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More precisely, we consider a strain energy W(E) with local minima
at E = Eq (q = l,2, . . . ,Q), and approximate W(E) by a sum of quadratic wells
centered at the Eq; here E is the finite strain measure4

T + VuTVu), (1.1)

with u the displacement. Using this ansatz, we arrive at an "approximate"
strain energy

Q

W(E,%) = ZxqWq(E), (1.2)

with

Wq(E) = wq • {(E-Eq)-Aq[E-Eq], wq = W(Eq). (1.3)

Here:
(i) Aq[-] — a linear transformation from the space of symmetric

tensors into itself — is the second derivative of W(E) at E = Eq and can be
determined knowing only the elasticity tensor appropriate to infinitesimal
deformations from a reference configuration at strain Eq.

(ii) XS(%1,X2» -^ »XQ) *s a Pure phase; that is, one of its entries has
value 1, while all of its other entries vanish. Let X = %(x) and E=E(x). Then,
at points x with %q(x) = l the strain energy W(E,%) reduces to the energy
Wq(E) appropriate to behavior near Eq; in this sense, for Q the region of
space occupied by the body,

Qq = {xcQ : Xq(x) = l } (1.4)

represents the region occupied by phase q, with Xq its characteristic
function.

We limit our discussion to the formal deduction of appropriate
variational problems for the characterization of equilibria; we do not
attempt the corresponding analysis. The simplest such problem is the semi-

inclusions, while we focus on the variationai characterization of equilibria, with and
without interfacial energy, allowing for a sharp interface or a transition layer.
^ For the most part we use the notation of [34]; in particular, 1 is the identity tensor,
while FT designates the transpose of a tensor F.



quadratic variational problem

minimize JW(E,X)dv + $(u), (1.5)
U€lLs, XcX Q

where "Us is the set of coherent (continuous) displacement fields consistent
with the displacement boundary-conditions and a requirment of rank-one
convexity of the individual wells Wq(E) (cf. (4.11)), $(u) is the joint potential
of the surface tractions and body force, and X is the set of functions X on Q
with %(x) a pure phase at each xcQ.

We also give a generalization of (1.5) that includes interfacial energy,
as well as a regularization of (1.5) in which X is replaced by an order
parameter (phase-field), with surface energy modeled by a dependence of
energy on VX-

In an Appendix we give formal derivations of the Euler-Lagrange
equations (bulk equations and interface conditions) associated with the var-
iational principles under consideration.

2. GENERAL FORMULATION

a. KINEMATICS

Throughout this note Q is a body identified with the region of space it
occupies in a fixed reference configuration. A displacement of Q is then a
vector field u on Q with deformation gradient

F = 1 + Vu (2.1)

consistent with detF>0. The polar decomposition

F = RU (2.2)

allows a decomposition of F into a pure strain

U = (FTF)*, (2.3)

called the stretch, followed by a rotation R. Here we find it convenient to



use, in place of U, the Green strain

E = {(U2 - 1) = $(FTF - 1) = {(Vu + VuT + VuTVu). (2.4)

When Vu is small, E is approximated by the infinitesimal strain tensor

) (2.5)

upon which the linear theory of elasticity is based; here we will not assume
that Vu is small, only that E is close to a discrete set consisting of local
minima of the strain energy.

b. STRAIN ENERGY
We consider an elastic material with strain energy W(E) a function of

E. Its derivative DW(E) with respect to E is then a symmetric tensor, while
its second derivative D2W(E) is a linear transformation of symmetric
tensors V into symmetric tensors D2W(E)[V]. By (2.4), the (Piola-Kirchhoff)
stress S, which is the the derivative of W(E) with respect to F, is given by

S(F) = FDW(E). (2.6)

We assume that W(E) has local minima E=Eq (q=l,2, . . . ,Q); then,
writing

Aq := D2W(Eq), (2.7)

we see that

DW(Eq) = 0, Aq is positive semi-definite. (2.8)

We will refer to q as the phase, even though some q-values might
correspond to variants of a given phase.

c. DETERMINING Aq FROM THE ELASTICITY TENSOR Cq FOR
INFINITESIMAL DEFORMATIONS FROM PHASE q.

