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associated with heat and mass transport.1 For (pure) martensitic transitions,
in which the lattice undergoes a mechanical strain but for which there are no re-
arrangements of atoms within cells, the order parameter might be viewed as an
artifice that yields a regularization of the mechanical equations, a regularization
that models surface energy and stress as well as transition kinetics.2 There are
important situations, however, in which order parameters have a well-defined
physical interpretation. Ginzburg-Landau order-parameter equations alone are
used to describe interface kinetics for ordering transitions in which atoms un-
dergo rearrangements within cells (cf., e.g., Lai [13]). In similar situations, but
with the added complexity of non-negligible transition (misfit) strains between
phases (cf., e.g., Lipman and Roitburd [14]), we expect the corresponding bulk
stress to effect growth kinetics and microstructural morphology; such processes,
involving a coupling between deformation and Ginzburg-Landau kinetics, should
be described within the general framework developed here.

Our approach follows closely that taken in [lj. To account for situations
involving a multiplicity of phases and/or phase variants, we introduce a vector
order-parameter. We also introduce forces that work against the rate at which
the order parameter changes and thereby characterize accretion (the growth
of one phase at the expense of another). These configurational forces—which
are distinct from the standard forces associated with momenta—are presumed
consistent with their own force balance (cf. Gurtin [15, 16, 17], Gurtin and
Struthers [17], Pried and Gurtin [1, 12]).3

We organize the paper as follows. In Section 2 we introduce the basic balance
laws and a suitable version of the second law. In Section 3 we consider con-
stitutive equations involving dependencies of the free energy, Piola-Kirchhoff
stress, configurational stress, and internal configurational force on the defor-
mation gradient, the order parameter, the order-parameter gradient, and the
order-parameter rate. We then deduce restrictions placed on these constitutive
equations by the second law. In conjunction with the local balance statements
the restricted constitutive equations lead to field equations that we present in
Section 4, where we also discuss boundary conditions and a Lyapunov relation.
In Section 5 we propose possible simple forms for the free energy and discuss
material symmetry. A theory appropriate to infinitesimal deformations is given
in Section 6. Finally, in Section 7, we study the manner in which transition
kinetics and interfacial structure are generated within our theory. We find that
the theory allows for a full range of transition kinetics of the type discussed
by Abeyaratne and Knowles [19], Truskinovsky [20], Gurtin and Struthers [18],

1In [2] we extend the theory presented here to include heat and mass transport.
3In contrast to regularizations that rely on strain gradients (cf., e.g., Falk [3, 4], Miiller

and Wilmanski [5], Achenbach and Muller [6], Barsch and Kromhansl [7, 8], Colli, Freinond
and Visintin [9], Hoffman, Niezg6dka and Songmu (10]), the regularization provided by our
theory results, as in [1], from a constitutive dependence on the order-parameter gradient (see
also [11, 12]).

8In (1] we use the adjective accretive instead of configvrrUional.



and Gurtin [17]. Further, granted certain simple constitutive assumptions, our
theory leads to interfacial structure equivalent to that which arises in the sharp-
interface theory of [16,17] for an interfacial energy that is isotropic and indepen-
dent of interfacial strain.4 In the Appendix we examine certain aspects of the
configurational force system and balance from a fundamental perspective and
determine a connection between our configurational stress and the capillarity
vector of Cahn and Hof&nan [22].

2 Basic physical quantities. Balance laws. Dis-
sipation inequality

2.1 Kinematics. Momentum

We consider a homogeneous body B, identified with the region of R8 it occupies
in a fixed uniform reference configuration with mass density Q. A motion of B
is a mapping y of material points x and times t into points of space

y(x,t) = s + u(x,t) (1)

in R9. Here u is the displacement and

(2)

(with detJF> 0) is the deformation gradient. An appropriate measure of strain
is the right stretch tensor U defined by the polar decomposition F= RU of F
into a symmetric, positive definite tensor U and a rotation R; U may also be
defined through the relation

