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The Existence of Ginzburg-Landau Solution
on the Plane by a Direct Variational Method

YISONG YANG

Abstract

This paper studies the existence and the minimization problem of the solu-
tions of the Ginzburg-Landau equations in R2 coupled with an external mag-
netic field or a source current. The lack of a suitable Sobolev inequality makes
it necessary to consider a variational problem over a special admissible space so
that the space norms of the gauge vector fields of a minimization sequence can
be controlled by the corresponding energy upper bound and a solution may be
obtained as a minimizer of a modified energy of the problem. Asymptotic prop-
erties and flux quantization are established for finite-energy solutions. Besides,
it is shown that the solutions obtained also minimize the original Ginzburg-
Landau energy when the admissible space is properly chosen.

I. Introduction.
Let <f>: Rn —* C be a complex scalar field and A : Rn —> Rn a vector field, where

n = 2,3,4. The Ginzburg-Landau (GL) energy density in the presence of an external
magnetic field Ff* (j, k = 1,2, • • •, n) takes the form

€(<f>, A) = \FjkFik + \iDfmDft) + \{\4>? - I)2 - \FikFf*, (1)\FjkFik + \iDfmDft) + \

where Fjk = djAk — dkAj is the magnetic field induced from A = (Aj) - called the
gauge vector field, Df<f> = dj<f> — \Aj<f> is the gauge-covariant derivative of ^, * de-
notes the complex conjugate, and the summation convention is observed on repeated
indices. There is a local gauge symmetry in (1):

i u;:Rn->R. (2)
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When n = 2,3, (1) defines the well-known GL model of superconductivity, while,
when n = 4, it defines the Euclidean abelian Higgs model in classical field theory
[DH]. Varying the energy E(<f>, A) = / £(^, A)dx leads to the following GL equations

x € Rn. (3)

A basic problem is: Prove the existence of a finite-energy solution for the GL

system (3) assuming that the external field Ff* carries a finite energy

oo, (4)

and, show that there are solutions which minimize the GL energy.
In the earlier work [Yl, Y2], existence and minimization theorems have been

established for the dimensions n = 3,4, Our solution of the problem there depends
on a modification of the energy density (1) and the following Poincare type inequality
in Rn (n > 2) (see [B, GT]):

« 6 Cl
0(R»). (5)

When n = 2, (5) fails and the techniques of [Yl, Y2] break down. However, the
case n = 2 is actually a more interesting situation of the model because it gives
rise to vortex-like or mixed-state solutions which is a fundamental phenomenon in
superconductivity physics. The purpose of the present paper is to solve the n = 2
case. Our approach here is based on an inequality which can control the local L2 norm
by the Dirichlet type norm on the right-hand side of (5), of a function vanishing in
a small ball. We are led to introducing a special but natural function space for the
vector gauge vector A so that the minimizing sequence of the modified GL energy
is weakly compact in the space Wlt2(Q) for any bounded domain 17 in R2. Thus
the major difficulty in the early attempts in solving the problem in R2 is overcome.
A solution over the full plane can then be obtained by passing to the limit from
bounded domains. The solutions found are all in the global Coulomb gauge. The flux
quantization problem, typical in two dimensions, will also be briefly studied. It is
shown that, when the external field has power-type decay estimate at infinity, so will
the excited fields, which leads to a quantized magnetic flux. We will also show that
the solutions obtained minimize the original GL energy among all field configurations
in the Coulomb gauge when the admissible space of the gauge vector fields is properly



chosen to allow a convenient disposal of the boundary terms arising from our energy

comparison.

II* Existence by the Calculus of Variations.

We shall first find a solution of (3) in R2 by looking for a critical point of an

energy stronger than E (see the discussion to follow). Analysis shows that the failure

of (5) in the case n = 2 makes it difficult to control the local Wia norms of a pair of

field configurations in terms of its energy. However, it turns out that we can use the

following inequality to tackle our problem here.

Lemma 1. Let u(x) (x € R2) be a differentiable function with support contained in

Bc = {x £ R2 | K |x| < oo}. Then

J\x\>i |x |2 In2 | s | J\x\>i

Proof, The above inequality can be found in [L] where the function u is assumed to

be compactly supported in Bc. However, this result is also valid for functions in our

generality which will be used in the study of (3) in two dimensions. We proceed as

follows.

