
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



MAMT

The Critical Temperature and Gap
Solution in the Bardeen-Cooper-

Schrieffer Theory of
Superconductivity

Q.Du
Carnegie Mellon University

Y. Yang
Carnegie Mellon University

Research Report No. 93-NA-018

May 1993

Sponsors

U.S. Army Research Office
Research Triangle Park

NC 27709

National Science Foundation
1800 G Street, N.W.

Washington, DC 20550



TMAl/l
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Superconductivity

QIANG Du* & YISONG YANG*

Abstract

The paper studies the problem of numerical approximations of the critical
transition temperature and the energy gap function in the Bardeen-Cooper-
Schrieffer equation arising in superconductivity theory. The positive kernel
function leads to a phonon dominant state at zero temperature. Much atten-
tion is given to the equation defined on a bounded region. Two discretized
versions of the equation will be introduced. The first version approximates
the desired solution from below, while the second, from above. Numerical ex-
amples are presented to illustrate the efficiency of the method. Besides, The
approximations of a full space solution and the associated critical temperature
by solution sequences constructed on bounded domains are also investigated.

AMS subject classifications (1991). 82B26, 82D55, 45G10, 45L.

1 Introduction

In the Bardeen-Cooper-Schrieffer (BCS) quantum theory of superconductivity,

the superconducting state is characterized by a positive gap function, A(k) (say),

which is the solution of the BCS equation (see, for example, [H] and [vH])

A(k) = j dk'#(k, k')v^(k', A(k')), (1.1)

where

', A(k')) = H0(([k* - tf + A2(k'))1/2)A(k') (1.2)
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with

fi > 0 being the chemical potential or Fermi energy, /3 the inverse of the absolute
temperature, T > 0, /f (k, k') = — Vy^t the negative matrix elements of the interaction
potential of electrons with wave vectors k, k' € R3, and k2 = |k|2. In general,
Vfcfc/ is the sum of two terms. The first term, positive, arises from the repulsive
Coulomb force, while the second one, negative, from the attractive phonon force. For
a superconductor, the basic BCS assumption says that Vy^f < 0 (or /f (k, k') > 0),
namely, the dominance of phonon interaction is assumed. In this situation, electrons
can form Cooper pairs at low temperatures, or equivalently, the equation (1.1) now has
a bounded positive solution (the energy gap), which leads to the birth of supercurrent.
As a consequence, superconductivity takes place. Such a global phase transition
picture was already known to BCS under the over-simplified condition

-VQ, Vo > 0, |k|, |k'| < r0,
(1.4)

0, N,|k'|>r0.

Here r% > /x. The recent work [Y] shows that, when V\^t is a negative continuous
function, the above phase transition still holds in general. More precisely, it has been
proved there that, if

(to ensure boundedness of solutions), then there is a critical temperature Tc > 0, so
that, for 0 < T = 1//3 < 1/& = Tc, the BCS equation (1.1) on R3 has a positive
gap solution A(k) > 0, representing the occurrence of superconductivity, while for
T = 1/(3 > 1/fic = Tc, the only solution of (1.1) is the trivial one, A(k) = 0, indicating
the dominance of the normal phase.

The next important problem is to determine numerically the critical temperature
Tc and the gap function A(k) for T < Tc. The resolution of this problem is of obvious
practical value. However, due to the complexity of (1.1), there have only been credible
computations of (1.1) for the over-simplified kernel function (1.4) or for equations with
separable kernels in literature, although early in [K] the convergence of an iterative
procedure is studied at the zero temperature limit. The main purpose of this paper is
to provide a reliable numerical method to compute both the solution and the critical
temperature of (1.1) on an arbitrary bounded region. The approximation of a solution
in full R3 by solutions sequences on bounded regions will also be investigated under
some conditions.