U=y/F*¥. (3)
We associate with each motion a (first Piola-Kirchhoff) stress tensor S and

an external body force b. Letting V denote an arbitrary subregion of B, with
n the unit outward normal to dV> the balance laws for linear and angular
momentum take the form

/ Snda + fbdv = f giidv,
V V

 s > (4)
/ yxSnda-r Jyxbdv = fyxgudv,

av v v
for all V and all time; or equivalently,

divS+& = ,

SFT = FST. | ( 5 )

4In [21] it Is shown that, under slightly more general constitutive assumptions, our the-
ory generates anlsotopic interfacial energy and interfacial stress consistent with the general
framework of [16, 17].



2.2 Vector order-parameters. Configurational force bal-
ance

Throughout the paper we use lists TJ = (i^,tfe,...,iyA) € RA; we write

for the inner product of such lists to differentiate it from the inner product on
Rs, which we denote by a dot. We also use this notation for the inner product
of lists £ = (^ iCaj - . - tO » (RS)A of vectors £a in R3: given two such lists £
andC

«,C):=^C1+^C2 + ---+€A-CA. (7)
Finally, given £ in (R3)A and c in R3,

C - c : = ( ^ c , ^ c , . . . , { A . c ) € R A . (8)

We consider materials whose phase is characterized by a list <p = fa, <p2,...,
(pA) of scalar order-parameters tpm. The vector order-parameter (p will generally
be constrained; entries of (p may, for example, satisfy a constraint of the form

p. €[0,1] for each a, £ * > . = *• (9)

We allow for the possibility of more general constraints by restricting attention
to (p that lie in the closure $ of a relatively open subset of an affine set H
in RA. (Extension of the theory to the case where H is a smooth manifold is
straightforward.) We write T(H) for the subspace of RA consisting of vectors
tangent to H and P(H) for the projection onto T(H) with the understanding
that P(H) denotes the identity on RA if T(H) = RA. T(H) generates a corre-
sponding space V(H) contained in (R3)A consisting of all ( in (RS)A such that,
for each c in Rs, ^c is an element of T(W).

When the dimension of H is A - 1, the elements IJ of H are consistent with
an equation of the form (d, rf) = 6, with d in RA and 6 in R prescribed, and
T{H) is the set of all fi with (d, fi) = 0. If each entry of d is 1, and if £ = 1,
then we recover (9)2.

During an evolution of B the order parameter will be a field <p on B for all
time. We associate with each such evolution an configurational force system that
acts in response to changes in <p. This force system consists of a stress £ with
values in V(H),5 an internal force n with values in T(W), and an external force
7 with values in T(W); most importantly, this system is presumed consistent
with the force balance

Z-nda+ /(tr + 7)<*t; = O (10)
8V V

6Thus, the stress £ is a list of vectors; in the Appendix £ Is related to the more conventional
tensorial notion of stress.



for all V (cf. (8)), where we have chosen to neglect microstructural inertia.
Thus

div* + ir + 7 = O, div£ = (div$1,div€2l...,div£ l), (11)

or equivalently,
di<+*.+7.=0, (12)

for a = 1,2, . . . , A; because of the underlying constraint, the equations (12) are
generally not independent.

It is difficult at this stage in the development to give precise physical inter-
pretations to the stress £ and the internal force TT, but some preliminary remarks
of an intuitive nature might be helpful. Consider the special case of a single
scalar order-parameter <p. Across a transition layer between phases, tp should
vary rapidly in the direction m = -V<p/\V<p\ and, for an isotropic material,
( should be parallel to m; in this case our intuitive expectation is that (*m
represents surface tension within the layer. For an anisotropic material, £ • v
would not generally vanish for v orthogonal to m; we believe that £ • v would
in this case account for microstructural shearing, across the layer, induced by
anisotropy. For a scalar order-parameter (p, we view the scalar force TT as a
microstructural tension representing both configurational forces of the type dis-
cussed by Eshelby [23] and dissipative forces within transition zones associated,
for example, with the rearrangement of atoms. These intuitive remarks are jus-
tified by the discussion of the Appendix, the asymptotic analysis of Section 7.2
(in particular (117)), and the analysis presented in [21].