First, it is easily checked that there holds the identity

x ev m

I , jfff, . dx < 4 / \Vu(x)\2dx, xeR2. (6)
J\x\>i |x |2 In2 | s | J\x\>il

|x|'ln 1*1
Integrating (7) on BC

R = {x € R2 11 < |x| < R), we get

. uVu-x r u2

<*x = 2 / T—TTZ—rrdi- / T - — — — x - n d s

<2(/
BC

R

Thus (6) follows from taking R —> oo in the above inequality. D

Let B be the set of vector fields on R2 with differentiable components and finite
|| ||tt-norm. Here, for A G 8 ,

where p is a smooth function over R2 so that

0 < / > < l , p(x) = l fo r | x |>2 ,

The completion of B under the norm || H* is denoted by H. It is clear that H is
a Hilbert space.



Lemma 2. For any A = (A,) € H, there holds

iL
Proof, For A e W , there is a sequence {An} C B so that || A - An||« —• 0 as n —> oo.
By Lemma 1, we know that (8) is valid for any element of B. Thus

Letting m —> oc, we obtain

As a consequence of the Minkowski inequality and (9), we have

Taking n —> oo, we arrive at (8). •

We are now ready to solve (3). For simplicity, we assume that the external field
is smooth. We rewrite the GL energy density (1) in the form

€(h A) = £(*, A) - \FjkFf*% j, k = 1,2. (10)

The main result of this section is

Theorem 3. In R2, the GL system (3) has a finite-energy smooth solution (<}>,A) in
the Coulomb gauge djAj = 0 and Eo(<f>, A) = / £o{& A) dx < oo.

Proof. The original energy density (10) is not good enough to work on. As in [Yl],
we start from the modified density functions

A) = iidj

(11)

which are obviously stronger than £ and



Set / = / Jdx and Jo = flodx over R2. Consider the variational problem

= min{/(<&, A) \(<f>,A)eJx « } , (12)

where J is the set of complex-valued functions on R2 with components lying in
W ^ R 2 ) . Since Ffj? € L2(R2) (see (4)), it is easily checked that 1^ in (12) is finite.

Next, it is clear that the functions in (11) are no longer invariant under the general
gauge symmetry (2). However, they are invariant if u> in (2) is a linear function of
zx, x2. Thus, for a pair (<£, A) € J x H with I0(<f>, A) < oo, define (<f>\ A') so that

LJ = — where (ai, 02) = — / A(x) dx.

Then the average of A' on {x € R2 | \x\ < 3} vanishes, i. e.,

Moreover, the linearity of a? in the variables Xi,x2 implies that A' €*H because A' is
a translation of A by a constant vector.

L6* {(^nMn)} be a minimizing sequence of the problem (12). The Schwarz in-
equality implies that

CIQ{4>\ A") < sup /(*", An) + I I ^ % ( R V (13)

Here, and in the sequel, C > 0 is an irrelevant constant. From (13) and the definition
of To, we see the finiteness of the quantity

M = supjR3(djA
n

k)(djA
n

k)dx. (14)

By the above discussion, we may also assume that An = 0, n = 1,2, • • •. Thus the
Poincare inequality applied on {x € R2 | |x| < 3} implies

sup
n

/ {(djAMdjAD + \An\2} dx < CM. (15)

Recall that, in the definition of the norm || ||^, the truncation function satisfies
p(x) = 1 for |x| > 2. As a consequence, the combination of (14) and (15) gives us the
boundedness of {An] in 7i. Using Lemma 2 and the definition of || ||^, we conclude
that the components of {An} are bounded sequences in Wl>2(Q.) for any bounded



domain ft C R2. Thus {An} is also bounded in L*(ft) for any p > 1. On the other
hand, the definition of the gauge-covariant derivative gives

\Df f\* > Iftrff - C(|Af + \<f>*\* + 1).