The paper is organized as follows. In Section 2 we introduce two discretized
versions of (1.1) on a bounded region, called the min-min and the max-max approx-
imations. We show that these approximations lead to two critical temperatures, r[
and r", respectively, and T'C<TC< T", where Tc is the critical temperature of (1.1) on
the given bounded region. Below the critical temperatures, the discretized BCS equa-
tions have positive solutions, A' and A" with A' < A < A", where A is the unique
positive solution of (1.1). We will point out that finer discretizations yield better ap-
proximations. In Section 3 we study the connection between full space solutions and
solutions obtained on bounded regions. We shall also show that the uniqueness of a
full space solution there follows naturally as a by-product. In Section 4 we discuss in
detail a series of numerical solutions constructed from the method of this paper. We
choose a radially symmetric limit to study and the discretizations can be viewed as
being made by a sequence of spherical shells contained in a ball. Monotone conver-
gence, approximation of the critical temperature from below and above, dependence
of the number of iterations on the range of the temperature parameter, and so on,
are discussed. These examples confirm very well our theoretical expectations.

Note that, in some circumstances, especially in the theoretical developments of
high-Tc superconductivity theory [D, E], the kernel function /f (k, k') in (1.1) may be
allowed to change signs or be a complex function with a correspondingly modified
nonlinear self-coupling (pp. See e.g. [WE, WEH]. For these models, our method does
not apply. However, it is our hope that the study here may serve as an initial step
toward a better understanding of the BCS type equations.

2 The Method of Approximation

In this section, the BCS equation (1.1) is assumed to be defined on a bounded
region ft containing the ball

{k€R3|k2<2/x}

(say) and the kernel /f(k, k') is continuous on H and non-negative (for greater gen-
erality). The basic positivity condition imposed in this section takes the form

K(k, k') > 0 in V^s x O^s, 0^,6 = {k € R31 |k2 - fi\ < 6}, (2.1)

where 6 > 0 is small.
To discretize (LI), we introduce a partition of ft as follows. Let {Qj | 1 < j < n)



be a collection of open subsets of ft such that

ft,- n ft* = 0 (j ^ k), u^Jlj D ft.

2.1. The min-min scheme

We first approximate the BCS equation (1.1) over ft by the following discretized

equation
U =K}GR W ,

Uj =(m(U))j
(2.2)

= m i n t min K(k,k')Fp(k',uk)uk\nk\,
ken, * = 1 k'eO

where F0(k, u) = H0(([k2 - /x]2 + u2)1/2) (see (1.2)). We call this scheme the min-min

approximation of (1.1).

We say that U = {UJ} G Rn is positive (non-negative), if Uj > 0 (UJ > 0) for

j = 1,2, ••-,?*. We write U > 0 (U > 0). Besides, we say U > V (U > V) if

U - V > 0 (U - V > 0). We use the notation

C = {U e Rn | U = K ) , tx, > 0}

to denote the set of non-negative vectors. In the sequel, we will only be interested in

non-negative solutions.

For (2.2), we can state

Theorem 2.1. There is a suitable partition {ftj 11 < j < n} of ft to ensure the

existence of a number fif
c > 0 so that (2.2) has a nontrivial solution in C for any

fi : ft'c < ft < oo, while for (3 < p'c, the only solution of (2.2) is the trivial one,

U = 0. A positive solution is also unique. If in addition, the kernel function satisfies

#(k,k') = H(k,k')h(k') with H(k,k') > 0 on IT x ft and h(k') > 0 on 5ft, then a

nontrivial solution at any ft > fl'c must be positive and, hence, unique. Besides, at

0 = p'e, the only solution of (2.2) in C is the zero solution.

The purpose of such a result is to use l//?£ as a lower estimate for the critical

temperature in the continuous equation (1.1). We remark that sometimes the exis-

tence of flf
e may fail if the partition of ft is not chosen properly. For example, when

a partition is fixed and AT(k, k') is so small that m becomes a contraction in Rn at

f) = oo, then it is easily checked that m is a contraction at any /? > 0. In other



words, there is no /? so that (1.1) has a nontrivial solution because U = 0 is already
a solution.

We split the proof of Theorem 2.1 into several steps.

Lemma 2.2. m : Rn —> Rn is a monotone operator in the cone C in the sense that
m : C —> C and m(U) < m(V) for U < V. Besides, if the additional condition in
Theorem 2.1 is valid, then there is partition ofCl so that m(U) < m(V) for U < V.
Moreover, m is increasing in /? > 0.