2.3 Dissipation inequality
When thermal effects are suppressed the second law is the assertion that the rate
of energy increase cannot exceed the total expended power. Letting \p denote
the free energy, we write the second law in the form of a dissipation inequality
to be satisfied for all time and all V.

dv< /Snuda + fbudv + J{Z,<p)da + j{%$)dv, (13)
V V

which makes precise our assertion that configurational forces act in response to
changes in the order parameter. We do not include the force TT in (13) as it
acts internally to V. In this sense n has a role analogous to that of the internal
forces G1 and g1 in Ericksen's theory of liquid crystals [24], since TT enters a
balance equation but does not contribute to the working.6

If we use (5)t and (l l)x to eliminate the external forces 6 and 7 from the
local form of (13), we arrive at the local dissipation inequality

^ - S . F - < t p > + <*,£><0, (14)

(3.4M3.7)of[24).



where p, with values in V(W), is defined by

. (15)

3 Constitutive equations. Compatibility with
the dissipation inequality

We consider constitutive equations in which the independent variables are the
deformation gradient F and the configurational variables <̂>, p, and <£>,

(16)
We assume that, under observer changes, <p, p, £, £, and 7r are tnwriant,
and that the remaining fields transform in the standard manner, so that, for
example,

*(F,v,P,*) = tev.P,V), (17)
with U the right stretch tensor (3). (We also require that 5 be consistent with
(5)2, but this is of no concern, since it will satisfied automatically by virtue
of (17) and (20)x.) We do not provide constitutive equations for the external
forces 6 and 7, but instead allow them to be assigned in any way compatible
with the balance laws for linear momentum and configurational force.

Given a displacement field u and an order-parameter field <p, the constitutive
equations (16) can be used to compute a constitutive process consisting of u, <p,
and the fields ij>, 5, £, and TT; the balances (5)1 and (11)1 for linear momentum
and configurational force can then be used to determine the external forces 6 and
7 needed to support this process. The second law remains to be satisfied in all
such constitutive processes, a requirement that we use to restrict the constitutive
equations. Specifically, we assume that the local dissipation inequality (14) is
satisfied in all constitutive processes.

Writing h == (p and £ = (F,^,p,h) , we see that, granted (16), (14) is
equivalent to the inequality

^ + <^(C), *> < of (18)

with subscripts indicating partial differentiation, so that

U ^ (19)

Since we can always find fields u and (p such that F, F, p, p, h, and h have
arbitrarily prescribed values (consistent with the constraint) at some chosen

A A A A A

point and time, we must have if>h = 0, ipF = S, and ^p = £.
The free energy, stress, and configurational stress are therefore independent

of (p and related through

>,p), * = ^p(F,*>,p), (20)



and the internal configurational force admits the representation

where the kinetic coefficient B(F, ^ ,p , <p) = B(Uy<p,py(p) is, for each value of
its argument, a linear transformation from T(H) into itself consistent with

In view of (20) and (21), a complete constitutive specification of the material
consists of prescription of the free energy fp and kinetic coeflScient B as functions
of (F,^>,p,h).

The relations (20)-(21) yield the dissipation balance

ij, _ S-F- (£,p) + (*r, (f) = -V< 0, (23)

identifying V and hence transformation kinetics as the sole source of dissipation
in the theory.

4 Field equations. Boundary conditions. Lya-
punov relation

Using (20)-(21) in the local balances (5), and (11), yields

>)) + 6 = £ti,

«**»•* }
While the configurational force balance (11)^ involves no time derivatives, rate
terms enter the final equation (24)2 through the constitutive equation for the
internal force n. For that reason we do not view (24)2 as a transport equation
for (f, but rather as a balance law for force in which a rate term arises as a
consequence of the dissipative nature of the internal configurational force. We
assume, for the remainder of the paper, that the external forces vanish:

6 = 0, 7 = 0. (25)

Note that, by (24) and (9), writing B = JB(F, <p,p, <p), we have

A * A

djv((V> — x£|u|2)l — FTS — S P « ® € « ) + QFTii -I- £ Bmh<pbpa = 0, (26)

a balance that involves a generalization

1 - FTS - £ P . ® £ . (27)



of the Eshetby tensor appropriate to our theory (c/. [23]).
Appropriate boundary conditions for the general equations (24) might con-

sist of classical conditions prescribing Sn on a portion C of dB and u on dB \C
in conjunction with the prescription of (n on a portion C of 8B and (p on
8B\C.

