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ABSTRACT This paper develops a thermomechanics of two-phase heat
conductors in which the interface between phases is fully faceted. The
theory is based on balance of forces, balance of energy, and growth of
entropy in conjunction with constitutive equations for the interface; and the
chief result is a free-boundary problem of Stefan type in which the classical
interface condition u * 0 is replaced by a condition relating the integral of u
over each facet to the normal velocity of that facet.

1. INTRODUCTION
The classical theory of solidification is based on a free-boundary

problem consisting of the bulk energy balance

cuu- = -divq, q = -KuVu (1.1)

in each phase |j = oc,p, balance of energy

{V = [q].m (1.2)

across the interface & = «&(t), and the Stefan condition

u = 0 (1.3)

on /8, supplemented by suitable initial and boundary conditions. Here



u « (e - eT)/eT (1.4)

with © the temperature and ©T, a material constant, the transition

temperature; [q] is the jump in the heat flux q across Z\ $. is the

latent heat; cM and K^ are the specific heat and conductivity tensor

(multiplied by ©T); m is the orientation (the unit normal to & directed

outward from oc); V is the normal speed1 of Z.

In the presence of interfacial energy and transformation kinetics the

Stefan condition (1.3) is replaced by a condition2

{u = {f(m)l + D2f(m) }-L - b(m)V, (1.5)

where L is the curvature tensor of Zt f(m) is the interfacial free energy

and b(m) the kinetic modulus at ©T, and D2f(m) is the second

derivative of f(m) on the unit sphere.

Many materials are characterized by interfacial energies, termed

crystalline, for which f(m) has cusps at orientations mc3Tl, with tJTl a

finite set representing the low-energy orientations of the interface.3

Since D2f(m) is "infinite" at mctTfl, it seems reasonable to expect, as a

formal consequence of (1.5), that the interface is flat (L = 0) for

orientations me 311, a conclusion reached by Herring,4 who proposed the

interface condition

{ Ju(x,t)dA(x) = Z XFGLFG(t) - AF(t)b(mF)VF(t) (1.6)
F

 G

on each facet F = F(t), where mF, VF(t), and AF(t) are the orientation,

normal speed, and area of F; the sum is over all facets G adjacent to F;

LFG(t) is the length of the edge FnG; and

use the term speed even though we do not restrict V to be positive.
2Cf. Gurtin [1988,1993a] for references to the extensive literature on free-boundary

conditions of this type and for a derivation of (1.5) within the framework of

continuum thermodynamics.
3UH is the exact set of orientations that appear on the Wulff shape (the unique

crystal shape that minimizes total interfacial energy at fixed volume).

^[1951], eqt. 15, for V « 0. An equivalent version of (1.6), for the interface a

polygonal curve in the plane, was proposed somewhat later, but independently, by

Ben Amar and Pomeau [1988] and Gurtin and Matias [1990].



xFG = {(mF-mG)f(mF) - f(mG)}/{I - (mF-mG)2}i. (1.7)

Here it is tacit that the orientations of Z are confined to 3H, so that Z> is
fully faceted. Interestingly, in contrast to the classical Stefan condition
u = 0, (1.6) represents a condition on the integral of u over each facet F,
and is hence nonlocal.

It is the purpose of this paper to develop a thermomechanics of two-
phase heat conductors in which the interface between phases is fully
faceted, with orientations m confined to a finite set 3TL Following Gurtin
[1988], we base the theory on balance of forces, balance of energy, and
growth of entropy in conjunction with constitutive equations for the
interface giving the free energy f, the entropy s, and the normal
interaction TT (the normal force exerted by the bulk material on the
interface) in terms of ©, me311, and V. Using the Coleman-Noll procedure
[1963]5 to restrict these constitutive equations, we find that: (i) the free
energy and entropy are independent of V and related in the classical
manner; (ii) the normal interaction has the form

TT = [+] - b(e,m,V)V (1.8)

yith ^ the bulk free energy and b(©,m,V) > 0 a kinetic modulus.
The free-boundary conditions resulting from these general constitutive

equations and balance laws are complicated, and for that reason we
consider a simplified theory in which the interface conditions are linearized
in the variables u and V; the resulting system, which we refer to as the
quasi-linear system, consists of the bulk equations (1.1) supplemented by
the interface conditions (1.2) and (1.6).

The quasi-linear system is an approximation of the general theory
and cannot be expected to obey the general laws of energy balance and
entropy growth. We modify the quasi-linear system by adding "higher-
order" terms which give the theory an approximate thermodynamic
structure; when ca=Cp — a condition trivially satisfied in the quasi-static
theory obtained by setting ca= c^ = 0 — the modified system reduces to the
quasi-linear system.
5As generalized by Gurtin [1988] to two-phase materials.



Global grov/th conditions are established for the modified system in a

bounded domain under various boundary conditions. In particular, for

quasi-static situations with the boundary insulated and disjoint from the

interface, the total interfacial free energy (at the transition temperature)

decreases, while the volume of each phase remains constant.

We next consider situations in which the conductivities of the

individual phases are small and the boundary is held at the constant

temperature U, and give a plausibility argument leading to the evolution

equation6

b(mF)VF(t) = AF(t)"1Z XFGLFG(t) - D (1.9)
G

for the interface, with D a constant that depends only on U.

We introduce a notion of admissibility for the interface which requires

that: (i) orientations of adjacent facets be adjacent orientations for the

Wulff shape; (ii) the complete set of orientations of facets meeting in a

corner must be a complete set also for the Wulff shape. Granted

admissibility, we establish a simple formula for the X's of (1.7) in terms of

the gradient of the interfacial energy, extended in a convex manner from

m to all of IR3.

