (), detVu(z) > 0 a.e. in 2 and if v is continuous, then there is local invertibility
a.e. in 2, i.e. for a.e. zo € § there exists r > 0 such that v|p(s,,) is almost everywhere
injective with the inverse w G BVioe(V]u(B(zo,r))s RY) and there exists a set E C v(B(zo,7))
such that

E is an open set of v(B(zo,r)),

lv(B(zo,7) \ E| =

w € WH(E,RY),

vouw(y) =y a.e. y € v(B(zo,1)),

wov(z) =z a.e. € B(zo,r).
To see this, we recall that by Lemma 2.7 iii) v is weakly differentiable a.e. in € and by
adapting the proof of Lemma 3.5 accordingly, it is possible to show that

d(v, B(zo,1),v(z0)) = 1
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for some r > 0. Let Cy be the connected component of RN \ v(8B(zo,r)) which contains
v(zo). Then
d(v, B(zo, ), y)=1 (39)

for every y € Cp and so, if we choose 0 < r’' < r such that
B(zo,r') C B(zo,r) Nv~(Cy)
then by (39) and since detVv > 0 a.e. we have
d(v, B(zo,r'),y) <1

for every y € RV \ v(8B(zo,r')). It suffices now to use the results in [TQ], (1.3) - (1.5),
(2.26) and Theorem 3.7 (i). Note, however, that in [TQ], it is assume that adjVv € L7,
r_>_;_’_7andifN—l<q<N,then;-ﬂ-l->-ﬁ";’—l.

As it turns out, [TQ)’s results still hold for r = 7 as remarked by [MTY] (see
Theorem 5.3 in [MTY])).

Proof of Corollary 3.2.
Proof of a) We have

ve WN(,)N, detVu(z)>0 ae. €0,

and
ve WHN(Q,)N, detVu(z) <0 ae z€Q,.

It suffices to apply Theorem 3.1 to v and to Ryv in §);, where R, is a constant rotation
with detRy = —1.
Proof of b) We now assume that v € W™ (Q)N, ¢ > N detVv(z) # 0 a.e. z € Q and
for almost every zo € €, v is locally almost injective in a neighborhood of z, in the sense
that there is an open set D = D(zo) CC § and there is a function w : v(D) — D such
that

wov(z)=z ae. z€D. (40)

By Vitali’s covering theorem there is a countable family of non-empty, open, mutually
disjoint balls {B;, ¢ € N} and there is a sequence of functions w; : v(B;) — Q such that
B,' C ) and

12\ U Bi| =0,
wov(z)=z ae. z€ B;. (41)

The task ahead will be to partition B; into three subsets B}, B? and N; such that B}, B?
are two open sets, N; is a set of measure zero,

detVv(z) > 0 a.e. z € B},
detVv(z) < 0 a.e. z € B?.
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Using the fact that v € W'9(B;)M, ¢ > N, by Lemma 2.7 and (41) we deduce that there is
a set A; C B; of measure zero such that v is completely differentiable at every z € B, \ A;,

wov(z) =z forevery z € B;\ A; (42)
detVu(z) # 0 for every z € B;\ A;.

Let {C’} be the countable collection of the (open) connected components of RV \ v(dB;).
By Remark 2.5 a), c) we have

[v=(v(8B; U A;))| = 0. (43)
We claim that
Claiml d(v, B;,v(z)) = stgn detVv(z) for every z € B; \ v™!(v(8B; U A;)).
Fix z € B; \ v"}(v(8B; U 4;)).
stepl We prove that d(v, B(z,r),v(z)) = sign detVu(z) for ro small enough. Using the

fact that v is completely differentiable and detVv(z) # 0, by Lemma 3.5 we deduce that
there is ro > 0 such that for every 0 < r < ry we have

d(v, B(z,r),v(z)) = sign detVv(z).

step2 We show that d(v, B;,v(z)) = sign detVuv(z). Indeed, setting K = B; \ B(z,7o), i
is a compact set included in B; and by (42) v(z) ¢ v(K) because v(z) & v(A;). By the
excision property of the degree (see Proposition 2.3) we obtain

d(v, B;,v(z)) = d(v, B(z,r0),v(z)) = sign detVu(z).