In the case of an order parameter with two components tpx and (p2, con-
strained via dl(pl + d2tp2 = £ with dn d3, and 6 nonzero, only one of the scalar
order-parameters is independent. Writing (f = dl<pl = 6- d2tp2, and expressing
the free energy as a function of F, y>, and p := V<p through

, (28)

(24) reduces to

- %{F, ip, p) = /?(F, v?, p, ̂ )^, JF, v?, p))

with
fi := Bu/rff - 2Bl%/dld2 + BM/d2

2 > 0 (30)
a 5oa/ar kinetic coefficient. Equations (29) are identical to the specialization of
(24) that arises when the order parameter is a scalar.

Returning to the general equations (24), our development ensures consis-
tency with (14) and hence yields the growth relation

dv- I Snuda- I (£,(f)da< - / Vdv. (31)
V dB dB B

If Sn = S.n on dC with S. constant, if u = 0 on 3iB \ C, and if ((-n, <j>) = 0
on dB, then (31) reduces to the Lyapunov relation

t(tl> - S.-Vu + y\u\2)dv = - fvdv < 0. (32)
5 B

5 Free energies

5.1 A model with separable free energy
We now describe a simple model that should yield many of the qualitative
features of displacive phase transitions. We assume that the order parameter
cp is constrained as in (9) and consider free energies i> that are separable in the
sense of the decomposition

(33)



Writing
M.:=(O,O,...,O,1,O,...,O), g e n t r y = 1 ) , (34)

we assume that / and g comply with the normalization

/ ( f i j = 0 for each a, g{0) = 0. (35)

For this model there are A phases, labeled a = 1,2, . . . , A, and phase a may
be identified with the particular value <p = /i# of the order parameter. The
function W(Fy <p) represents the strain energy, with WJ^F) the strain energy
of phase a. Wm(F) should be of the type usually considered for single-phase
materials; in particular, we assume that Wa(F) is rank-one convex (or even
quasiconvex) and that W*(U) restricted to right stretch tensors U (c/. (17)),
has a strict global minimimum L£,

Wm{U)<Wm(U) for U*U (36)

with l£ the natural stmin for phase a.
While the individual strain energies display the energetic preference—within

each phase—of the natural strain for that phase, the exchange energy f((p)
should characterize the energetic favorability of the individual phases. We there-
fore require that the JAO form the complete set of global minima for /(<p); thus,
by (35), assuming the minima are strict,

/(/O = 0, f(<p)>0 for V?pm. (37)

Finally, the structure of transition layers is characterized by the dependence
of the free energy on p, while the bulk material should correspond to states
with p = 0. Further, the gradient energy g(p) should, in some sense, regularize
the system. With this in mind, we assume that g(p) is strictly convex with a
minimum at p = 0.

When viewing this model as a regxdarizaUon of a more standard theory in
which phase transitions are the result of a lack of rank-one-convexity in the
underlying strain energy W(F) = W(l/), one might choose the energy WU{U)
as an approximation of W(U) near the well describing phase a (c/., e.g., Grinfeld
[25], FWed and Gurtin [11]).

A standard gradient energy is

*(p) = i<p,4p), (38).

with A a (constant) symmetric, positive-definite linear transformation from
V(H) into itself; the isotropic version of this relation has the simple form \ A|p|2.