Proof. This is because Fp(k\ u) (u € R) increases in u > 0 and in 0 > 0. •

Lemma 2.3. When ft > 0 is small, the only solution of (2.1) is the trivial one,
U = 0.

Proof. If 0 is small, the property of Fp (see (1.2)) implies that mis a contraction.
So m has only one fixed point in Rn which is the zero vector. •

Lemma 2.4. There is a partition {ftj \ 1 < j < n} of 17 so that when fl > 0 is
sufficiently large, the equation (2.1) has a nontrivial subsolution, U_, in C to make
m(U) > U.

Proof. Recall (2.1). Let K(k,k') > CQ > 0 in O^s x O^s- Since

[y/ p2 dp
= 4TT / — jj-- r———j- -> oo ase->0,

there is an SQ > 0 so that I(eo) > 3/co. Hence, if 0 > 0 is sufficiently large, there
holds

- Jo*. ([k« - /ip + eW

> 1
CO

As a consequence, we can find a partition of 0^$ , say {Oj | l < j < n — 1}, so that



Therefore,

m K(k,k')F0(W,eo)\Qk\ > 1. (2.3)

Let f)n be the complement of U^s in £2 and fij = 0 j , j = 1,2, • • •, n — 1. Then
{Ctj 11 < j < n} is a partition of ft. Define (/ = {UJ} G C C Rn by setting

ui = $o, j = 1,2, • • •, n - 1, un = 0.

From (2.3) we see that m(U) > U_ as expected. D

Lemma 2,5. JTiere is a 6Q > 0 so that for any 6 > 6Of the vector V = {UJ} G Rn

u;i</i Uj = 5, j = 1,2, • • • ,n 15 a supersolution of (2.2) for any /? : 0 < /? < oo, m

</iaf m(U) < TJ. Moreover, if U^ is a subsolution of (2.2), then U_ < TJ.

Proof. It is obvious that the structure of the function F/?(k;, u) allows us to find a
number 6Q > 0 so that for 6 > 6Q, there holds

max_ K(k,k')Fp(k',6)\Sl\ < 1, 0 < fi < oo.
k,k'€O

Define V = {UJ} G Rn by setting Uj = 6, j = 1,2, • • •, n. We have m(Z7) < F .
Namely U is a supersolution of (2.2).

Let U_ be a subsolution of (2.2) with (/ = {UJ}. If there is a k (1 < k < n) so that

u* = max tx. > £o,
!<i<n ""

then F = {UJ} with t/j = U*, j = 1,2, • • •, n, is a supersolution produced above. The
monotonicity of m (see Lemma 2.2) says that uk < (m(t/))^ < (m(U))k < (U)k = Mib
which is a contradiction. •

Lemma 2.6. If (2.2) has a nontrivial subsolution U_ G C, then it has a nontrivial
solution in C.

Proof. Let U be a supersolution produced in Lemma 2.5. Introduce the iterative
sequence

The monotonicity of m and the fact U_<U (Lemma 2.5) imply that

U < • • • < Ut < • • • < U2 < Ui = U.



Hence U = lim/^oo Ut is a solution of (2.2) satisfying LL<U<U. Q

We can now proceed to prove Theorem 2.1.
Set

A s= {/? | fi > 0 is such that (2.2) has a nontrivial solution in C}.

We claim that A is an interval. To see this, we need only to show that if fa < /?2,
fa G A, then fa G A. In fact, if we denote by U\ a nontrivial solution of (2.2) in C
corresponding to /? = fa, then Lemma 2.2 yields the inequality Ui < m(U\) at fa-
Namely U\ is a nontrivial subsolution at /? = fa. By Lemma 2.6 we conclude that

faeA.
Define /3'c = inf {/? \ fi G A}. Then # > 0 (Lemma 2.3) and is the desired critical

number described in the first part of the theorem.
The proof for uniqueness of a positive solution is similar to that for the continuous

case in [Y] and is skipped here.
To prove the last part of the theorem, we first assume the zero set of h(k) in fi is