Claim?2 sign detVv(z) = sign detVu(z') for every z,z' € v=}(C?) \ v} (v(dB; U A;)).
Assume that z,z’ € v™2(C?)\v~!(v(8B;U A;)). Using claim 1 and the fact that the degree
d(v, B;,") is constant on each C?, we obtain that sign detVv(z) = sign detVu(z').

We now conclude the proof of b). Let I = {j € N|detVuv(z) >0 a.e. z € v™(C7)}
and J = {j € N,detVu(z) <0 a.e. z € v"}(C’)}. Set

B,-1 = Ujer v-l(Cj) N B;,
B! = Ujesv}(C?) N B;,

and

N; = B;\ (B! U B?).

Then B; = B! U B? U N; and setting ; = U;B}, Q; = U;B? and N = Q\ (2, UQ;). then
[N| = 0 and €1, have the required properties. |
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Proof of Corollary 3.3: To obtain that w € W"w’-ﬁ(v( D), D) we take s = x%= in
Theorem 3.1. If ¢ > N(N — 1) then w € W'V,

1

detVuw(y) = detVv(w(y))

>0 ae y€vD)
and so, by Lemma 2.2 we deduce that w is continuous. Hence v and w are homeomor-
phisms and v is an open mappings in ' for some §' C § open, where [\ | = 0.

4 Semicontinuity involving variation of the domain.

The variational treatment of crystals with defects leads to the study of functionals of the
type
E(u,v) = /n W (Vu(z)(Vo(z))™!)dz

where @ C RN is a reference domain, W is the strain energy density, u is the elas-
tic deformation and v represents the slip (rearrangement) or plastic deformation with
det(Vv(z)) = 1 a.e. z € Q. The underlying kinematical mode for slightly defective
crystals was introduced by Davini [Dav] and later developed by Davini and Parry [DP].
As it turns out, matrices of the form

Vu(z)(Vo(z))™

represent lattice matrices of defect-preserving deformations (neutral deformations) and
taking the viewpoint that equlibria correspond to a variational principle, Fonseca & Parry
[FP] studied the structure of some kind of generalized minimizers (Young measure solu-
tions) for the energy E(-,-) ( related variational problems were also investigated in [DP]).

Using the Div-Curl Lemma it follows that if u, — u in W' wx and v, — v in
W1 wx then
Vu,(Vug)™! = Vu(Vu)™ in L® w*.

Lower semicontinuity and relaxation properties of E(-,-) were adressed only under ad-
ditional material symmetry assumptions on W. Existence and regularity properties for
minimizers of E(-,-) were obtained in [DF]. Following this work, we stress the fact that
the direct methods of the calculus of variations fail to apply to this problem, as sequential
weak lower semicontinuity of E(-,-) is not sufficient to guarantee the existence of mini-
mizers. Indeed with W(F) = ||F||", it is shown in [DF] that there are no minimizers in
{(u,v) € Wt x W*®| u(z) =z on 89, det(Vv(z)) =1 a.e.}if 0 <r < N =2, while
for r > N existence is obtained for smooth (u,v) ( Theorem 2.3 [DF)).
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It is clear that if {(u,,v,)} is a minimizing sequence and if, || Vu,(Vv,)?||" is bounded
in L! then
Vu,(Vv,)™! = L in L', u,|en = uo,det(Vv,) =1 a.e.

and so if some type of lower semicontinuity prevails, then
/n W(L)dz < liminf /0 W (Vitn(Vva)~t)dz. (44)
It would remain to show that L would still have the same structure, precisely
L = Vu(Vv)™?

where u|sq = uo, det(Vv) = 1 a.e. Note that (44) is always satisfied if W is a convex
function. On the other hand, formally, as det(Vv) =1 a.e. and setting w = u(v™!) then
the energy becomes

Ly W (T ()

which is now an energy functional involving variations of the domain. Hence, under this
new formulation, quasiconvexity seems to be more appropriate than convexity (see [AF],

[Ba] and [Da) ).