We write Uq for the stretch tensor corresponding to Eq:



Eq = *(Uq
2 - 1). (2.9)

Suppose that we deform the body from the reference configuration by first
stretching it with deformation gradient Uq and then stretching it again,
from this deformed configuration, with stretch G; the total deformation
gradient F and stretch U are then given by

F = GUq, U2 = UqG2Uq, (2.10)

and

G2 = 1 + Vg + VgT + VgTVg (2.11)

with g the associated displacement.

The strain energy — as a function Ttfq(G) of the stretch G from phase q
— is given by

W(E), E - $(UqG
2Uq - 1). (2.12)

In view of (2.8),

DTffq(l) = 0, (2.13)

and, since

G = 1 + }(Vg + VgT) + OdVgl2), (2.14)

with {(Vg + VgT) the infinitesimal strain from phase q, the linear trans-
formation

Cq := D210q(l) (2.15)

of symmetric tensors into symmetric tensors represents the elasticity
tensor for infinitesimal deformations from q. If we compute the second
derivative of (2.12) with respect to G at 6 = 1, by taking G=l + ocB + pH, with B



and H symmetric tensors, and then computing 32<Wq(G)/c)ac)p at oc = p = 0, we
find that

B-Cq[H] = (UqBUq)-Aq[UqHUq], (2.16)

and, since B and H are arbitrary,

Cq[H] = UqAq[UqHUq]Uq (2.17)

for all H, so that

Aq[M] = VqCq[VqMVq]Vq, Vq = U^ 1 (2.18)

for all symmetric tensors M. If we denote the Cartesian components5 of
Cq, Aq, and Vq by CiJkl, AiJkI, and Vkl, then

Auk lMk l = Va iVbJCabk lVkrV l sM r s (2.19)

for all symmetric M.

Thus Aq can be determined knowing only\Jq and the elasticity

tensor Cq for infinitesimal deformations from phase q.

3. VARIATIONAL CHARACTERIZATION OF EQUILIBRIUM

Our discussion is completely formal: we will not specify regularity

hypotheses other than to note that the displacement is required to be

coherent (continuous and piecewise smooth).

We consider the equilibrium of D under loading conditions for which

the displacement satisfies u=u on a portion S of dQ, and for which the

surface tractions on the remainder of dQ and the body force b are derived

from a potential §(u). Writing

<U = {coherent u: u=u on S, det(l+Vu)>0 in Q}, (3.1)

5 That is, e. g., T*Cq[M] if and only if Tij-C4JklMkl (using the standard notation of

Cartesian tensor analysis with summation convention).



we consider the exact variational problem

minimize JW(E)dv • $(u). (3.2)
ucll Q

The requirement of coherency yields the standard compatibility
condition

[F] = a®n (3.3)

across a surface & of discontinuity, giving the jump in F in terms of the
normal n to Z and a = [F]n. (Our convention is that IF] is the limit from the
region into which n points minus that from the other region.) The Euler-
Lagrange equations corresponding to the exact variational problem consist of
the stress equation of equilibrium

divS(F) + b = 0 (3.4)

on regions over which the displacement is smooth in conjunction with the
jump conditions

[S(F)n] = 0, [W(E) - S(F)-F] = 0 (3.5)

across surfaces of discontinuity (enforcing continuity of the surface traction
S(F)n and Eshelby traction (W(E)l-FTS(F))n).

4. BEHAVIOR NEAR POTENTIAL WELLS. THE SEMI-QUADRATIC VARIATIONAL
PROBLEM

We are interested in the behavior of W(E) near its local minima at
E=Eq (q = l , 2 , . . . ,Q). Choosing a particular phase q and expanding W(E) about
E=Eq, we find, using (2.7) and (2.8), that

W(E) = W(Eq) + f(E-Eq)-Aq[E-Eq] + O(IE-Eql3). (4.1)

Therefore, to within terms of O(IE-EJ3), the strain energy is approximated



by the quadratic form

Wq(E) = wq + i(E-Eq).Aq[E-Eq], wq = W(Eq), (4.2)

which has associated with it the stress

Sq(F) = FDWq(E) = FAq[E-EqL (4.3)