6Proposed by Taylor 11988], Angenent and Gurtin [1989], and Giga, Gurtin, and

Matias [1993].



2. CRYSTALLINE BODIES. KINEMATICS

a. CRYSTALLINE BODIES

We consider a body consisting of two phases, a and p, separated, at

each time t, by a fully faceted interface Z(t), and write Qa(t) and

Qp(t) for the subregions of the body occupied by oc and p. We assume that

the body occupies all of IR3, and that Qa(t) and Qp(t) are closed

polygonal regions with IR3 as their union and Z(t) as their intersection.

Then £(t) is the union of a finite number of closed flat sides F(t), its

facets; adjacent facets F(t) and G(t) intersect along line segments

F(t)nG(t), its edges; and edges intersect in corners. We orient &(t) by a

choice of unit normal field m(x,t), the orientation of /8(t), chosen so

that

m(x,t) coincides with the outward unit normal to dQa(t). (2.1)

We assume that each facet F(t) has orientation mF independent of t,

and that the position vector of each corner varies smoothly in time. (A

tacit assumption is that facets are neither created nor destroyed.) We

denote by V(x,t) the normal speed of >8(t) in the direction m(x,t);

since the facet normals are constant, each facet F(t) has normal speed

VF(t) a function only of t.

b. BULK AND INTERFACIAL FIELDS

Our theory is characterized by: (1) bulk fields defined in Qa(t) and

Qp(t) for all t and allowed to suffer jump discontinuities across the

interface away from its edges; and (2) interfacial fields defined on Z{t)

for all t, and allowed to suffer jump discontinuities across edges. No

restrictions are placed on the (possibly quite singular) behavior of bulk fields

at edges. For § a bulk field, we write $a and $p, respectively, for the

limits of <£ as the interface is approached from the a and p regions, and

for the jump in § across the interface:

i p - §a. (2.2)



Similarly, given an interfacial field cp and a facet F, we write <pF for the
limit of cp as OF is approached from F:

<pF(x,t) = lim cp(y,t). (2.3)

ycF(t)

We use the term tensor for linear transfornnation of vectors
(elements of DR3) into vectors: 1 is the identity tensor, CT is the
transpose of a tensor C, and a®b is the tensor product of vectors a and
b. Further, we write

P = 1 - m®m; (2.4)

P(x,t) is the projection onto the tangent plane for Z(t) at x.
Given an interfacial scalar field cp, we denote by cp° the normal

t i m e - der ivat ive 7 of <p (the derivative following the normal
trajectories of /8(t)).

c. CONTROL VOLUMES. VELOCITIES
Let R be a control volume; that is, a bounded region RcK3 with

piecewise smooth boundary. We will consistently write

Ra(t) = RfiQa(t), Rp(t) = .RnQp(t) (2.5)

for the intersection of R with the interface and v/ith the oc and p phases.
Then n.(t), when of nonzero area, has a piecewise smooth boundary curve
c)n>(t) with well defined outward unit normal i\(x,t) tangential to >8(t).
We will refer to R as a facet control-volume at t0 if n,(t) is contained
in a single facet for all t near t0; we will refer to R as an edge control
volume at t0 if, for all t near t0, n,(t) intersects exactly one edge and
no corners.

Given a local parametrization x = r(u,t) for dn.(t), w(x,t) = dr(u,t)/3t
satisfies w*m=V, w-fll = W^, where W^, the tangential speed8 of
7Cf. Gurtin and Struthers [1990].

is actually the normal speed of the curve d* in the tangent plane of Z\ we



dn,(t)t is independent of the choice of parametrization. The motion of dn,(t)

may be characterized intrinsically by the velocity field

wa = Vm + W ^ . (2.6)

In terms of this notation, WF represents the tangential speed and wF the

intrinsic velocity for the boundary curve of a facet F; for F and G

adjacent facets,

wF = wG (2.7)

on FnG.

The following transport identities will be useful: for <E a bulk scalar

field,

}• = -J[i]V + J$- + J5-; (2.8)
R * R

a

for cp an interfacial scalar field and R a facet control volume,

. (2.9)

use the term tangential to emphasize this latter property and to differentiate

from the normal speed V of Z.



3. BASIC FIELDS
The thermodynamics of the body is described by:

bulk fields

e(x,t) bulk internal energy (volume),

T}(x,t) bulk entropy (volume),

©(x,t) absolute temperature,

q(x,t) heat flux (area),

interfacial fields

e(x,t) interfacial internal energy (area),

s(x,t) interfacial entropy (area),

C(x,t) capillary stress (length),

rr(x,t) interaction force (area),

h(x,t) apparent heating (length),

with "(volume)" shorthand for "per unit volume", and so forth. Here e, T|,

and © are bulk scalar fields; q is a bulk vector field; e, s, and h are

interfacial scalar fields; C is an interfacial tensor field; TT is an interfacial

vector field.

We assume that the

temperature © is continuous across the interface; (3.1)

generally, v/e will not specify regularity hypotheses other than to note that

the remaining bulk fields are allowed to suffer jump discontinuities across

the interface away from the edges and to exhibit singular behavior at the

edges, and the interfacial fields are allowed to suffer jump discontinuities

across the edges.