Suppose that W is a quasiconvex function, i.e.

W(F) < ]Q W (F + V(z))dz

L
lQl
where Q = (0,1)V, ¢ € Wy °(Q)" and let Vu,(Vv,)"! — L in L’. Can we say that
< lim3 -1\9
_/‘;W(L) < hmmf‘/QW(Vu,.(Vv,,) )’

As an example, consider
W(F) =||F|* + |det(F)|.

Although we are unable to answer this question, we prove the following result which is
the main theorem of this section.

Theorem 4.1 Let W : MV¥*N R be a quasiconver function such that
—Ci(1 + ||Al*) S W(4) < C(1 + |IAll")

for some constants C,,C2 >0,r >821, p>21,¢2 N, %+'—Vq—'—l- =-} (W >0 if
r=s8=1). Ifu, = u in W?Q)N, v, = v in WH(Q)V, and det(Vv,) = 1 a.e. in O
then

/0 W(Vu(Vv)~1)dz < liminf /ﬂ W (Vun(Von)~)dz.

Before proving Theorem 4.1 we make some remarks.
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Remarks 4.2 1. It is dear that if it € W'* v € W« and detVv = 1 ae then
Vu(Vv)-' € V.

2. If r > 1 then 5 <r is anecessary condition as the counterexample by Murat and
Tartar shows (see [BM]). Herer = s = 2 = Ar/ft = (0,1)%, W(F) = det{F), u, - u in
H'(Sl), va(X) = x and

j de*Vu j£ liminf_/ detVu,.
o] Jo

3.The growth condition cannot be dropped even if W is polyconvex and nonegative.
Precisely if therelation between p, g, r and s does not occur, the conclusion of Theorem 4.1
may befalse. Indeed, using the exampleby Maly ([Ma]) with q = +o0,p < TV—L, W(F) =
detF,N =r = 5 we may find u, —* uin W"", tz(x)= x with r,(z) .= x and

{ \det(Vu)\ > liminf ./ \det(Vur)\

Moreover the growth condition prescribed in Theorem 4.1 is the well known growth con-
dition ensuring weak lower semicontinuity of E(u,id) in W>P (see [AF] and [Da)]).

4. We may ask if these results can be extended to the case "-1’- < q < N, since, due
to MOller's result ([Mu)), if we assume that DetVv = 1 ae. then DetVv = detVv a.e. in
n.

5.Having obtained lower semicontinuity of the energy in Theorem 4.1, the question
now amounts to showing that one can find a minimizing sequence {Vu,(Vi;,)"" '} where
{u,} is bounded in W* and {v,} is bounded in W'*9. Actually, one only needs to show
that there exists a sequence {/,} C W"°°(fl;il) such that v,of, is bounded in W* and

f detvf,(x) = 1 ae x6ft
t »*) = ix€an.

Due to the examples provided in [DF], we know that this may not be possible since the
infimum of E may be zero, which prevents the existence of minimizing sequence bounded

in W* x W

As usual in variational problemsfor which existence of minimizersis not guaranteed (such
as variational problems for material that change phase and, here, for dightly defective
materials), rather then studying the macroscopic limit of Vu,(Vz;,)~" we focus on the
properties of the minimizing sequences.

The following may help to understand better why boundedness of {V u,(Vv,)~'} may
not entail the boundedness of {Vu,} and {Vv,}. Using Theorem 4.1 we show that we may
congtruct a minimizing sequence {Vu~VrJr*} with [[Vucll, = O(*r), [[Vrclls = O(3).
for any a,f3> 0.
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Consider the "perturbed” family of variational problems
Efu,0) = [ W(Vu(Vo)™)dz + €™[|Vuells + || Vvl

where ulog = ug, detVv =1 a.e.,, 7 fov(z)dz = 0. Using the direct method of the
Calculus of Variations, Poincaré’s inequality and Theorem 4.1, it follows immediatly that
there exists (u,v.) € W x W9 guch that

E(ue,ve) = inf{E (u,v) : (u,v) € WP x W detVv =1 a.e.}.
Then, given an admissible pair (u,v)
E(u,v)

Jlim E.(u,v)

v

lim sup E,(u.,v)
e—0+

v

lim sup E(u,v.),
e—04
inf E.

v

Doing the same with liminf,_o4 E(u,,v.) and taking the infimum in (u,v) we conclude
that
inf £ = lim E(u,,v)
-0+

and |[Vuc|l, = 0(F), [ Vvl = 0(z5)-

The following two lemmas will be useful to prove Theorem 4.1.