Thus {<f>n} is a bounded sequence in Wlt2(ft) as well for any bounded domain ft in
R2. Using the compact embedding Wlf2(ft) -+ 1/(0,) (p > 1) and by passing to
a subsequence if necessary (a diagonal subsequence argument), we may assume the
existence of a pair (^, A) € ^ ( R 2 ) so that

(<f>n, An) - • (<f>, A) weakly in
(16)

(^n, An) -> (<f>, A) strongly in L*(ft)

for every bounded domain ft C R2 and any p > 1. Of course A is also the weak limit
of {An) in the space H. Thus (<£, A) € J x H. We are left to show that (<f>, A) solves
the variational problem (12).

Let 2o,J be as defined in (11) and BR = {x € R2 | |x| < R] (R > 0). The
functional /0(^, A;R) = /2o(^,A)dx and I(<f>,A;R) = / J ( ^ , A)dx are integrals
over BR. The condition (4) says that for given e > 0 there is RQ > 0 to ensure

L2 FffFf? dx < e2 whenever R> Ro.

Thus for R> Ro,

>\ A"; R) <

where M > 0 is as given in (14). Using (16), the weak lower semicontinuity of the

terms in /(•, •; i2), and /(^n , An) —• /min (as n —> oo), we arrive at

>, A; R) < /min + e\/M, R > R*.

Namely,

Io{<f>, A; R) < / ^ + £^/M + i /R, F,fci=Sx dx - \ fR2_^ FjkFf? da;



Setting R - • oo in the above, we get /(^, A) < Ij^n by the arbitrariness of e > 0.

Hence J(^, A) = Jmin and (12) is solved.
Finally, varying the modified energy / in J x H by compactly supported test

functions around the obtained minimizer (^, A) of (12) and using the standard elliptic
regularity theory, we see that (^, A) is a smooth solution of the system

ffKl-W)* = 0,
x € R2. (17)

\{<t>[Df <(>)- - <f>*[D}<f\) = | A ( f y - i $ x ) ,

We can use the two equations in (17) to show that djAj is harmonic in R2. However,
since djAj € L2(R2), the Liouville theorem says that djAj = 0. As a consequence, it
follows that V2Aj = dkdkAj = dk{dkAj - djAk) = ftFw, j = 1,2. In other words,
(17) recovers the GL equations (3) in R2. Thus (<f>,A) solves (3) as well and the
theorem is proved. •

III. The Source Current Case.

In our discussion of the GL theory in Section 2, the external field is a magnetic
field, i ^ x . A more general situation is that the external field may be coupled into
the model through the form of a smooth source current density, J e x = (Jfx) (say).
In this case the energy density takes the following form

) + Ajjf
x, (is)

and the corresponding GL equations are

±(\-\<l>\>)4> = 0 ,
(19)

In order to observe consistency in (19), we must impose the current conservation law

djjf* = 0. (20)

For n = 3,4, the existence of solutions of (19) as minimizers of the GL energy has
been established in [Yl, Y2] under the condition (20) and

jfx€L&(Rn), j = l , . . . , n ; n = 3,4.

An obvious reason for imposing the above condition is due to the Poincare type
inequality (5) so that the GL energy is ensured to be bounded from below. For the



case n = 2, since (5) is no longer valid, we need some new conditions on J e x to solve
(19). In this section, we assume in addition to (20) that

2 dx<oo , (21)

f as |x| = i2 -> oo, j = 1,2. (22)

Theorem 4. Assume that (20)-(22) hold. The GL equations (19) over R2 subject to

the general source current Jex = (Jf*) have a finite-energy smooth solution (<f>. A) in

the Coulomb gauge, djAj = 0.

Proof. Again the energy density (18) is not good enough to work on and we have
to use the modified energy IQ = fJodx where XQ is as defined in (11). Set / =
h + / AjJfx dx. Consider the problem

= min{/(<£, A) \(<f>,A)£jx « , I0(<f>, A) < oo}. (23)

Since for A € H,

I M2 dg<CHAl|i,
x|2ln2|x| " " IW1

therefore the Schwarz inequality and (21) imply that AjJfx €
We first show that / is invariant under the gauge transformation (2) when u>(x) =

a\X\ + ^2^2 is a linear function- In fact, we have already observed the invariance of IQ.