It is convenient to define the bulk and interfacial free energies

through

\\> = e - ©TI, f = e - ©s. (3.2)



4. BALANCE OF FORCES
We assume tha t the force balance9

JCv + JTT = 0 (4.1)
dn, K

is satisfied for all control volumes R that intersect the interface, where
>i(t) = Rn^(t) and v = v^. The first integral gives the force on n,(t) exerted
across dn.(t) by the portion of >8(t) exterior to n,(t); the second integral
gives the force exerted on n,(t) by the portions of the bulk material
adjacent to the interface. Although Cv is defined on each vector v, it is
clear from (4.1) that its action on vectors normal to Z(t) is irrelevant, and
for that reason we add the restriction

Cm = 0. (4.2)

Let F and G be adjacent facets. Then the force balance (4.1),
applied to an edge control volume for FnG, yields, upon shrinking n, to
FOG, the edge balance

CFvF = -CGvG (4.3)

on FOG, where we have used the notation (2.3), and where v? and vG

are the outward unit normals to the boundary curves dF and dG.
Given any control volume R, the rate at which the capillary stress

does work on R is assumed given by1 0

-wK (4.4)
dn.

with w^ the intrinsic velocity field (2.6) for d>i. Further, if R is an edge
control volume for FnG, then, writing,

n,F(t) = n,(t)nF(t), *G(t) = n,(t)nG(t), (4.5)

9Gurtin [1988].
10Gurtin and Struthers [19901, Gurtin [1991].
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we may use (2.7) and (4.3) to conclude that

JOu-w,,, = JCV'W^ + JC'U-w,^. (4.6)

dn, d>iF dn,G

We assume that the capillary stress C has the form

C = crP + m®c (4.7)

with a a scalar field and

c = CTm (4.8)

a tangential vector field; the action Cv of C on a tangential field v then

consists of a component ov tangent to Z and a component (otOm

normal to J&, so that a represents the surface tension and c the

surface shear. Using (4.7), we can rewrite (4.4) as

}. (4.9)

Remark. The specific form (4.7) for C follows from an argument of

Gurtin and Struthers [1990]. The intrinsic velocity field w^ in (4.4) is

replaced by a velocity field w computed using an arbitrary local

parametrization x = r(u,t) for cMt). The requirement that (4.4) be

independent of the specific choice of parametrization then yields — by

virtue of (iii) of the Invariance Lemma of Gurtin and Struthers [1990] — the

representation (4.7).

By (4.7), the balance (4.3) is equivalent to the relation

oFvF + (cF-<uF)mF = -[aGvG + (cG-t>G)mG], (4.10)

which may be solved (uniquely) for cF*vF and cG^G; in particular,

cF-^F = [(mF*mG)aF - a G ] / [ l - (mF*mG)2]I =: AFG. (4.11)
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Consider next (4.1) applied to the facet F. If we take the inner product of

(4.1) with (the constant vector) mF, we find that

JAFG = -JTT, (4.12)
3F F

where

TC = TT«m (4.13)

is the normal interactive force.

Since c is a tangential vector field, its surface divergence on each

facet may be formally identified with its ordinary divergence dive, and, in

view of (4.7), the same applies to the divergence C. Similarly, we may

formally identify the surface gradient of a with PVa. Thus

divC = PVa + mdivc. (4.14)

The balance (4.1) therefore has the local form

divC + TT = 0 (4.15)

on each facet, or equivalently

dive + TT = 0, PVo + PTI = 0 (4.16)

on each facet.

Remarks.

1. The intrinsic motion of the interface is normal; tangential motion is

irrelevant. For that reason, we will not specify the tangential component

PTT of tr constitutively, but instead will consider Pit as determined by

(4.16)2.

2. Given the interfacial fields a and TT, let AFG be defined by

(4.11), and suppose that (4.12) is satisfied. Let c be a tangential field

defined on each facet F as the solution of the boundary-value problem
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consisting of (4.11) and (4.16)^ (Such a solution exists because of (4.12).)

Then, defining C by (4.7) and PTT by (4.16)2, the force balance (4.1) is

satisfied. We may therefore restrict attention to (4.11) and (4.12) with

the assurance that the force balance (4.1) can always be satisfied.

3. By (4.7), C is characterized by the vector

5 = am - c (4.17)

of Cahn and Hoffman [1972,1974] in the sense that

C = U-m)P - m®$. (4.18)
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5. THERMODYNAMICAL LAWS
a. BALANCE OF ENERGY. GROWTH OF ENTROPY

We consider the first two laws in the form:11

balance of energy

{Je + Je}- = -Jq-n + JthW* + C-u-wJ (5.1)
R n, dR dn,

growth of entropy

+ J S } - > -J(q/e).n + J(h/e)Wa (5.2)
R n, 3R dn.

for all control volumes R, where n is the outward unit normal to dR.
The terms hW^ and (h/e)W^ represent flows of heat and entropy into n,
across d*i induced by the tangential motion of dn,. Our analysis will show
that these terms cannot vanish if the interface is endowed with entropy.

Restricting attention to control volumes that do not intersect the
interface leads to the standard bulk relations

e* = -divq, 7i# > -div(q/e), (5.3)

which combine to form the bulk dissipation inequality

y + Tie- - O"1q-V© < 0. (5.4)

On the other hand, if we let R be a facet control-volume at some
arbitrarily chosen time t0, with F(t) the underlying facet, then, by (2.8),
(2.9), (4.9), and (4.13), if we shrink R to the interface in (5.1) and (5.2), we
find that

J{e° + (TT

(5.5)
J{s° -
>L dn.