A standard exchange energy, for a system constrained by (9)2, is

o = l



with (p* the a-th component of <p.
The constitutive equations appropriate to a separable free energy have the

form

S.(F) =
(40)

with Sa(F) the partta/ atress in phase a, and ti>(F) := P(W)(W^ (F), W£ (F),
WA (F)), where P(W) is the projection onto T(W); and in the absence of external
forces, the governing equations (24) reduce to

•v I- « C F . . "• ' <4I>

Thus far we have not distinguished between pure phases and phase variants.
To do so requires a discussion of material symmetry, which is the subject of the
next section.

5.2 General theory. Coarse-grain free energy. Material
symmetry

We now return to the theory described by a general free energy V>(F, (p,p). Here
bulk phases are associated with properties of the coarse-grain free energy

#(F, if) = ̂ (F, tf) 0), (42)

while the structure of transition layers is characterized by the dependence of
the gradient energy

g(F, <p,p) = tj,(F, <p,p) - 4>(F, <p, 0) (43)

on p. We now focus on ideas of material symmetry for individual phases using
the coarse-grain free energy as basis. Symmetry considerations for the gradient
energy should, in some sense, entail the interaction between phases (cf. Lai
[13]).

Using separable free energies as motivation, we assume that there are K
phases, labeled k = 1,2, . . . , K, and we associate with each phase k a unique
value (pk in * of the order parameter, with (pk^<pt for k ^ /. Focusing on the
dependence of #(F, (p) = #(17, (p) on the stretch tensor U, we assume that, for
each phase fc, &{U, (ph) has a strict global minimum at Uk, that is

wh=*(Uk,iph)<*(U,<ph) for U±Uk. (44)

Then
= #(F,v>J (45)

10



is the strain energy of phase *, while Uk is the natural state for k; by (44),

Wk = Wh(Uk) < Wk(U) for U?Uk. (46)

We define the symmetry group for phase k to be the group Qk of unimodular
tensors H (tensors H with detH = 1) such that

Wk(F) = Wk(FH) (47)

for all F.7 This relation restricts the natural strains Uk, since (47) with F= t/fc,
(17) with F= UkH> (3), and (46) yield

Ul = ITUIH (48)

for all H i n Qk.
The definition (47) describes symmetry within a given phase; variants are

described by symmetry transformations between phases. Precisely, phases k
and / are equivalent if there is a unimodular tensor JJ, called a symmetry trans-
formation from k to /, such that

*(F,<pk) = *(FH,Vl) (49)

for all F. This defines an equivalence relation on the set of all phases; the
corresponding equivalence classes are called pure phases. If a pure phase C has
more than one member, then its members are called variants of £ (or of / € £).

Let k and / be variants of a pure phase and let if be a symmetry transfor-
mation from k to L Then

Gk = ff'ftff (50)

and
. (51)

We will verify only (50); the proof of (51) is similar to that of (48). Choose F
and A € Qk arbitrarily and let G = FIT1. Then

9{GAH, *>,) = # ( O 4 , ip k) = #(G, y>J = ^(GH, Vl); (52)

thus !Pr(Fff"1AHT,Vi) = 9{Ffipt) and IT1 AH is an element of ft; hence
H~lGkH C Gi. A similar argument yields H'lGM D Gi-

Since the material under consideration is solid, it seems reasonable to assume
that, given a phase k there is a choice of reference configuration such that all
symmetry transformations in ft, as well as all symmetry transformations to
variants of k are orthogonal. Granted this, (47) and (48) imply that, for any Q

Uk = QTUkQ, (53)
7Cf. Truesdell and Noll [26] and Gurtin [27] for discussions of material symmetry.

11



while (51) yield the relations

Wh(U) = Wt(Q
TUQ), Ui = QTC7fcQ, (54)

for any symmetry transformation Q from k to /.
Phases k and I are kinematically compatible if there are orthogonal tensors

Qk and Ql such that

QkUh — QiUi is a tensor of rank one; (55)

in which case it is kinematically possible for a coherent sharp interface—involving
a jump in the deformation gradient F—to form between phases k and / at the
stretches Uh and L£. Condition (55) is most often satisfied when k and / are vari-
ants of martensite, but not generally between austenitic and martensitic phases
(c/ , e.g., [28, 29]). Conditions of the form (55) are important in equilibrium
theories, since they allow for the possibility of layering between k and /.