not empty. Let e > 0 be sufficiently small so that

e < inf h(k).
kean

Let {ft, 11 < j < n] be a partition of fi with fii = {k G SI \ h(k) < e} and U = {UJ}

a nontrivial solution of (2.2) in C. If there is j0 > 2 so that u^ > 0, then (2.2) and
the assumption on K give us the inequality

min

> min_ H(k, 10 fc min
k k ' O k ' n Q

If Uj = 0 for all j > 2, then using (2.2) again, we have

uj = jnin _ H(k,k')h(k')F0(k',u^u^l = 0, j = 1,2,. • . ,n,
k € O k ' O

which contradicts the nontriviality of U. Thus we have shown that U is a positive
solution.

If the zero set of ^(k) is empty, the function K is positive. Then a nontrivial
solution in C is obviously positive.



Finally, suppose that (2.2) has a nontrivial solution in C at the critical value

ft = fi'c. Then U > 0 as we just observed. Let a € (0,1) be a fixed number. Since

F/?(k', u) is decreasing in u > 0, we easily obtain m(aU) > all. This inequality

can still be observed when ft is slightly below (3f
c. In other words, aU is a positive

subsolution of (2.2). Hence /? € A (Lemma 2.6), which contradicts the definition of

The proof of Theorem 2.1 is complete.

2.2. The max-max scheme
Our next goal is to find upper estimates of a solution and of the critical tem-

perature of (1.1) over ft. We now introduce the following max-max type discretized

approxim ation.

u =

(2.4)
n

max]T max K(k,k')F0(k',Uk)uk\Clkl
ken, £^ k'efi

Similar to Theorem 2.1, we have

Theorem 2.7. For any partition {ftj 11 < j < n}, there is a number fi" > 0 so that

(2.4) for f3 > 0" has a nontrivial solution in C, while for 0 < ft", the only solution

of (2.4) in C is the trivial one, U = 0. A positive solution is unique. Moreover,

partitions of ft can always be so chosen that a nontrivial solutions of (2.4) in C must

be positive, and hence unique, at given 0 > /?". At the critical value ft = f}"} the only

solution in C is the zero solution.

Proof. It is easily seen that Lemmas 2.2-2.3 and 2.5-2.6 are still valid for (2.4) and

the operator M. We observe that Lemma 2.4 holds for any partition of ft. In fact,

we have

J > I K(k,k')F0(k
f,e)dk'

—* 00 as e —* 0 uniformly in k 6 ft.

Thus, parallel to Lemma 2.4, the existence of a critical number ft" is ensured for any

given partition.
The rest of the proof can be carried out as that for Theorem 2.1. •
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2.3. Useful comparisons
Our goal in introducing the schemes (2.2) and (2.4) is to approximate (2.1) defined

on a bounded region 17:

A(k) =

t (2.5)
= / K(k,k')Fdk',A(k'))A(k')dk'.

Ja

Here we have used a subscript to denote the dependence of the BCS operator M. on
/?. We will use similar notations to indicate the dependence of the operators m and
M on /3.

It is important to obtain estimates for the critical number flc of (2.5) so that, for
fi > 0c, (2.5) has a non-negative solution which is also nontrivial, while for /? < fic,
there is only the zero solution.

Viewed as an operator from C(Cl) to itself, Mp is clearly Frechet differentiate
and /3C is such that the operator I — Mpc fails to be invertible in a neighborhood of
A = 0. This fact is equivalent to Ker(J - DMpc(0)) ^ {0} in view of the Fredholm
alternatives and the compactness of DA4pc(0). Namely, (3C is such that the linear
integral equation

u(k) = f K(k,k')FPc(k',0)u(k')dk'
JQ

has a nontrivial solution in C(£2), which is an eigenvalue problem. The schemes (2.2)
and (2.4) provide upper and lower estimates for such fic.