Lemma 4.3 Let ', Q be two open sets of RV such that ' CC Q, let ¢ > N and v,v, €
WI(Q)N be such that detVu(z) = detVv,(z) = 1 a.e. z € Q. Assume that v, — v in
W(Q)N. Then there ezists a subsequence of {v,} (not relabelled) such that for almost
every zo € ' there ezist open sets D, D, C §) containing z,, there erist ng € N, 19 =
r(zo) > 0, w : B(yo,70) — D, wa : B(yo,r0) — Dy, with yo = v(zo) such that for n > ng

wp 0 v,(z) = a.e. € D,,

va 0 wa(y) =y for every y € B(yo,m0) and va(Dn) = B(yo,ro)
wov(z)=z ae. €D and v(zo) #v(z) for z € D,z # z
vouw(y) =y for every y € B(yo,70) and v(D) = B(yo,70),
Wy, w € WirFST,

Proof. Using Lemma 2.2 and the Ascoli-Arzela Theorem we obtain that, up to a sub-
sequence, v, converges to v uniformly in {¥'. By Lemmas 3.7 and 2.7 for almost every
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Zo € ¥, there is Ry > 0 such that

B(zo, Ro) CC &,

N(v, B(zo, Ro),y)) =1 for almost every y € Ch,,

d(v,B(zo, Ro),y) =1 for every y € Chr,,

d(v,B,y) = 1 for every y € B\ v(0B),

for every non empty open set B C v~}(Cg,) N B(zo, Ro) such that |v(dB)| = 0,

where CR, is the connected component of RV \ v(8B(zo, Ro)) containing yo := v(zo). Since
v is completely differentiable at zo and detVuv(zo) # 0 we may assume without loss of
generality that N(v, B(ze, Ro),%0)) = 1. Fix 0 < € < d(yo,v(0B(z0, Ro))) and choose
no € N such that |v, — v]e < €. Set

A :={y € Cr, : dist(y,v(B(zo, Ro))) > ¢}.

It is obvious that A, is a non-empty open set.

Claim 1 d(vy,, B(zo, Ro),y) exists and is equal to 1 for every y € A, and every n > n,.
By Proposition 2.3 (4), together with the fact that d(v, B(zo, Ro),y) = 1 forevery y € Cg,.
we have

d(vnaB(zO,-RO)ay) =1 (43)

for every y € A, and every n > n,.

By Lemma 3.9 there is 0 < ro < Ry such that

B(yo,m0) CC Ac and v~ (B(yo,r0)) N B(zo, Ry) CC B(zo, Ro)). (46)

Claim 2 We claim that
B(yo,m0) CC Cf, (47)

where C% is the connected component of RN \ v,(8B(zo, Ro)) containing yo.

We prove first that A, C RV \ v,(8B(zo, Ry)). Assume on the contrary that there is
y € A, Nv,(8B(zo, Ro)) and choose z € B(z¢, Ry) such that y = v,(z). We would have
|va(z) — v(z)| = |y — v(z)| > € > |vn — V| Which yields a contradiction. Fix r' > ry such
that B(yo,r’) C A.. We have B(yo,r’) is a connected set included in RV \ v, (0B (zo, Ro))
and containing yo. We deduce that B(yo,r’) C Cg, and B(yo,r0) CC CF, .