On the other hand, from (20) and the divergence theorem, we have for A1 = A + Vu;,

-LBR JBR

IBR

Thus, using (22) and letting R —* oo, we see that

^ x (24)

Namely, the invariance of / holds as well.

We next show that Jmin in (23) is finite. For given (^, A) in the admissible set of
(23), we obtain as in Sect. II a modified pair (^', A') so that # = ^e iu\ A' = A + Vw,
u> is a linear function, and the average of A9 on B3 = {x € R2 | \x\ < 3} is zero. Using
the Poincare inequality on £3 and Lemma 2, we have



On the other hand, there holds for any e > 0,

-ifL-dx)
(26)

Inserting (25) and (26) into (24) yields

J (*A)>CiJ 0 (* f A)-Ca , (27)

where C\,Ci > 0 are constants so that C2 depends only on J e x . In particular, the
finiteness of 7 ,^ follows.

Let { (^ n ^ n )} be a minimizing sequence of (23). Our earlier discussion on the
invariance of the terms in the energy functional allows us to assume, after a suitable
gauge transformation, that An has zero average on J93. Hence An verifies (25). Con-
sequently (27) implies that {An} is a bounded sequence in H. So it follows by passing
to a subsequence if necessary that we may assume (16) for {(^n, An)}.

Given e > 0, let Ro > 2 be such that

|x|2 In2 |x| I J^l2 dx < e2, R> Ro.

Then the integral 7(^n, An\ R) = f(Io((f>n, An) + A]Jfx) dx over BR satisfies

I(<f>\ An; R) < I(<f>n, An) + eVM, n = 1,2, • • •,

where
f

= sup /
n ^|x|>2

\An\2

2 dx,
| 2 l n ' | |

which is finite according to (25) and (27). We can then duplicate the steps in proving
Theorem 3 to show that (^, A) is a minimizer of (23) which also solves the GL
equations (19) because of (20). •

IV. Asymptotic Behavior and Flux Quantization*

In this section, we assume that (^, A) is a solution of (3) or (19) with finite modified
energy 7o(^, A) < 00 and in the Coulomb gauge. Using the methods of [Yl, Y2], it is
not hard to establish the following L2-estimates.

Theorem 5. Suppose in (3) ((19)) that the external field Ffk
x (Jfx) lies in the

space Wl*(R2) (L2(R2)) (j,k = 1,2/ Then DfD$<}> € L2(R2), \Df<}>\ € W1 '2^2)
ft, k = 1,2; and 1 -M 2 € Wl*2(R2)for anyp>\. Besides, \<f>\2 -> 1 as \x\ -> 00 and
M < 1 in R2 or otherwise \<f>\ = l. If, furthermore, Fj? € W2 '2^2) (Jf* € WX<\R2))
(j,k= 1,2/ then Df&djAk € W2*(R2) (j,k = 1,2/



We skip the proof here.
From the well-known Sobolev embedding Wl'2(R2) -* LP(R2) (Vp > 1) and the

fact that functions in WltP(R2) (p > 2) vanish at infinity, we obtain

Corollary 6. For Ff£ € W2'2(R2) (Jf* € Wl*2(R2)) ft, Jb = 1,2;, there hold

as \x\-+oo,

We have shown in Sect. II (III) that (<f>. A) can be obtained as a minimizer of the
problem (12) ((23)) which is a finite-energy smooth solution of the GL equations (3)
((19)). In order to calculate the magnetic flux carried by the solution, some minimal
decay assumption for the external field has to be made. The main reason for doing
this is that decay estimates of the quantities 1 — \<f>\2,Dffa and Fjk can thus be
established so that undesired boundary terms will be eliminated in the integral of our
flux evaluation.

For this purpose, we impose the following power type decay properties for the
external field:

\dk(Ff? - Ff*)\ (or |Jfx|) < C|*r , (28)

\dA(f?f ~ f??)\ (or ftJf* - dkJf*\) < C|*|->, (29)
where a, 0 > 0,j, k = 1,2, and \x\ is large.