Theorem 2.8. Let {ftj \ 1 < j < n} be a partition of fl and 0'c and (3" are the
corresponding critical numbers for (2.2) and (2.4) produced in Theorems 2.1 and 2.7,
respectively. Then

fi>fic> P"- (2.6)

Besides, ifU = {i^}, V = {VJ}, and A = A(k) are maximal solutions of (2.2), (2.4),
and (2.5), respectively, then

Uj <A(k)<Vj forallkeUj. (2.7)

Proof. Of course, Mp can be viewed as an operator defined on L°°(f)) as well.



For 0 > 0'c, let U = {UJ} be a nontrivial solution of (2.2) in C and set

u(k) = Uj, kGfi; , j = l ,2 , . . . ,n . (2.8)

Then tx G I00(ft) and

(AMti))(k) > W l O ) i = «00i k € ft,, j = 1,2, • • • ,n.

Thus u is a nontrivial subsolution of (2.5). Consequently, /? > /?c, i.e., (2.5) has a

nontrivial solution A(k) (say), which can be obtained by iterating from u. Clearly

ft > 0C and u < A.
Next, take 0 > 0C and assume that A is a nontrivial solution of (2.5). Define

U_ = {u^} € C by setting Uj = maxk€jj. A(k). Then

Uj = max(A<^(A))(k) < {Mp{H))h 3 = 1,2, • - •, n

due to the definition of M/j (see (2.4)). Hence (7 is a nontrivial subsolution of (2.4). In

other words, 0 > fi" and (2.4) has a nontrivial solution, V = {^j}, satisfying Uj < Vj.

Hence /8C > # ' and A(k) < ^ , k € flj, j = 1,2,-- • ,n. D

Let V = {ftj 11 < j < n} and V1 = {^ 11 < j < n'} be two partitions of ft. We

say that V is a refinement of V, written V < V, if for any ftj e T (j = 1,2, • • •, n),

we can find a subcollection of V1 to form a partition of ftj.

The dependence of ft and /?" on the partition 7̂  will be denoted by fi'c(P) and

^( 'P) , respectively. It is readily checked that the definitions of mp and Mp lead to

the inequalities

V < V (2.9)
KCP) < K(V) < ft*

and

UV<UV,<&< Vp* <VV, V< V, (2.10)

where A is the maximal solution of (2.5) at 0 > 0 and U-p (Vp) is the maximal

solution of (2.2) ((2.4)) corresponding to the partition V and (2.10) is understood in

the space L°°(il) with Up and so on being viewed as measurable functions defined in

ft (see (2.8)).

Recall that 0 is the inverse of the absolute temperature T. Thus the min-min and

the max-max schemes produce two critical temperatures T'C = l/0'c and r" = 1/0",

respectively, so that r'c < Tc < r", where Tc = 1/0C is the critical temperature of

(2.5). Using the maximal solutions of (2.2) and (2.4), we obtain two functions A' and

10



A" in the space Z,°°(ft) according to (2.8). We have seen that A' < A < A" where A

is the maximal solution of (2.5). In the case of positive solutions, these solutions are

unique. Thus we conclude that the min-min scheme gives us approximations of the

critical temperature and the gap solution of (2.5) from below, while the max-max,

from above. The comparison inequalities (2.9) and (2.10) say that finer discretizations

always lead to better approximations.

3 Remark on the Full Space Equation

In the last section, we have discussed the approximations of the critical tempera-

ture and the nontrivial solutions of the BCS equation (1.1) on a bounded region ft -

the equation (2.5). It seems desirable to expect that, as ft —> R3, the critical temper-

ature on ft, say T^\ will tend to the critical temperature Tc of the full space equation

(1.1) on R3. Moreover, below Tc, a nontrivial solution on R3 may be obtained from

taking the limit ft —» R3 from solutions over ft. At this moment, we are unable to

derive such a general result. However, here, we can establish T^ —> Tc and so on

under some sufficiency conditions.

Define

Then (1.5) says <£r(k) —» ̂ (k) (as r -* oc) uniformly in R3.