Set D = v=1(B(yo,70)) N B(zo, Ro) CC @' and D, = v;}(B(yo,m0)) N B(zo, Ro) CC Q.
By (45), (46), (47) and using arguments similar to the ones of the proof of Theorem 3.1.
together with Corollary 3.3 we deduce that for n > ng there is w, : B(yo, 7o) — D, there
is w : B(yo,r0) — D such that

wa, w € WF=T(B(yo, o))",
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wpov,(z) =7 ae. z€D,,

Up © wn(y) =y ae y€ B(yOa rO)a
wov(z)=1z ae. €D and v(zo) # v(z) for z € D,z # o,

vow(y) =y a.e. y € B(yo,r0)-
Finally by Lemma 3.8, v,(D,) = v(D) = B(yo,70)-

Remarks 4.4

1. It follows from the proof above that if the conclusion of Lemma 4.3 holds for
r = r(zo) > 0 then it holds also for 0 < r’ < r. Thus, as v is continuous on D, v(z) # v(z0)
for z € D and z # z(, we deduce that

lim max{|z — zo|, z € D,v(z) € B(yo,r0)} = 0.

2. It is possible to show that lim,_ . |DAD,| = 0. We divide the proof into two
cases.
Claim 1 limp—yo0 |D \ Ds| = 0.
Let F, = B(yo,70 — €) and O, = v"!(F,) N D. We prove first that for each ¢ fixed there
exists ng = no(€) € N such that n > ny implies O, C D,,.. Indeed, since {v,} converge
to v uniformly, there exists no = no(¢e) € N such that |[v — v,|ee < £ for every n > no. If
z € O,, we obtain

[va(2) — yol < lv(z) = yol + |v(z) — va(z)| < 70
and so z € D,. As U.O, = D and the sequence (O,) is non-increasing, we have
lig |D\ 0| = 0

which, together with the fact that |D \ D,| < |D \ O| for n > ny, yields claim 1.

Claim 2 lim, 4o |Dn \ D| = 0.
For ¢ > 0 take ng = no(¢) € N such that |v — v, < 5 for every n > no. For n > ng, we

have

{z € B(zo, Ro) :r—% < |va(z) —yol <7} C {z € B(zo,Ro) : r — € < |v(z) —yo| < 7 + €}
and since v has the N~! property (see Remark 2.5) we obtain

|Ne{z € B(zo, Ro) : 7 —€ < |v(z) —yo| <7 +€}| = [{z € B(zo, Ro) : |v(z) — 30| = 7}| = 0.
To conclude the proof of claim 2 it suffices to remark that for n > ny we obtain

D, \DC {z € B(zo,Ro) : v — € < |v(z) — yo| < r + €}
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Lemma 4.5 Letp>1, ¢ > N, r > 1 be such that %+ % = 1. Assume that @ C RN
is an open, bounded set, u,,u € W)V, u, — u in WP Q)N v,,v € WHhQ)V,
detVv, = detVv = 1 a.e. in Q and v, — v in WH(Q)N. Let 2o € Q, and w,, w be,

respectively the local inverse function of vy, v, in the open neighborhoods D,, D of z¢, let
Yo = v(zo) and B(yo,r0) be as in Lemma 4.3 and Remark 4.4. Then the following hold:

i) tn 0w, € W(B(yo,r0))" and V(un 0 wa)(y) = Vin(wa())(Von(wa(y))) ™
#) u,ow, —uow in W (B(yo,ro))¥ if r>1,
i) u,ow, —uow in L'(B(yo,r0))"

and {u, ow,} is bounded in W'(B(yo,r0))" if r=1.

Proof. We remind that by Lemma 4.3 we have

W, w € WHF5 (B(yo,70))",  v(D) = B(yo,70),vs(Dr) = B(yo, 7o), (48)
Vu(y) = (Vo(w(y))) ™, Vwn(y) = (Voa(wa(y))) ™ ae. y € Byo,mo).  (49)
N(v,D,y) = N(vn, Dn,y) =1 a.e. y € B(yo, 7o), (50)
wov(z)=z a.e. TE D, wyaovy(z)=2 a.e. € D,. (51)

First step. We prove that u o w, u, 0 wp, € W (B(yo, 10))".
In fact by the change of variables formula (11), (48), (49), (50) and (51) we have

d = r
/B(m,,-o) luow(y)l"dy [:(D) lu o w(y)|"N(v,D,y)dy
= /D lu(z)|"dz < +oo.