6 Linearly elastic phases
To model situations in which the displacement gradient is small, it might be
appropriate to reconsider the theory assuming, from the outset, that both strains
and rotations are infinitesimal. To set our theory within that framework we
redefine F t o be Vu and replace (5)2 by S = 5 T ; the steps leading to (20)-(21)
and (24) then remain unchanged, as do these relations. Further, invariance of
the constitutive equations under infinitesimal rotations (t.e., replacement of Vu
by Vu + W with W skew) implies that the constitutive hinctions can depend
on F only through the infinitesimal strain

(56)

Again we consider free energies that are separable:

= W(£,¥>) + / (V) + $(P)> '
A \ (57)

0=1 a * ' 4

with / and g as defined in Section 5.1 and <p constrained as in (9). Consistent
with our assumption of infinitesimal deformations, we require that the individual
energies WJJ2) be quadratic functions of the infinitesimal strain:

with Em the natural strain of phase o and C.[ • ]—a symmetric, positive-definite
linear transformation from the space of symmetric tensors into itself—the elas-
ticity tensor of phase o. The stress S = S(E, <p) is then given by

A

S.(E) = C.[£-JE.], (59)

12



with Sm(E) the partial stress for phase a.
For a separable free energy such as (57)1, (40)28 remain valid, and, ignoring

external forces, the governing equations are

where w(E) ** P(H)(H^(£?), Wa(25),...,WA{B)).
An alternate free energy that might be useful in describing ordering transi-

tions has the separable form of (57^ with the strain energy given by8

= w(<p) + \{E-E{<p))-C{<p)\E -E{<p% (61)

where <p is constrained in a manner consistent with the particular transition
under consideration.

7 Comparison with sharp interface theory
We now investigate the formal consistency of our theory with the sharp inter-
face approach. As a basis for this, we list the governing equations derived by
Gurtin and Struthers [18] and Gurtin [17] specialized to the case of an isotropic
interfacial energy that is independent of the deformation gradient. Neglecting
body forces, the bulk equations consist of the momentum balance

divS = gu, (62)

supplemented, in each phase q = 0,1, by constitutive equations

(63)

The equations that hold across a phase interface, represented by a smoothly
evolving surface E with orientation m and normal velocity V, consist of the
compatibility condition

M=0, (64)

expressing the requirement of coherence, the momentum balance

]v (65)

and the normal configurations! force balance

W\ ~ <S} {F\ + wK = bV. (66)

Here [4>\ and {<£) denote the jump and average of a bulk field <j> at the interface,

[W] - (5) [F] = m [Wl - FTS + \eV
iFTF]m (67)

eCf. Libman and Roitburd (14).

13



is the Eshelby (or "driving") traction, w is the interfacial energy (per unit area),
K is twice the mean curvature of 27, and 6 > 0 is the kinetic coefficient.

Consistent with (62)-(67), we focus on situations local to a single interface
separating two phases. (We recall that such an interface may represent, depend-
ing on the constitutive details, a boundary separating either two variants of a
pure phase or two distinct phases.) Specifically, we consider situations described
by a single unconstrained order parameter (p (c/. the paragraph following (25))
and, hence, restrict attention to the system (29).

7.1 Relation between Eshelby traction and interfacial ve-
locity

Let B occupy all of space, and consider a longitudinal motion described by the
axial coordinate x. In this setting the displacement and order parameter are
functions of x and t, and the displacement may be identified with a scalar-valued
function u. Therefore, letting

e:=txx, p:=<px, (68)

we may consider the response functions \j) and /? of the general theory as func-
tions of (e,<p,p) and (e,y?,p,<£), respectively, and, in the absence of external
forces, reduce the governing equations (24) to

]
J

(69)

where

We seek a solution of (69) of the form

ti(x,t)=tl(y), <p(M) = £(y), y = x - V t , V > 0 , (71)

subject to the far-field conditions

e(±oo) = e±, <f(±oo) = v*, r(±oo) = p(±oo) = ^(±oo) = 0, (72)

where c = €', p = <p'. A solution of this type represents a traveling wave with
velocity V connecting the states (e~,yr) and (c+,^>+).