We assume the existence of r > 0 and a > 0 so that

^r(k) > a<f>(k) for all k G R3. (3.1)

Since <f>r(k) < ^(k), we have a < 1. The condition (3.1) was first introduced in

[Du] in order to prove the uniqueness of a positive solution of (1.1) over R3. In this

section we show that (3.1) actually provides a connection between full space solutions

and solutions over bounded regions of (1.1), therefore, the uniqueness of a positive

solution on R3 is a natural thing to expect. For greater generality, we relax the

positivity condition on the kernel function slightly:

, k') = H(k, k')A(k'), # ( k , k') > 0, h(W) > 0, k, k' € R3, (3.2)

where H, h are continuous.

11



Theorem 3.1. Let T^ = 1/$°) and Te = l/0e be the critical temperatures of (1.1)

on a bounded domain ft C R3 and on the full R3, respectively. Assume (1.5), (3.1),

and (3.2). Then

lim r<°> = Tc. (3.3)
n-R3

More precisely, any nontrivial solution of (1.1) on R3 must be positive everywhere

and can be approximated by taking large domain limit from solutions obtained over

bounded domains.

Proof. Let A be a nontrivial solution of (1.1) on R3. Then A(k) > 0 (k € R3). In

fact, if there is some ko G R3 so that A(ko) = 0, then (1.1) says (M(A))(ko) = 0.

However, by (3.2), /i(k')A(k') = 0 (k' G R3), which implies through (1.1) that A = 0,

a contradiction.

For r > 0, define ftr = {k G R3 | |k| < r}. Since Fp(k', u) is decreasing in u G R+,

we have F^k', aA(k')) > F^k', A(k')) for any a G (0,1). Using this fact in (1.1),

we obtain M(aA) > aA. We hope to generalize the above inequality into the form

> aA r , k G ftr, (3.4)

where r > 0 is sufficiently large,

/

Ar(k) =

Of course, Ar =

Put R{k,r) = aA r(k) - M^r)(aAr)(k). To prove (3.4), we need to show the

existence of an r0 > 0 so that il(k, r) < 0 for k G ftP whenever r > r0. We decompose

R(k, r) as follows.
R(k, r) = i?i(k) + R2{k, r) + R3(k, r), (3.5)

where

/?i(k) = aA(k) - M(aA)(k),

R2(k, r) = M(aA){k) - A<(aAr)(k),

R3{k, r) = [M(aAr)(k) - A4<n')(aAr)(k)] - a[M(A)(k) - <>

12



For ili(k), we have

R^k) = a L K(k, k')[fj,(k', A(k')) - F0(W, aA(k'))]A(k') dk'

< a I K(k, k')[F0{k\ A(k')) - F0(k', aA(k'))]A(k') dk'
J\k'\<r

(3-6)

F0(k>,A(k>))

< -aS^Arik),

where
c , x . . \Fp(k',aA(k')) l ft^(r) = inf „ ; , A ,, , - 1 > 0-U ; \k'\<r[F0(k',A(k')) J

For i?2(k, r), we have

fla(k,r) = o/R 3 Jir(k, k')[/>(k', aA(k'))A(k') - Ffi(V,aAr(k'))Ar(k')] dk!

< ajR3 K(k,k')F0(k',aA(k'))(A(k') - Ar(k'))dk'

< C262(r)4>{k),
(3.7)

where C2 > 0 is a constant independent of r > 0 and

S2(r) = sup (A(k) — Ar(k)) —> 0 as r —• 00
keR3

due to (1.5). For i?3(k, r), we have

, r) = / /T(k, k')[^(k', aAr(k')) -

/ ( , ) [^( ' , aA(k')) -
(3.8)

- Ar(k)) < a63{

where
-»0 a s r - t oo.

13



In view of (1.5), we easily see that there is a constant C3 > 0 so that A(k) <

C3<f>(k) (k € R3). Thus (3.8) becomes

R3(k, r) < aC363{r)<t>(k), k € R3. (3.9)

On the other hand, setting

60(r) = miA(k) > 0,

we obtain
Ar(k) >

y|k' l<r (3.10)

by (3.1), where

'2 ' 0 ( r ) ) } > 0.