11Cf. Gurtin and Struthers 11990], Gurtin [1991].
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Given any sufficiently regular subset *i0 of F(t0), and any smooth scalar

field (p on dn,0, we can always find a control volume R such that

t(to)=n,o and W^(x,to) = (p(x) on dt0- Therefore

o = f, h = es, (5.6)

and we have the classical identification of surface tension with interfacial

free energy. By (5.1), dQ = hW^d^ represents the rate of apparent heating

of an element of length d$, on dn,; thus writing dS = sW d̂<t/ for the rate

at v/hich entropy is transferred across d$, as it moves tangentially, then

the second of (5.6) is the classical relation dQ = 0dS.

Next, since n, is arbitrary, (5.5) and (5.6) yield localizations

e° + (TT-[S] )V = -[q]-m, s° - h ]V > -e^Iql-m (57)

of the first two laws to the interface; these combine to form the interfacial

dissipation inequality

f° + s e ° + ( T T - [ I | J ] ) V < 0. (5.8)

The results (5.7) and (5.8) are valid on each facet, but not generally on edges

(across v/hich the interfacial fields may suffer jump discontinuities).

We turn next to a discussion of the edges. Choose adjacent facets F(t)

and G(t), let R be an edge control volume for the edge F(t)nG(t), and let

denote the intersection of R with F(t)nG(t). The quantity

E(R) = (JO* + Jq-n (5.9)
R 3R

represents the bulk energy production in R. If the bulk fields e and q

were well behaved at the edges, then E(R) would vanish as R shrinks to

^(t). We now show that, because of the presence of interfacial structure,

this will generally not be so.

By (5.1),
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E(R) = - { Je } ' + J( hWa + Cv-wJ. (5.10)

Since *(t) is contained in the union of F(t) and G(t), we may use (2.3),
(2.9), and (4.5) to conclude that

{ Je }• = { Je + Je }' = { Je» + Je° } + { JeW v + Je W ^ } , (5.11)

and, furthermore, the last term {...} may be written as

JeW,, + J(eFWF + eGWG). (5.12)

Next, by (4.6) and (4.9),

+ J(aFWF + aGWG) +

c .^ G , (5.13)

and, by (4.16)^ the final two terms reduce to

-JTTV. (5.14)
n,

Combining (5.10)-(5.14), and using (5.6), we find that

E(R) = -Je(s F W F + sGWG) - {Je° + Je°} - JTTV. (5.15)

Therefore, letting R shrink to ^ with area(>L)-*0, v/e find that

E(R) -» -J©(sFWF + sGWG); (5.16)

thus at each edge there is a net production of bulk energy induced by the
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tangential speeds of the facet boundaries in the presence of interfacial

entropy. Note that, by (5.6), the integrand in (5.16) is (hFWF + hGWG), so

that the production of bulk energy at an edge is balanced by the apparent

heating of the two facets at the edge.

b. SECOND LAW IN TERMS OF A GIBBS FUNCTION1*

We will be most interested in situations involving small departures

from a given constant temperature OT. The physical interpretation of OT

is irrelevant to the discussion of this section; in later sections it will denote

the transition temperature. Dynamics with small temperature changes is

cumbersome using a formulation based on entropy; a more useful version of

the second law involves the Gibbs function

cp = 8 - ©TT) (5.17)

in conjunction with the field

u = (e - eT)/e, (5.18)

and is derived by multiplying (5.2) by OT and subtracting the resulting

inequality from (5.1); the result is

v + J (e -e T s )} - < - Juq-n + JtuhW,,* Ou-wJ. (5.19)
R n, dR dn.

Gurtin [1993b], §3.
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6. CONSTITUTIVE EQUATIONS.
a. BULK CONSTITUTIVE EQUATIONS.

We consider bulk constitutive equations for the entropy and free
energy of each phase |a = oc,p in the standard form

^ 4; = ^u(e), (6.1)

with constitutive response functions fĵ  and \\>u related through

fi^(e) = -d(j,u(e)/de. (6.2)

To these we adjoin a Fourier law for the heat flux:

q = -Ku(e)Ve, (6.3)

with K(e), the conductivity tensor, positive definite. The relations (6.2)
and (6.3) ensure satisfaction of the bulk dissipation inequality (5.4).

In view of (3.2), (6.1) yield an analogous constitutive equation

e = 6 (̂0) (6.4)

for the internal energy, whose derivative

(6.5)

is the bulk specific heat.
In classical theories of solidification there is a temperature ©T, called

the transition temperature, at which the phase transition takes place. At
©T the free energies of the two phases coincide and ^a(©) - ^p(©) changes
sign, indicating a change in the relative stability of the two phases. Here we
suppose that a transition temperature exists, but we do not require that
the phase change take place at ©T.

Precisely, we assume that there is a unique temperature eT, called
the transition temperature, at which:
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v/here v/ithout loss in generality we have set to zero this common value of
the free energy. The difference

« = Ve T ) - ea(eT) (6.7)

in internal energy between phases at the transition temperature is the
latent heat, which we assume to be nonzero. To discuss behavior near the
transition temperature we introduce the temperature difference

u = (© - eT)/eT; (6.8)

then, for lul small,

= "*u + 0(u2),
( 6 g )

p - ea(e) = I + 0(u),

and, for cp and u defined by (5.17) and (5.18),

u = u + 0(u2),

qp = eTcM(eT)u2 + 0(u3) in phase |JL, (6.10)

ty = cp - ue + O(u3).

b. INTERFACIAL CONSTITUTIVE EQUATIONS
We now restrict attention to evolutions of the body for which

the orientation m of the interface
is confined to a finite set 3TI. (6.11)