Substituting (71) into (69), we obtain the following system of ordinary dif-
ferential equations

1 (73)

14



where for convenience we have suppressed the overbars. We now investigate
properties of solutions of (73) that are consistent with (72).

First, by (72) and (73)a,

^(e*,V*,0) = 0, (74)

so that the energy of states connected by a traveling wave is stationary with
respect to the order parameter. Next, letting

**:«&e* tV>*,0), **:=tf.(e*.**.O), [a] := o+-a", fa) := ^+a~),
(75)

we note that (73), can be integrated to give

s - O ) = e V"(e - ( e» (76)

and the Rankine-Hugoniot relation

W = *VM«1- (77)

Further, multiplying both sides of (73), by p and using (77), we obtain

(fa,<P,P) ~ « - J * + *<?VV)' = VP(e,<p,p,-Vp)p>, (78)

which, when integrated from y = —oo to y = +00, yields, with the aid of
(75)-(76),

M-{*)M = TV, (79)

where
+00

r := I P(e(y)My),P(v),-Vp(y))p2(y)dy. (80)

FVom (74) and (76) one might expect that—granted suitable constitutive hy-
potheses—if± and the functions c(«) and tp{) are uniquely determined by the
limiting values e* of the strain; in this case r = r(e~, e+, V).

Recognizing that the geometry of the problem at hand obscures potential
sources of interfacial structure and disregarding the finite thickness of the phase
interface, we see that (79) is the one-dimensional counterpart of the normal
configurational force balance (66). Our theory therefore contains an implicit
"kinetic relation" between the Eshelby traction and the interfacial velocity of the
type introduced by Abeyaratne and Knowles [19] and TVuskinovsky [20]. Since
the function 0 is restricted by thermodynamics only in sign, the kinetics of our
theory is more general than that based on viscosity-capillarity or maximum-
dissipation criteria (c/. Abeyaratne and Knowles [30, 31] and the references
therein).

To identify sources of interfacial structure in our theory, we turn next to a
problem that allows for the study of curved interfaces.
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7.2 Formal asymptotics of a transition layer. Interfacial
tension

In our theory phase interfaces are modeled by thin transition layers in which
the order parameter suffers large gradients. We now study the behavior of the
basic fields across such a layer assuming that /? is constant and that the free
energy has the form

(81)

in which case the basic equations (24) become

„ '' ' . a } (82)
AAy> — V*i,(iS <f) — fv\ip) = p<f- I

Regarding the strain energy W(F, <p)> we require only that the constitutive
equation for the stress,

F (83)

satisfy
\S{Ff<p)\-+oo as |F | -oo , (84)

uniformly for <p in any bounded set.9 Further, we suppose that the exchange
energy is a double-well potential with minima at (p = 0 and (p = 1, so that (c/.
(37))

/(0) = / ( I ) < /(¥>) for v / 0 , 1 , (85)

with / strictly convex except for a "spinodal" interval [g0, qx) contained in (0,1).
We then identify the two phases, "phase zero1" and "phase one," with the in-
tervals (-oo,g0) and (^,-foo), respectively. A standard example of such an
energy is

M ) " (86)
We allow the body to occupy all of space, and consider a process in which one

phase, say phase zero, occupies a bounded region. We write I for a characteristic
length associated with this region during the time-interval under consideration;
we let /i and v denote scale factors for W and / (for example, the maximum
of |SF( l /o ,0) | and | ^ F ( l / l t l ) | and the maximum value of |/^| in (0,1)); we
introduce dimensionless variables x := x/l, i := ct/C, u(x,t) := u(x,t)/£,
with c := y/l*/Q, as well as dimensionless constitutive functions W := W//i,
S := S/ii, f := ffv\ and we assume that the dimensionless moduli /3c/i/£,

f, and /x/i/ scale according to ca/3, c2A, and c, respectively, with c > 0 small
9 In particular, we do not require that the strain energy have a specific form such as that

specified in (33)2, (57)2, or (61).
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and W, 5, /, 0, and A of O(l). With this scaling (82) become, upon suppressing
the overbars,