The inequalities (3.6) and (3.10) imply

Ri(k) < -a7^(r')Cx(r')^(k), (3.11)

where r' > 0 is sufficiently large and is fixed. Inserting (3.11), (3.7), and (3.9) into
(3.5), we get

R(k,r) < -(a7^i(r')^i(r') - C262(r) - aC363(r))<j>(k).

Therefore i?(k, r) < 0 when r > 0 is large, since S2(r), ^(r) —> 0 as r —* oo. Thus
our early assertion is proved. Namely, (3.4) holds.

The inequality (3.4) says that aAr is a positive subsolution of (2.5) on fi = fir,
or equivalently, (2.5) has a positive solution, A^r^ (say). Such a solution is of course
unique [Y].

Let {f i j | j = 1,2, •••} be a monotone chain of bounded domains in R3 with

UjLiftj = R3- Then

< • • • < TC

(see [Y]). Set T^ = lim^oo Tc
(n>). We claim that T^ = Tc. Indeed, if T^ < Tc, then

(1.1) has a positive solution in R3 at any T = l / £ : r«, < T < Tc. By the above
discussion, we can find an r > 0 so that (2.5) has a positive solution at /3 = 1/T for
n = Qr. Namely, T^ < T < T W . However, there is a j > 1 so that Qr C ftj and

< T^\ Therefore T^ < T^, a contradiction. So the claim, hence (3.3), is
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proved. This argument also shows that, whenever (1.1) has a nontrivial solution at

T = 1//?, then T < T$Qj) for large j .

Thus, at T, let A(n>) be a nontrivial solution of (2.5) on ft = ftj (if it exists),

j = 1,2, • • •. We assume the convention A(n>)(k) = 0 for k G R3 — ftj. The sequence

( ) is nontrivial and monotone increasing

A(<M < A<°2) < • • • < A<n>) < • • •. (3.12)

We now derive the following pointwise convergence property

Jim A<n>>(*) = A(k), k G R3. (3.13)

In fact, A(fi>) is a sequence of subsolutions of (1.1) and, thus, is bounded [Y].

Consequently the pointwise limit, say Aoo(k), on the left-hand side of (3.13), exists

in view of (3.12). It is straightforward to examine that Aoo is a solution of (1.1) in

R3.

We have shown that for any a G (0,1), aA r is a positive subsolution of (2.5) on

ft = ftr when r > 0 is sufficiently large. Thus the existence of a positive solution,

>, of (2.5) for ft = ftr is ensured. Let j > 1 be such that fir C fij. Then

) < A(nA In particular, aA r(k) < Aoo(k). However, a can chosen arbitrarily

close to 1 and r arbitrarily large, thus A(k) < Aoo(k), k G R3. On the other hand,

since aA r < A and aA r is a positive subsolution and A a supersolution of (2.5) on

ft = ftr, we have A^ r ) < A in ftr. Given j > 1, let r > 0 be large so that ftj C ftr.

Then A(">) < A<n'). Hence A^ < A. This proves that A ^ < A(k), k G R3. Thus

A = Aoo.

The proof also shows the uniqueness of a positive solution in the full space R3. D

4 Numerical Examples

For convenience, we shall adapt slightly different notation in this section to present

some discussion of the discretized equations. Using the results in Section 2, we have

implemented the following monotone iterations to approximate the solutions of the

BCS equation and to estimate the critical temperatures:

1 Min-min iteration

S L where

(4.1)
= min £ min K(k, k')/>(k', vk)vk\nk\,
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2 Max-max iteration

= M € Rn, where

(4.2)

The convergence of the above iterations has been shown in Section 2. To initiate
the iterations, we start with a constant state with value 60 which is chosen by

max
i

max K(k,kf)FQ(kf,60)\nk\ < 1 .
k'€H

(4.3)

It is obvious that this constant state is a supersolution of the min-min and the max-
max iteration for any positive values of /?.

Thus, in principle, we can use the constant state for all values of f3 and iterate
until the iteration converges. In actual computation, we proceed with the iteration
for various values of /? that are taken to be in decreasing order so that the solution
corresponding to the previous, larger value of /? becomes a supersolution for the
smaller values of /?. In other words, a continuation in the parameter /? is used which
reduces the total number of the iterations needed, comparing with starting at constant
state for any /?.