3TL is related to the lattice structure of the crystal and should be envisaged
as representing stable orientations of the interface. As constitutive
equations we allow the free energy f, the entropy s, and the normal
interactive force TT to depend, not only on the temperature ©, but also on
the orientation and kinetics of the interface through dependences on mctJTl
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and V:

f = f(e,m,V), s = s(e,m,V), n - fr(e,m,V). (6.12)

We require that these constitutive relations be consistent with the

interfacial dissipation inequality (5.8). Then for F(t) a facet with

orientation me311,

(fe(e,m,V) + £(e,m,V)}e° + fv(e,m,V)V° + (fr(e,m,V) -[^]}V < 0,

(6.13)

with [^] = 4'p(0)-^0C(e)l and (6.13) holds for all such facets and for all time-

dependent temperature fields if and only if:

(i) f(e,m,V) and s(e,m,V) are independent of V, and

i(e,m) = -fe(e,m); (6.14)

(ii) there is a kinetic modulus b(e,m,V)>0 such that

fr(e,m,V) = ^p(e) - ^a(e) - b(e,m,V)V. (6.15)

We assume, henceforth, that (6.14) and (6.15) are satisfied with

f(e,m) > 0, b(e,m,V) > 0. (6.16)
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7. THE GENERAL FREE-BOUNDARY PROBLEM
a. BULK EQUATIONS. INTERFACE CONDITIONS

The equations derived thus far combine to form a free boundary
problem for the temperature. The bulk equations consist of the energy
balance

-divq (7.1)

supplemented by the constitutive equations

e = q = -Ku (7.2)

in each phase |j=a,p, which combine to give the partial differential
equation

= div{K|J(©)Ve} (7.3)

in each phase.

The interface conditions consist of (6.11), the energy balance

le]V = [q]-m + e° + TTV (7.4)

on Z, and the force balance relations (4.11) and (4.12) with o replaced by

f. These interface conditions are supplemented by the constitutive equations

f = f(e,m), s = -iAe.m), u = ft(e,m,V),

TT = [+] - b(e,m,V)V.
(7.5)

Defining

XFG(©) = {(mF-mG)f(e,mF) - f(©,mG)}/{I - (mF-mG)2}i, (7.6)

we can rewrite (4.11) and (4.12) as

« - Z
FAG

VF(t)Jb(©(x,t),mF,VF(t))dA(x),
F . (7.7)
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where the sum is over all facets G adjacent to F, and where dA and

are the elements of area and length. Since [vp] is a function of the

temperature, (7.7) may be viewed as a relation between the normal speed

VF(t) of the facet F(t) and the temperature field over the entire facet.

There is also the restriction (5.16) on the strength of the singularity in

the bulk fields at the edges.

b. INITIAL CONDITIONS. BOUNDARY CONDITIONS

Appropriate initial conditions involve the prescription of

Qa(0) and e(x,0) for all xcIR3. (7.8)

If, as assumed, the body (the region of space occupied by the two

phases) is all of IR3, conditions at infinity are needed; these are standard if

the interface is finite. If the body Q = Qa(t)uQp(t) is a bounded region,

then boundary conditions are required. When the interface /8(t) touches

the boundary, conditions expressing balance of capillary forces are needed at

the juncture of the interface and the boundary. Here we will restrict

attention to situations in which the interface does not touch the boundary.

Appropriate boundary conditions are then a prescription of

e(x,t) on a portion of dQ and q(x,t)*n(x) on the

remainder, with n(x) the outward unit normal to dQ, (7.9)

and the free - boundary problem consists of the bulk equations (7.3), the

free-boundary conditions (6.11), (7.4), (7.6), and (7.7), the singularity

restriction (5.16), the initial conditions (7.8), and the boundary conditions

(7.9). One might also add an admissibility condition of the type discussed in

Section 8c.
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8. BEHAVIOR NEAR THE TRANSITION TEMPERATURE

a. THE QUASI-LINEAR SYSTEM

We now linearize the bulk and interface equations in the variables u

and V, neglecting the term e° in the energy balance (7.4). We shall

simply omit nonlinear terms, a precise asymptotic development being

beyond the scope of the paper. However, because of the free-boundary, the

resulting system of equations will remain nonlinear.

It is convenient to write

f(m) = f(eT,m), b(m) = b(eT,m,0), (8.1)

and to let LFG(t) and AF(t), respectively, denote the length of the edge

F(t)nG(t) and the area of the facet F(t). Then, guided by (6.9), we replace

(7.4) and (7.7) by the interface conditions

{V = [q]-m,

(8.2)
I Ju(x,t)dA(x) = E XFGLFG(t) - AF(t)b(mF)VF(t),

F G

where the first of (8.2) is to hold on &, the second is to hold for each facet

F, the sum is over all facets G adjacent to F, and XFG are now the

constants

XFG = {(mF-mG)f(mF) - f(mG)}/{l - (mF-mG)2}l. (8.3)

Note that, in contrast to the classical Stefan condition u = 0, the second of

(8.2) represents a condition on the integral of u over each facet F.

Similarly, writing

cu for cu(eT)eT, KM for Ku(eT)eT, (8.4)

we replace (7.3) by the bulk equations

c^u- = -divq, q = -KuVu. (8.5)
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We will use the term quasi-linear system to denote the bulk

equations (8.5) in each phase \i supplemented by the interface conditions

(6.11) and (8.2). The free-boundary problem associated with this system is

obtained by adjoining the initial and boundary conditions (7.8) and (7.9)

(with 0 replaced by u). (We view the singularity condition (5.16) as

inappropriate for this system. In the next section we show that for ca = cp

the energy balance (9.11) is satisfied; this balance, when taken as basic,

yields, in place of (5.16), the conclusion E(R) —• 0.)

b. FRANK DIAGRAM. CONVEXIFIED ENERGY.