Thus

uow, u, ow, € Lr(B(yO’ rO))N‘
Let ¢ € Cg°(B(yo,70))- By (11), (48), (49), (50), (51) and using the fact that each vector
row of adjVv is divergence free, we have

/B(m.ro) u'ow(y) d-" = ] u,(z) Ov(z)d:c

au,
E

Dll

= - j(w(y))((w)-‘ o w(y))ie(y)dy.

B(w o) =1

(z)((VV(z))"),¢ o v(z)dz

Thus
uow € Wl"(B(yo,ro))N

and
Vuo w(y) = Vu(w(y))(Vv(w(y)))™" ae. in B(yo,ro).
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We have a similar result for u, o w,.
Second step. We conclude that {u, o w,} is bounded in W' (B(yo,r0))".

Indeed
r = ’ < .
foo im0 uaIldy = [ fun(e)de < [ un(e)lde,

Since r < p and {u,} is bounded in W'P(Q)N we deduce that {u, o w,} is bounded in
L7 (B(yo, o))"
Also

Sy V0@ dy = [ [Vun(@)(Vun(2))"rda

< O 1Vun(@)Pdelf [ | [Von(e)rde) ™5™ < €

for some constant C' which does not depend on yo,r and n. Thus {u, ow,} is bounded in
W (B(yo,70))"

Third step. We prove that, up to a subsequence, unowy, converges strongly in L*(B(yo.70))
to uow. Let f € C(B(yo,70)). By Remark 4.4 lim,_ 4o |DAD,| = 0 and so

XD.(z) = xp(z) a.e.x € .

Using the fact that u, — u in W'"?(Q)N, v, — v in W'9(Q)V and assuming, without
loss of generality, that u, — u a.e., v, — v a.e. we obtain by (11) and the Lebesgue
Dominated Convergence Theorem that

BB oy 2 0 W = T J (2 (on(2)d
= [ u@)f(v(2))dz
= o wO @)W

Therefore u, ow,, converges strongly to uow in measure and applying the Sobolev Imbed-
ding Theorem to the bounded sequence {u, o wn} in W1"(§2), we conclude that, up to a
subsequence, u,, o w, converges strongly in L!(B(yo,70)) to u o w.
Fourth step. Using the second and the third step we conclude that {Vu, ow,} is bounded
in WH(Q)Y,

upow, — uow in W)V if r>1

and
upow, »uow in LYV if r=1.

We now give the proof of Theorem 4.1.
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Proof of Theorem 4.1. Without loss of generality (and, if necessary, after extracting a
subsequence of {(u,,vn)}), we assume that

liminf / WVUWW{X))=)dx = lim 1 MA (Vu,()(Visn(x)-Ddx < +00.

Fix e > 0 and let Q. CC ft be an open set such that |ft \ ft < c. By Lemma 2.2 and

the Ascoli-Arzela Theorem, without loss of generality, we assume that v, converges to v
uniformly in ft.. Set

C = {x € ft. \vis completely differentiate and almost invertible at x},

A = {J9(x)|x 6 C,D(x) is an open set of fte, v(D(x)) is an open ball}
and

ft'e = UpeaD.
As in the proof of Lemma 3.9, it is easy to see that

inf{diamD(x) \ D(x) G A} = 0O,
for every x G C. By Lemma 4.3 and Vitali's covering theorem (see [Fg Theorem 2.8.17,

p. 151) there exist {xJ, i €N} C ft, {-D’, j € N} afamily of mutually disjoint, open
neighborhoods of, respectively, Xj, N a set of measure zero such that,

Q =Nt D,

and v : D" —> J5(y’,W) admits an inverse "’ 6 VV''*A" (35(/°,r'),,DY), in the sense of
Theorem 3.1, for some rj > 0 and with yJ = v(x?). Recall that