We assume that Aq, as a linear transformation of symmetric tensors
into symmetric tensors, is positive definite. Even so, the nonlinear
dependence of E on F generally results in a loss of rank-one convexity for
Wq(E) as a function of F. In fact, a straightforward calculation shows that
Wq(E) is strictly rank-one convex as a function of F if and only if the
inequality

(a®a)-Aq[E - Eq] + (a®Ub)- Aq[a®Ub] > 0 (4.4)

holds for all unit vectors a and b. We note that the set of symmetric
tensors satisfying (4.4) is open, and since Aq is positive definite, this set
contains Eq. When Aq is isotropic with Lame modulus Xq and shear modulus
|j q , the left-hand-side of (4.4) has a particularly simple form

Xq {tr (E - Eq) + (a- Ub)2} + 2\iq {a- (E - Eq)a + }lUbl2 + {(a- Ub)2}, (4.5)

so that (4.4) is satisfied provided

Xqtr (E - Eq) + ̂ q { a - (E - Eq)a • JIUbl2} > 0. (4.6)

If we denote the least eigenvalue of E - Eq by kq, and the smallest principle
stretch associated with U by h, then (4.6) holds whenever

Xqtr(E-Eq) + 2uqkq + uqh2 > 0. (4.7)

By choosing a to coincide with the smallest principle stretch and b
orthogonal to Ua, it follows that (4.7) is also necessary for (4.6).



We now consider a coherent displacement field and assume that, at
any given X€Q, E(x) is close to exactly one of the natural strains Eq

(although the appropriate natural strain may vary from point to point).
Further, for each x, we let X(x) be the pure phase (defined in Section 1)
that has Xq(x) = l when Eq is the appropriate natural strain at x. Then, to
within terms of order

0 ( Z * q IE-E q l 3 ) , (4.8)
q«i

we can approximate the strain energy by

Q

W(E,X) - ZxqWq(E), (4.9)

q«l

with

Q

S(F,X) = ZxqSq(F) (4.10)
q - l

the corresponding stress. Further, to ensure rank-one convexity we restrict
attention to displacement fields belonging to the set

Tis = {u € *U:at each X€ Q, E(x) satsifies (4.4) for some q}. (4.11)

Letting X denote the set of sufficiently regular functions X with X(x)
a pure phase at each x, we are led to the semi-quadratic variational
problem:

minimize JW(E,X)dv + $(u). (4.12)
U€iis, X€3C Q

The Euler-Lagrange equations for (4.12) are (3.4)-(3.5) with W(E) and S(F)
replaced by W(E,X) and S(F,X).

Remarks.
1. If, for a solution (u,X) of this problem, the strain E takes on values

corresponding only to the minima Eq of the strain energy, then u will also
be a solution of the exact variational problem (3.2). The extent to which the
semi-quadratic problem approximates the exact problem is an interesting
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open question.
2. As shown in Section 2c, Aq can be determined knowing only Uq and

the elasticity tensor Cq for infinitesimal deformations from phase q. Since Cq

is known for a large class of materials, the strain energy W(E,%) is, in
principle, not difficult to determine.

3. In the variational problem (4.12) the underlying restriction,

IE(x)-Eql is small when Xq(x) = l, (4.13)

is to be verified a-posteriori. This variational problem is, however, mean-
ingful irrespective of (4.13) and might play a role in the study of phase
transitions similar to that played by the linear theory of elasticity in more
classical settings. (With proper interpretation, linear elasticity is successfully
used to study phenomena such as fracture, even though it yields infinite
strain at the tip of a sharp crack.)

Surface energy for interfaces between phases can be defined formally
through the measure

Q

HVX) = i 2 a q p { | V X q M V X p | - | V ( X q + X p ) l } , (4.14)
q,p*i

where crqp = apq are constants with aqp > 0 if q * p and aqq = 0; aq p

represents the surface energy (per unit area) of the interface J&qp between
phases q and p. (F(V%) vanishes away from such interfaces, while
r(V%) = aq p iVXql on £qp (since Xq+Xp is continuous across £q p and
lVXq!=lVXpl on Zqp).