The Frank diagram13 7 (at the transition temperature) is the

boundary of the convex hull of the finite set

9 = {km^m: mctfl}. (8.6)

7 is a polyhedral surface whose vertices belong to 9; we will, in fact,

assume that

9 is the exact set of vertices of 7, (8.7)

an assumption ensuring that the Wulff shape corresponding to f(m),

mcTTl, have 3TI as its set of orientations. The construction of 3F ensures

that 7 correspond to an "energy" fo(m) defined for all mcS2:

7 = { io(m)'1m : mcS2}, (8.8)

where S2 is the set of all unit vectors. The function f0 extends f from

3TI to S2. It is convenient to further extend f to IR3 by homogeniety:

fo(O) = O and

VP) = lplfo(p/lpl) (8.9)

for all pcIR3, p*0. Then 7 is the one-level set of f0, so that f0 is a

convex function. We will refer to f0 as the convexified energy.
1 3 Frank [1963]. Cf. Angenent and Gurtin 11989] for a detailed discussion.
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c. ADMISSIBLE INTERFACES14

Both the Frank diagram and the crystal are polyhedral; to avoid

confusion we will use the following differences in terminology:

crystal Frank diagram

facet face

corner vertex

We will refer to PcJR as compatible if there is a face | of 7

such that f(Tn)'1m is a vertex of £ for each me P. We will refer to

m,r€3Tl as adjacent if the line segment from fCm)"1!)! to f(r)"1r is an

edge of 3F (in which case (m,r) is compatible).

For the interfaces £(t) under discussion the orientation of each facet

belongs to 3H (cf. (6.11)). We now consider two additional conditions:

(Wl) orientations of adjacent facets are adjacent orientations;

(W2) each set — of orientations of facets that intersect at a corner — is

compatible.

We will refer to Z as admissible if /8 is consistent with (Wl) and (W2);

we assume, for the remainder of this section, that & is admissible.

Remarks.

1. (Wl) and (W2) are satisfied by the Wulff shape; in fact, they are

equivalent to the conditions: (i) orientations of adjacent facets are

orientations of adjacent facets on the Wulff shape; (ii) the complete set of

orientations of facets meeting in any given corner are a complete set also

for some corner of the Wulff shape.

2. Admissibility is at least plausible. Almgren and Taylor [1992]

consider the problem of evolution from an admissible interface in IR2

within the framework of (9.38) with D= 0, but with a general crystalline

energy whose domain is S2 rather than OTt and whose Wulff shape has JR

as its set of orientations. They give a variational formulation of this

problem that allows for all orientations in S2 and show that its solution &

has orientations in 7R, evolves according to (9.38) with D = 0, and, what is
14This section is taken from Giga, Gurtin, and Matias [1993].
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most important, is admissible.

The conditions (Wl) and (W2) establish a correspondence between

corners on the interface and faces on the Frank diagram. Precisely, if c is

a corner of %, and if V is the set of orientations of facets that intersect

at c, then there is a unique face

\ = |(c) (8.10)

of the Frank diagram such that

} (8.11)

is the set of vertices of £. Indeed, by (W2), t is contained in the set V of

vertices of a face -£ of 7, and, in view of (Wl), V = C

The energy fo(p) is differentiate at all p with p/|pl$3Tl; in fact,

given any face -£ on the Frank diagram, Vf0 is constant on the cone

{ ap : p c | , p/lpl$m, a>0}. (8.12)

We denote this constant by Vfo(£). The next result shows that the X's in

(8.3) are completely determined by the gradient Vf0 . Precisely, we will

show that if F and G are adjacent facets and if c is a corner

terminating the edge FnG, then1^

XFG = i;rVf0(|,(c)) (8.13)

with v¥ the outward unit normal to OF on FnG.

To verify (8.13), let {. = •§.(<:), and let C denote the intersection of S2

with the set (8.12). Then Vfo(|.) = Vfo(m) for any meC, and, by

homogeniety, m-Vfo(m)= fo(m) for mcC. Thus, given any mcC, we

may write Vfo(£) in the form

= fo(m)m - c(m), c(m)-m = 0, (8.14)

Ben Amar and Pomeau [1988] and Gurtin and Matias [1990] establish an analogous

condition for the interface a polygonal curve in the plane.
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and, by continuity, (8.14) holds also for m = mF,mG.

Next, let vF and VQ denote the outward unit normals to dF and

dG on FnG. Then VF and t>G lie in the plane spanned by mF and mG

with i/FxmF = -i/GxmG, and therefore

(8.15)

(the left side acting on a vector v is ±(fFxmF)xv; the right side is also,

with the same sign). Thus applying the left side of (8.15) to (8.14) at

m = mF and the right side at m = mG, we conclude that (4.10) holds with

aE = f(mE) and cE = c(mE), E = F,G. Thus (4.11) and hence (8.3) is satisfied,

and, since Vfo(-£)*i;F = cF*vF, this completes the proof.
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9. THERMODYNAMICALLY CONSISTENT THEORY FOR BEHAVIOR NEAR THE

TRANSITION TEMPERATURE
a. MODIFIED QUASI-LINEAR SYSTEM

The quasi-linear system is an approximation of the general theory
and cannot be expected to obey the general laws of energy balance and
entropy growth. For example, when ca * cp the interface condition given
by the first of (8.2) is not the appropriate j u m p condition for the energy
equation (7.1), even when the interface is devoid of internal energy. We
now modify the quasi-linear system by adding "higher-order" t e rms tha t
give the theory an approximate thermodynamic structure.