Meanwhile, calculations using different partitions of the region are used to obtain
accurate estimates of the critical temperatures.

For simplicity, we shall restrict our attention to the spherically symmetric case
where the kernel function depends only on the radial variables x = |k| and y = |k'|.
After an obvious normalization, the BCS equation (1.1) is reduced to

where r0 > yfji > 0 is a suitable truncation barrier for the energy level in the model.
To be specific in our numerical examples, we fix a choice of the symmetric kernel
function K(x^y) so that

y2

(x + J/)2][a* + (x - yp] *

Such a model arises in the physical situation that the interaction potential is of a
Yukawa type, Ve~Qr. See [BF] and references therein. It is easily checked that the
equation here satisfies all the good conditions given in Section 2 when we specialize in
the one-dimensional setting stated above. Thus both the continuous and discretized
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Figure 1: The solution Umax at /? = 5.0, V = 1.0 with various partitions (From top
down, JV = 50, 100, 500 and 2000)

BCS equations ((2.5), (2.2), (2.4)) have unique positive solutions below their critical
temperatures (a positive critical temperature for the min-min equation exists if the
discretization is fine enough).

In all the reported calculations to follow, we take /i = 1, a = 1, and r0 = 5. Those
values are only chosen as an illustration and may not correspond to any realistic
physical situation. The interval (0, ro) = (0,5) is uniformly partitioned into small
intervals. We use N to denote the number of grid points.

First, we compare the solutions for a given value of /?, ft = 5.0 (T = 0.2).
From Figures 1 and 2, one can observe the fact that for given values of (3 and

V, the solution of the max-max iteration for a partition with smaller number of grid
points is a supersolution for a partition with larger number of grid points, since the
latter is a refinement of the former. Similarly, the solution of the min-min iteration
for a partition with smaller number of grid points is a subsolution for a partition with
lager number of grid points.

Figure 3 gives a comparison between the solutions of the max-max iteration and
the min-min iteration with the same number of grid points used in the partition
(N = 2000).

Next, in Figures 4 and 5, we compare the solution with various values of /? with
respect to a given partition N = 500. Here, V = 1.0.

Next, we plot in figure 6 the approximate values of Umax and £/mtn at the point

17



Figure 2: The solution t/mtn at /? = 5.0, V = 1.0 with various partitions (From bottom
up, N = 50, 100, 500 and 2000)

Figure 3: The solutions Umax ( - - - ) and Umin ( ) at $ = 5.0, V = 1.0 with
N = 2000
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Figure 4: The solution Umax with various values of 0 (From top down, ft = 20, 5, 4
and 3.75)

Figure 5: The solution Umin with various values of 0 (From top down, /? = 20, 5, 4.25
and 4)

19



Figure 6: The values of Umax(0) and C/mtn(0) vs. values of /?. (From left to right,
Umax(Q) for JV = 50,100,500 and Umin{0) for N = 500,100,50)

x = 0 against values of /?. Notice that at x = 0, solutions have their maximum values.
Here again, V = 1.0 and the figures shows that the approximate critical temperature
is around 0.26.

Finally, we also provide a few plots with a different value of V, this change ef-
fectively make the critical temperature much larger. Figure 7 gives the plot of the
values of solution at x = 0 against the values of temperature T = 1//?. In this case,
Tc is approximately 10.7.

Figures 8 and 9 provide data on the number of iterations used in performing the
min-min and max-max iterations against various values of ft. Note that the darker
area (top area) represents additional iterations starting with the solution correspond-
ing to the previous value of ft. It is worthwhile to note that as /? goes closer and
closer to its critical value, the number of iterations becomes larger and larger. It also
implies that other algorithms may need to be implemented at or very near the critical
temperature to ensure efficient numerical procedures.
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Figure 7: The values of Umax(0) (top) and (7m,n(0) (bottom) vs. T (N = 100).
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Figure 8: The number of max-max iteration against values of 0 with N = 100
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Figure 9: The number of min-min iteration against values of ft with N = 100
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