The semi-quadratic variational problem with interfacial energy takes
the form:

minimize J{W(E,X) • T(VX)}dv + §(u). (4.15)
u€<Us, XcX Q

The formal Euler-Lagrange equations corresponding to this variational
problem consist of the stress equation of equilibrium (3.4) with S(F)
replaced by S(F,X) in each of the phase regions Qq in conjunction with
jump conditions
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0, [W(E,X> - S(F,X)-F] = -2ag pK (4.16)

across each interface >8qp, with n the unit normal to 3Qq and K twice the
mean curvature of ,8qp (taken as positive whenever the osculating sphere
lies in Qq). An additional interface condition is supplied by the coherency
relation (3.3).

5. REGULARIZED THEORY
We now consider a regularized theory in which the Xq act as phase

fractions and interfaces are identified with thin transition zones throughout
which X exhibits large gradients.

More precisely, we no longer require that X be a pure phase, but
instead allow X to take on any value in KQ consistent with the constraints

Q

Z Xq = 1, Xq €[0,1] for each q. (5.1)
q-i

We retain the definitions (4.9) and (4.10) for the strain energy W(E,X) and
stress S(F,X), so that , by (5.1), Xq may be interpreted as the volume
fraction of phase q.

Recognizing that in the current context each well of the potential is
generally operative at each point in Q, we restrict attention to displacement
fields that belong to

mr = {uc l l : a t each X€ Q, E(x) satsifies (4.4) for all q}. (5.2)

We assume that this set is not empty. In the case of Q isotropic phases the
requirement that l l r be nonempty is

A q t r (E p -E q ) + 2uqkp q + Uqhp
2 > 0 (5.3)

for all p and q, where kpq denotes the minimum eigenvalue of E p -E q , and
hp is the minimum eigenvalue of Up.

At equilibrium we want X to be near the set of pure phases; with this
in mind, we introduce on
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V = { XclRQ : X satisfies the constraints (5.1) } (5.4)

an exchange energy f(%) with

f(X) > 0 for X*Xq, q = l,2 Q; f(Xq) = 0. (5.5)

Because of (5.1),

Q

q = 0. (5.6)

Taking this into account, we model inter facial energy using a gradient
energy,

Q

g(VX) = | 2 XqpVXq-VXp, (5.7)
q,p«i

where Xqp=Xpq are constants, where

Q

2 Xqs = 0, (5.8)
s«l

and where the matrix with entries Xqp is positive definite on the subspace of
vectors in IRQ whose entries sum to zero.

Let X denote the set of all sufficiently regular functions %:Q-*V. The
regularized variational problem then has the form

minimize^ J{W(E,X) + f(%) +g(VX)}dv + $(u). (5.9)
U€llr, XcX Q

The Euler-Lagrange equations corresponding to (5.9) consist of a stress
equation of equilibrium

divS(F,X) + b = 0 (5.10)

in conjunction with an equation

Q

S x q p A x p + Trq = 0 (5.11)
p-1
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for each phase q=l,2,... ,Q, where

Q

nq = -dXaf(X) - Wq(E) • (1/Q)Z Wp(E), (5.12)
p-i

and where 3^ f represents the flq-componentM of the gradient of f on the
hyperplane defined by the first of (5.1), so that

Q

= o. (5.13)

To qualify as a regularization of (4.12) the total energy should be
dominated by contributions from the strain energy in regions of pure phase
and by the exchange and gradient energies between such regions. To achieve
this the different terms of the energy must scale appropriately.
Specifically, suppose Q contains a single interface of dimensionless thickness
e that separates two phases. Let i be a characteristic length associated with
Q, and let ML, V, and X denote scale factors for W, f, and g respectively.
Provided these obey \i/v = O(t) and X/v£2 = O(e2), an argument used in [35]
can be adapted to show that the Euler-Lagrange equations of (5.9) tend
formally, as e-*0, to those of (4.12). This argument yields, furthermore, a
relationship between the coeflicient apq used in the sharp interface theory,
and the exchange and gradient energy terms used in the regularized theory.