We introduce the bulk internal energy

cau(x,t), x€Q a(t)
e(x,t) = (9.1)

t + cpu(x,t), xeQp(t),

the bulk free energy

)2, xeQ a ( t )
(9.2)

and the Gibbs function (cf. (6.10)3)

f : a u(x, t ) 2 , X€Qa(t)
<p(x,t) = 41 + ue = (9.3)

and we replace (8.2) by

Ie]V =
(9.4)

XFGLFG - AFb(mF)VF .

We refer to (6.11), (8.5), (9.2), and (9.4) as the modified quasi- l inear
system.16 Note that

We view the singularity condition (5.16) as inappropriate for this system. One
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[e] = i + [c]u, [ty] = -{u - {[c]u2, (9.5)

so that (9.4) differ from (8.2) only in the presence of the higher-order terms

[c]u in the first of (9.4) and -£[c]u2 in the second. Thus, in particular,

the interface conditions (9.4) of the modified

quasi-linear system reduce to the conditions (8.2)

when the specific heats of the two phases coincide. (9.6)

It is important to note that e and \\) do not represent the actual bulk

internal and free energies but ra ther their approximations near the

transition temperature.

Consider now a solution of the modified quasi-linear system. We

introduce an interfacial free energy f(x,t) and a kinetic modulus b(x,t),

defined on each facet F by

f(x,t) = f(mF), b(x,t) = b(mF), xcF(t); (9.7)

f and b approximate the actual interfacial free energy and kinetic

modulus near the transition temperature.

We also introduce a surface shear c(x,t) defined on each facet F as

the solution of the boundary-value problem:

divFc + TT = 0 on F, ( 9 g )

cF*vF = XFG on each of the edges FnG of F,

with XFG given by (8.3) and

TT = [+] - bV. (9.9)

(The second of (9.4) implies (7.7), and this ensures that (9.8) has a solution.)

Finally, we define a capillary force

might also wish to require that Z be admissible; the ensuing results are independent

of such an assumption.
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C = fP + m®c. (9.10)

Then reasoning as in Remark 2 following (4.16), we see that C satisfies the

force balance (4.1) (with n defined by the second of (4.16) and (9.9)).

We now show that solutions of the modified quasi-linear system

satisfy the energy balance

( J O - = -Jq-n (9.11)
R

and the dissipation inequality17

+ J O # * -Juq-n + JC-u-w^ (9.12)
R * OR dn,

for each control volume R, with the difference between the right and left

sides of (9.12) given by

£(u,R) := JbV2 + Z JVu-K^Vu, (9.13)

the sum being over |ji=a,p.

The verification of (9.11) and (9.12) is based on two identities. The

first, a direct consequence of the divergence theorem, asserts that

Z Jdivkda = Jk-n - J[k]-m (9.14)
n Ru OR *

for a n y bulk v e c t o r field k. The second iden t i ty is

{Jf }# = JTTV + JC-u-w .̂ (9.15)

To establish (9.15), we note that, since f is constant on each facet, we may

use (2.9) and (9.10) to conclude that

17Cf. Gurtin [1993b], eqt. (3.3).
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{JO* = 2 JfFwF = 2 JfFwF + Jfw
n, F d*iF F ftF an.

= 2 JfFWF + JCC^-w^- Vc-v), (9.16)
F ftF d*

where ftF(t) = dn.F(t)\ dn.(t) and the sum is over all facets F with

tF(t) =t(t)nF(t) not empty. Next, since V = VF on each facet F,

JVc-v - - 2 JVfC.1^ + JVdivFc. (9.17)
cH F (RF *t

Further , s ince C satisfies (4.1), (4.3) holds on e a c h edge FnG, and , b y (4.3)

and (9.10),

2 J ( f F W F + VfC.-u. ) = 2 JCvK - w . = 0 , (9.18)
F (RF F ftF

The first of (9.8) and (9 .16) - (9 .18) yield (9.15).

To es tabl i sh the e n e r g y balance (9.11) w e use (2.8), (8.5), (9.1), (9.4),

and (9.14) to show that

{ J e } ' « -J[q]-m - J d i v q - Jd ivq = - Jq-n. (9.19)
R n. R a Rp dR

To verify the dissipation inequality (9.12), note first that, by (8.5) and

(9.3),

(p* = -div(uq) + q-Vu (9.20)

away from the interface, and this relation, (2.8), (9.3), and (9.14) yield

{ J > } ' - - J i I c ]u 2 V - Jdiv(uq) - Jdiv(uq) + Jq-Vu
R n. R a Rp R

= J(u[q]-m - | [c ]u 2 V) - Juq-n + Jq-Vu. (9.21)
1 dR R
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But, by (9.3), (9.4), (9.9), and (9.15),

J(u[q]-m-£[c]u2V) = -

.w*; (9.22)

(9.21) and (9.22) yield the dissipation inequality (9.12).

Thus the solution of the modified quasi-linear system are consistent

with the "first two laws" in the form (9.11) and (9.12).

b. GROWTH THEOREMS.

We restrict our attention to a bounded body and to the following

types of boundary conditions: an insulated boundary for which

q-n = 0 on 3Q for all time; (9.23)

an isothermal boundary for which

u = U on 9Q for all time (9.24)

with U = constant the prescribed boundary temperature.