V(uot™)(y) = VExK{y))(Vt;K(/N))r! ae y G JB(yJ',H),
tin 0i(x) =x aex6D,
voxV(y)-y— ae yE€B(t/,H)

and D' =t;-}(B(y',r"))nJ5(x’; R") for somei# > 0. Fix k G N. By Lemma 4.5 we obtain
for each j = 1, ¢+« k and up to a subsequence, the existence of W, G WA (B 1) )*
which is the inverse function of Vnl* where D3, = v~'(B(y’,r®)) D B(x,R)). Recdl that
1= -‘5 + " (hnl aso

v ovn(X) =x ae x G Di,

Uy © w‘,’. € Wl'r(B(yj’ .))N!

V(up o w;")(y) = V«,K (y))(VVnK (y)))'l ae,

un0”-uot” in WBY )Y if r > 1,

U, oW>n-*uoxv>  in  LYB{yr)f;

{u,ou™} is bounded in W''B(,r') if r = 1,

Urn |DAD| = 0.

0O
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Fix _
O0<np<min{r: j=1,---,k}.

There exists n(n) € N such that for every n > n(n) we obtain
max{|va(z) - v(z)| | = € A} <.
Since D’ = v=}(B(y’,r7)) N B(z?, R’), we deduce that for every n > n()
Dj(n) = Dinv;}(B(y’,r’ — 7)) C D’
and so Di N D} =0 if i # j. Set
Di(n) := D' nv™(B(y’,r — 1)),
We divide the rest of the proof of Theorem 4.1 into two cases.

First case We assume that 1 = r = % + % and there is a constant C such that
0 < W(F) < C(1+ |F]) for every F € MN*N_ Since W > 0 and {D’(n)},{D:(n)}
are mutually disjoint for every n € N, we have by [FM]

Loy TN e =3 [ W) )

J-l Di(n)

=S [ W(Puow)w)dy

J—l (V’ ,TJ -7’)

< Y limjnf W((Vun 0 w})(y))dy (52)

n—<+00 B(yi,ri—n)

= 21'1‘[_)-’1.:23' bite )W(Vun(:z:)(an)"l(x))dr

<hmmf2 / W (Vin(2)(Vo,) " (z))dz

Shmm.f/0 W (Vu,(z)(Vv,) Y (z))dz

n—++400

Letting 7 go to zero, k go to infinity and then € go to zero we have

E(u,v) < l’i‘r_gilolof E(tn,vy).

Second case We assume that 1 < r = -’1; + -’qul- and there are some constants C;,C, >
0,1 < s < r such that —Cy(1 + |F|*) < W(F) < C2(1 + |F|") for every F € MN*V,
The proof follows as in the first case, where on step (52) we use the lower semicontinuity
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results of [Da] instead of [FM]. Since {Vu,(z)(Vv,)~'(z))} is weakly relatively compact

in 2, we have

/ W(Vu(z)(Vv)(z))dz

)-lD,( )

= Z /w W (Vu(z)(Vv)~}(z))dz

J-l

=3 [ W(Two w0y

J—l

< th inf

=1

 W((Vuz owl)(y))dy
B(y?,ri-n)

»

=Y liminf | W(Vu,(z)(Vv,) }(z))dx
S timaf [, W(T)(T)

k
=3l mf[/ W (Vun(z)(Von)"} (2))de

i=1 Atoe

+ /. W(Vua(z)(Vv,) Y (z))dz

D (n\D?
- - W(Vua(z)(Vva) Y (z))dz]

DJ' \D? (n)

< th inf

n—+400

- W(Vun(z)(Vv,) " (z))dx

(14 |Vup(z)(Vo,)~

+C, / .
D’AD’,’.

< lxmmfz:./DJ W(Vu,(z)(Vv,) " (z))dz

n—+00 < =1

Hz))I*)da

< liminf W(Vu,,( )(Vv,)

n—+400

-1(z))dz.

Letting n go to zero, k go to infinity and then € go to zero we conclude that

E(u,v) < lirg_éxgj E(up,v,).
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