The problem (5.9) has a simple generalization: in place of
W(E,%)+f(%) + g(V%) we consider an energy W(E,X,V%), that need not be
semiquadratic, in conjunction with the problem:

minimize^ JW(E,X,VX)dv + $(u). (5.14)
ucil, X€X Q

where Ti is an appropriate open subset of 11. Let pq=VX

S = F3EW(E,X,VX),

Ttq = -5XqW(E,X,VX), (5.15)

*q • 3PqW(E,X,VX),

where c)̂ nW is the Mq-componentM of the partial gradient with respect to X
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of W on the hyperplane P, while dp W is defined similarly (with (5.6) as the
relevant constraint), so that the sums over q of Ttq and of $q each vanish.
We are then led to the more general Euler-Lagrange equations

divS + b = 0, div$q + nq = 0. (5.16)

Note that

Q

Z(divftq + Tiq) = 0, (5.17)
q = l

so that only Q- l of the balances (5.16)2 are independent.
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APPENDIX. FORMAL DERIVATION OF THE EULER-LAGRANGE EQUATIONS
For convenience, we assume that the body force b vanishes, so that

the potential §(u) depends at most on the restriction of u to 3Q.

a. THE EXACT VARIATIONAL PROBLEM (3.2)
Let u be a solution and restrict attention to a sufficiently small closed

ball Be (interior Q) such that the surface ,8 across which F jumps divides B
into disjoint regions B^ and B2, with unit normal n to % outward from B±.
For all sufficiently small t, let vx(t)€<U with u(0) = u and u(t)-u compactly
supported in B, and assume that, in B, u(t) jumps across a surface £(t)cB
that depends smoothly on t, has Z(0) = ZDB, and has unit normal ft(t) with
n(0) = n. Let

W(t) = W(E(t)), S(t) = S(F(t)). (AD

with E(t) and F(t) the strain and deformation gradient corresponding to

u(t). Then
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V(t) := {JW(t)dv)* satisfies V(0) = 0, (A2)
B

where the superscript dot denotes the derivative with respect to t. Let /8*(t)
denote the normal velocity of Z(t) (t considered as time). Then

V = - J[W]£*da + JS-F*dv + JS-Fdv (A3)
Jo B^ B 2

(Bi(t) and B2(t) have obvious meanings), and integrating the second and
third terms by parts yields

V = -J{[W]^-+<Sh>-[u*]+[Sh]-<u-»da - JdivS-iTdv, (A4)
Z B

where <g> denotes the average of the limiting values of g on either side of Z.
Thus, using the compatibility condition

[u*] - -^*[F]h (A5)

and the fact that the "variations" (u#> and Jo* are arbitrary, we find — upon
setting V(0) = 0 — (3.4) with b=0, (3.5)^ and

[W(E) - S(F)n-Fn] = 0; (A6)

but (3.3) and (3.5^ yield S(F)n-Fn=S(F)-F, and (3.5)2 follows.

b. THE SEMI-QUADRATIC VARIATIONAL PROBLEMS (4.12), (4.15)
We will establish only (4.15); (4.12) follows upon formally setting the

a's to zero.
Let (u,%) be a solution of (4.15). Let Be (interior Q) be a sufficiently

small closed ball such that B intersects (only) Qq and Qp, with ^ = ̂ q pcB the
corresponding interface. For all sufficiently small t, let uftjcii and X(t)€X
satisfy u(0) = u and X(0) = X, and suppose that u(t)-u and X(t)-% are
compactly supported in B. Then, using notation analogous to that of the last
section,
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V(t) := {J(W(t) + r(VX(t)))dv}' satisfies 17(0) = 0. (A7)

B

Further,

{Jr(Vfc)dv}' = aqp{areaU)}* = -2aqp jici'da, (A8)
B %

so that steps analogous to (A3)-(A6) yield (4.16).

c. THE REGULARIZED VARIATIONAL PROBLEMS (5.9), (5.14)
We will establish (5.14); (5.9) is a special case. Let (u,X) be a solution

of (5.13). For all sufficiently small t, let uMcTJ and X(t)cX satisfy u(0) = u
and X(0) = X. and suppose that u(t)-u and %(t)~X are compactly supported
in D. Then, using notation analogous to that of the preceding sections,

V = J{S.F*+ZUq .(VXqr- Trq(Xq)*)}dv, (A9)
Q q = 1

and integrating S*F# and ^q*(VXq)* by parts, we find that

V(0) = J{divS.£T(0) - S (div$q ^ nq)(Xq)"(0)} dv. (A10)
Q *ml

But V(0) = 0. Thus, since u#(0) is arbitrary, while (Xq)#(0) must sum to zero,
but is otherwise arbitrary, (5.16) follows.
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