The energy balance and dissipation inequality yield important

Lyapunov relations for boundary conditions of this type. Indeed, if in (9.11)

and (9.12) we let R = Q, so that K = % and dn. = 0 , then we find that:18

Given a solution of the modified quasi-linear system, if the boundary is

insulated,

( JO* = 0, {Jcp + Jf}- = -S(u,Q) < 0; (9.25)
Q Q Z

if the boundary is isothermal,

18Cf. Gurtin [1986], §10; [1988], eqts. (7.8), (7.9).



{ J(<p-Ue) + Jf }# - -JD(u,Q) < 0 (9.26)
O Z

(cf. (9.1), (9.2), (9.7), and (9.13)).

By (9.6), these results are valid also for the quasi-linear system

provided the specific heat is the same for both phases.

c. QUASI-STATIC APPROXIMATION

A (common) quasi-static approximation19 to both the quasi-linear

and modified quasi-linear systems is obtained by setting the specific heats

equal to zero:

ca = cp = 0, (9.27)

in which case we have the energy balance

Uvolume(Rp)}# = -Jq-n (9.28)
5R

and the dissipation inequality

( J O * * - J u q - n + JCi>.wa (9.29)
n, OR dn,

for each control volume R, with the difference between the right and left

sides of (9.29) given by (9.13). Thus, in particular,

{vo lume(Q a )} - = 0, {Jf }• = -JD(u.Q) < 0 (9.30)
Z

for an insulated boundary, and

OUvolume(Qa) + Jf }• « -D(u,Q) < 0 (9.31)
Z

[19 92] establishes local existence for the corresponding isotropic problem in
for a bounded container with walls held at u « 0.
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for an isothermal boundary.

d. JUSTIFICATION OF THE MODIFIED QUASI-LINEAR SYSTEM

The quasi-linear system was developed by formally linearizing the

PDE's and interface conditions of the general theory. A problem with this

procedure is that the thermodynamical structure is lost in the

approximation. An alternative procedure — and one that ensures a

consistent thermodynamical structure — begins with approximate versions

of the thermodynamical laws and generates a theory that is exact within

this framework.20

We begin with a formal argument in support of (9.11) and (9.12) as

the appropriate thermodynamical laws for the modified theory. The

condition (8.2)1, which represents the interfacial energy-balance for the

quasi-linear theory, involves no terms representing surface structure, and

it seems reasonable to base the modified theory on an energy balance in

which such terms are neglected; such a balance is furnished by (9.11).

Deducing an appropriate dissipation inequality is more delicate. Roughly

speaking, such an inequality should be quadratic in u; thus, by (6.10), it

seems reasonable to base the theory on (5.19) with cp and u replaced by

<p and u. Also, since h is not present in the energy balance (9.11), we

omit it in (5.19). Finally, e-eTs = f(eT,m) = f(m) plus higher-order terms,

and we therefore replace e-OTs by f(m) in (5.19). This discussion leads

us to consider (9.12) as an appropriate version of the dissipation inequality

for the modified theory.

We therefore take (9.11) and (9.12) as the basic thermodynamical

laws, which we consider in conjunction with the force balance (4.1).

Localizing (9.11) and (9.12) with the aid of (9.3) leads to the bulk relations

e* = -divq, ^# + eu# + q*Vu < 0 (9.32)

and to interface conditions consisting of the first of (9.4), the conclusion

f = a, and

f° + (TT-[*])V < 0. (9.33)
20Gurtin [1993c].
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Writing bulk constitutive equations for each phase in which ^ , e,

and q depend on u and Vu with e and q linear, and demanding

consistency with the second of (9.32), leads to the relations

+ = -£cau2, e = cau, q = -KaVu in phase a,

vp = -{u - |cpu2 , e = { + c^u, q = -KpVu in phase p,

with all moduli constant. Interfacial constitutive equations with f and TT

functions of u and V, with TT linear, lead, via (9.33), to the restricted

relations

f = f(m), TT = [y\>] - b(m)V. (9.35)

Finally, (9.34) yields (9.3) for the Gibbs function (p. Thus the modified

quasi-linear theory, as described in Section 9a, follows as an exact theory

based on the approximate thermodynamical laws (9.11) and (9.12) in

conjunction v/ith the constitutive equations described above.

e. PERFECT CONDUCTORS.21

Consider the quasi-linear — or modified quasi-linear — system for a

bounded region with boundary held at the constant temperature U. We

now discuss the asymptotic form these equations take -when the

conductivity of each phase is large. Precisely, we replace

Ku by S ' 1 ^ , UL«oc.p, (9.36)

under the assumption that 8 is small. Writing a formal perturbation for

u in powers of 6, it is clear that the lowest-order term, also written u,

should be consistent with

divq = 0, q = -K^Vu in bulk (9 37)

[q]»m = 0 on the interface

21Gurtin [1988], §8.
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in conjunction with the interface condition (8.2)2 or (9.4)2. Under

reasonable assumptions, the problem (9.37) has the unique solution

u(x,t) B U; the only equation then left to solve is the interface condition22

bFVF(t) = ApU)-1^ XFGLFG(t) - D (9.38)
G

for each facet F, where bF=b(mF), and where D = {U for the quasi-

linear equations, D= {U + {[c]U2 for the modified quasi-linear equations.
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22Taylor [1988] and Angenent and Gurtin [1989] propose and discuss equations of

this type (cf. Fukui and Giga [1992]. Taylor [1992], Giga, Gurtin, and Matias [1993],

and Girao and Kohn [1993], and Girao [1993]).
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