Theorem 7. Suppose Ff? € W2>2(R2) (Jfx € Wl>2(R2)) (j = 1,2/ If Ffk
x (Jfx)

decays according to (28), then asymptotically

\D}*\<C\x\-, 0 < 1 - \4>\2 < C\x\-2°, j = l,2.

//, in addition, Ffk
x (Jf1) satisfies (29), then

Proof. We shall only demonstrate the case when the external field is the source
current, J e x .

Set gj = Df<t> and \g^ = 9j9j* ^ is crucial to derive the decay estimate for |^|
first.

Let V* be an arbitrary complex serial function. By the definition of the gauge-
covariant derivatives, we easily verify the useful curvature identity

DfD£tl> - DfDf 0 = - i

10



From this and the equations (19), we have after a lengthy calculation

^ ^ i - - | ( l - W ^ i + iy iW8» +^^;-2iFfci<,fc-iJf3V. (30)

Applying (30) in

we find that

V2 |5 |2 > ([A + 1 - |A - 1|]|^|2 - [A(l - M2) + 4\F12\])\9\2 - 2 | J « | \g\.

Since \<f>\ —• 1, F12 —» 0 as \x\ —• 00 (see Corollary 6) and A > 0, the above inequality
has the reduction

V2\9\2>Cl\g\'i-C2\Jex\2, \x\>R, (31)

where Cj, C% > 0 are constants and R > 0 is sufficiently large.
Introduce the comparison function

<T(X) = C3\x\-2a, \x\ > R. (32)

Then W = 4a2|x|-2<r (\x\ > R). Inserting this equation and (28) (for J e x) into
(31) yields

< 4a2|x|-2(r - d\g\2 + C2\x\~ia

- C l 1 ^ (33)

where we have assumed that R and C3 are such that 4a2i2~2+C2/C3 < Ci- Obviously,
for fixed 72, we may choose C3 > 0 in (32) so large that ((?—\g\2) \\X\=R > 0. From this
boundary condition, the property a — |^|2 —> 0 as |:r| -* 00, (33), and the maximum
principle, we see that |p|2 < a for \x\ > R. Namely |<7| =0(1x1"*).

Similarly, the asymptotic estimate of 1—\<f>\2 follows from using the above argument
in the equation

V2(l - W) = A W2(l - M2)

while treating — 2|^|2 as a decaying source term.

11



Now suppose (29) holds in addition. Differentiating (19) gives

VidtAj) = iferf - g*gk) + \{<i>'[DUi\ - ̂ WftD + &-f- (34)

Thus, using (34) and the aforementioned curvature identity, it is seen that F12 =
satisfies the equation

V2F12 = |<6|2F12 + ifofo - gl9;) + (ftJfx - 82Jfx).

Thus
V 2 F 2

2 >

where Ci,C2 > 0 are constants, /Z is a large number, and 7 = min{2a,/?} with ^8
being given in (29). Thus we can prove as before that F?2 < C|x|~27.

The proof of the theorem is complete. •

Concerning the total magnetic flux of the solution (^, A), we have

Theorem 8. Assume the condition (28) where a > 1 and let H = F12 denote the
induced magnetic field. Then the total flux $ is quantized according to the expression

$ = lim / Hdx = 2*N, (35)

where N is an integer which is recognized as the winding number of the order param-
eter <f> on the circle at infinity of the plane.

Proof. Let RQ > 0 be such that |<£| > \ for |x| > RQ (Theorem 5 or 7). Then the
winding number N of <f> at infinity obeys

2TTN = / darg<£ = - i / dln<£ for any R > RQ. (36)
J\x\=R ° J|*|SA

On the other hand, the divergence theorem and Theorem 7 imply that

<\f t^Dfdln^
!\X\<R J\x\=R l*|X|=Jl y^-v

^ CR~* "" ', xt > /to.

Inserting (36) into (37) and letting R —• oo, we find $ = 2xN as expected. D

Thus, although the flux of the external field may take any prescribed value, the
excited flux can only assume quantized values which is a typical phenomenon in
superconductivity theory.

12



V. Minimization of Energy.

In Sects. II and III, we proved the existence of finite-energy smooth solutions of
the GL system (3) or (19) in R2 by obtaining minimizers of the problem (12) or (23)
where the energy functional / takes a modified form and is not physical. For example,
the invariance under the general gauge symmetry (2) is no longer valid. Since the
GL energy E is actually given in (10) or (18), it will be important to find solutions
of (3) or (19) so that they also minimize the GL energy. Note that, in general, the
GL equations may have multiple solutions and the physical states are represented by
energy minimizers. The purpose of this section is to get solutions of the GL equations
that minimize the energy in a suitable admissible class.

Our starting point now is to find a comparison of the GL energy E and the modified
energy / defined in (12) or (23). It appears that the space H used in Sects. II and III
is not proper for such a comparison and it is necessary to consider a subspace of W,
which is restrictive enough so that we can compare E and I and, at the same time,
large enough so that the GL equations can be fulfilled by energy minimizers of E.
The following study will follow this line.

Let C C B (see Sect. II) be the set of vector fields in R2 satisfying the condition
that, for each A € C, there is a constant vector A0 € R2 such that A — A0 is of
compact support. The closure of C in H is denoted by H\. A useful property of H\
is that there holds the identity

2-d2Aiy + (djAj)
2}dx, A = (Aj)€W1. (38)

In fact, it is straightforward to verify (38) in C. However, since both sides of
(38) are continuous with respect to the norm of W, we see that (38) is true in H\ in
general.

We are now ready to obtain a solution pair of the equations. (3) or (19) as a GL
energy minimizer in the following sense.

Theorem 9. Suppose that (4) or (20)-(22) hold. Then the GL equations (3) or (19)
over R2 have a smooth solution (^, A) which minimizes the GL energy E = / £ dx
among all field configurations in the admissible set J x Hi and in the global Coulomb
gauge. Here € is as defined in (10) or (18).

Proof. We can proceed to show as in Sect. II or III that the optimization problem
(12) or (23), with H replaced by Hu has a solution (^, A), that this solution satisfies
the GL equations (3) or (19), and that djAj = 0 in R2. We claim that

E& A) = min{£W, A) | (*, A) € J x Hu diAj = 0}. (39)

13



In fact, the identity (38) says that J(^, A) = E(fa A) for (<f>, A) € J x Hx with

djAj = 0. Thus E(4>, A) = I&A) < I{<f>,A) = E{<j>,A) for (<£,A) € J x 7ix and
3jAj = 0 as expected. O

Note. Another technical reason for the choice of H\ (or C) is that the space is

invariant under translations by constant vectors. This property is crucial because it

allows us to make gauge transformations (2) in the modified energy / in which u) is

a linear function of the variables. The discussion in Sects. II and III showed the

importance of such a feature in extracting a locally weakly convergent minimizing

sequence.

VI. The General Scalar Potential Case.

We have assumed in our Lagrangian density (1) that the potential function of the

order parameter <f> takes the form V(|^|) = ^(\<f>\2 — I)2- In fact our method in the

existence proofs applies to the more general situation that the non-negative function

V(s) (s > 0) satisfies

sp - < V(s) <sq

where Ci,C2 > 0 are constants. Part of the interest in such an extension is to

accommodate in the family of finite-energy solutions the normal state <f> = 0, Fjk =

Fff. For example, we may choose V(|^|) = | | ^ | 2 ( | ^ | 2 - 1 ) 2 as in the self-dual Chern-

Simons-Higgs theory [HKP, JW, SY]. In this case the generalized GL equations in

A X
£l*|2(l - M2)^ - j ( l - |*DV = 0,

(40)

Here we consider only the source current case. We can prove as in Sect. V, for

example, the existence of a smooth solution of the equations which is also a GL

energy minimizer among all field configurations in the Coulomb gauge. In this section,

we restrict our attention on the study of the asymptotic behavior of a finite-energy

solution. In view of (40), a lengthy calculation shows that gj = Df<f> satisfies

+. ( £ + [ £ - 2A] |*|2 + |A|tf) f t
(41)

2 - [2A+(
Prom (41) we can prove that DfDfa € L2(R2), \Dff\ € W l l2(R2) if (<f>, A) is of finite

energy and Jfx € L2(R2). Moreover, since dkAj satisfies (34), we obtain dkAj, Df4> €

14



W2'2(R2) if Jfx € Wl>2(R2). Therefore the simple inequality

and the bound \<f>\ < 1 imply that \4>\{\<j>\2 - 1) € W ^ R 2 ) for any p > 1. As
a consequence (see Sect. IV), we can state the following asymptotic behavior of

Theorem 10. Suppose Jfx € W U (R 2 ) for j = 1,2 and (<f>,A) is a finite-energy

solution of (40) in the Coulomb gauge. Then

0 < M(l - \<f>\2) -> 0, Df<f> -> 0, dkAj -4 0 as \x\ - • 00.

Furthermore, if Jf1 fulfills (28)-(29), then the solutions satisfying \</>\ = 1 at infinity

have the decay properties described in Theorem 7. On the other hand, the solutions

satisfying \<f>\ = 0 at infinity obey the exponential decay property

) for largt j x | # (42)

In this situation \Df(f>\ decays as in the \<f>\ -» 1 case.

Proof. It suffices to elaborate on the second part of the statement. As in Sect. IV,
(41) gives us the inequality

2 J ( 4 3 )

|2 - (2A + 1)| \<f>\>\g\2 - A\Fn\\g\ - 2\Jex\\g\.

Since either \<f>\ —• 0 or \<f>\ —• 1 as |x| —» oo, the inequality (43) always leads to (31).
Thus \g\ =O(\x\-°).

Assume first that |^| —• 1 as |x| —> oo. Then

V 2 ( l — \<f>\2) = — 2Re{<f>*D£D£<f>} — 2\g\2

= > ( W 4 ~ \\<f>\2[l - M 2 ] ) ( l - l^l2) - 2\g\2.

Because the coefficient of 1 — \<f>\2 on the right-hand side of above equation becomes
positive when \x\ is larg*, we see that 1 — \<f>\2 decays like \g\2 as in Sect. IV.

Assume next that |^| —• 0 as |x| —• oo. Then

15



As |z| --> oo, the coefficient of \<f>\2 on the right-hand side above goes to j . Hence it

is standard that \<f>(x)\2 =0(e-vTM) for large |*|. D

Note. The accurate statement of (42) is that for any 0 < e < 1, there is C(e) > 0,
so that

\<t>(x)\2 < C(e)e-VT<i-«>Wf x € R*.

It is interesting to see that the decay rate of |^|2 in this case is independent of the

property of the source term at infinity. This reveals a difference of solutions which are

asymptotically the symmetric vacuum, characterized by \<f>\ = 0, from the solutions

which are asymptotically asymmetric vacua, characterized by |^| = 1. The former are

called in the Chern-Simons model case non-topological solutions [JLW] in contrast

to the latter, topological solutions, for which the integer TV given in the flux formula

(35) in Sect. IV is a topological invariant.

VII. A Constrained Minimization Problem.

We now go back to the classical case that the bare energy density So is as defined in

(10) so that a finite-energy solution goes to the asymmetric vacua at infinity. From the

discussion in Sect. IV, we see that such a solution carries a quantized magnetic flux

given in (35). The integer N is unknown to us. In particular, it is not clear whether

every integer TV can be realized by the flux of a finite-energy solution according to

the expression (35). Thus we are led to the following question.

Given an integer TV, can we find a solution of the problem

Minimize E(<f>, A) = JR2 {&(*, A) - ±FikF$*(ar Aj Jfx)} dx
(44)

subject to j L FX2 dx = 2?rJV?

There are only available results when the external field Ff* or Jfx is absent.

The problem is best understood in the self-dual case [Bo] when A = 1 due to the

work in [Tl, T2, JT]: For any JV, (44) has a 2iV-parameter family of solutions with

the parameters characterizing the locations of the zeros of the scalar field ^. These

solutions represent JV non-interacting vortices. When A ̂  1, it is shown in [P, BC]

that, for each TV, the energy E has a radially symmetric critical point satisfying the

constraint in (44). However, it is not clear as to whether these radial solutions are

absolute energy minimizers in the constraint class.
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