)
(87)

We now perform a formal asymptotic analysis for e small, assuming that the
thickness of the transition layer is O(e). We choose a value q in the spinodal
interval (g0, qx) and identify the phase interface with the set

£(*,*) = {x:*>(x,M) = 9}, (88)

which we assume to be a smoothly evolving surface. We write d(x,t, e) for
the signed distance between x and E(t,e) with d(x,t,t) < 0 in the phase-
zero region and d(x, t, e) > 0 in the phase-one region. We focus attention on
an arbitrary but sufficiently small open subset S(t, c) of E(ty e) and define a
function C(x,t,e) with values in R2 such that (d(x,t,e),C(x,M)) provides a
local orthogonal coordinate field near 5(t,e). In the transition layer we stretch
the coordinate normal to S(t, c) by letting

r(*,t,e) :=€-'(*(*,*,€). (89)

For each field r?(x,t,c) of interest, in particular, for t; = u and tj = >̂, we
introduce an outer expansion

e3), (90)

that we assume to be valid away from the layer, and an inner expansion

)) (91)

that we assume to be valid within the layer. The inner expansion at r = ±00 is
related to the outer expansion at d = 0±; in particular, writing

1
J

we have the O(l) matching conditions (see, for example, Caginalp and Fife [32])

(93)

We consider first the outer expansions of u(x,t,e) and ^>(x,t,c). By (87)2,
ftpi&o) = 0, so that <pQ is constant in each of the two regions separated by the
layer; assuming that these constant values lie outside the spinodal, we conclude
that <p0 = 0 or <p0 = 1. Thus, by (87)x, at O(l),

<iivS0 = i 0 , 1 , ,
> (94)

S> = Wi-^o. 0) »" Phase zero, So = Wp(F0,1) in phase one, J
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with Fo = 1 + Vu0, so that, away from the interface,

divS = ti + O(e), 1

S = WF(F, 0) + O(e) in phase zero, S = W .̂(F, 1) + O(c) in phase one. J
(95)

We will show further, as a consequence of the matching condition, that [u0] = 0
and hence

[u] = O(e). (96)

We next examine behavior within the transition layer. Considering C(-,*, c)
as a coordinate field on 5(t,c), let m(C,M), V(CM), and £« , t , e ) denote,
respectively, the unit normal to S(t, c), the normal velocity of S(t, c), and twice
the mean curvature of 5(t, c) (taken as positive whenever the osculating sphere
lies in the phase zero region). Then, assuming that these fields have inner
expansions of the form (91), it follows (c/ Evans and Spruck [33]) that

Vd(x, t, e) = mo(C(«, t,«), t«ft,e),«) + O(e), 1
,«,e),t) + O(e), \
,t,e),t)+O(e). )

(97)

We assume that within the transition layer the stress S(x,t,e) is bounded
in e; in fact, we assume that S has an inner expansion of the form (91) (as do
u and <p). Expanding the deformation gradient F= 1 + Vti, we see that

where a prime indicates differentiation with respect to r, and consistency of
this estimate with (93) and the inner expansions for S and (p yields u'o = 0, so
that u0 is independent of the normal coordinate r. Therefore [u0] = 0 and the
conclusion [u0] = 0, and hence (96), follows from (93). Further,

F = l + Vu0

(99)

F'=tt;'®m0+O(e),

Note also that (99)lfS yield

(100)
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a kinematic condition consistent with (96).
Next, (87), gives

Atf = />.)• (101)

By (93), to match conditions in the far field requires a solution of this equation
satisfying (p0 = 0 at r = —oo and tpx = 1 at r = +00. We assume that such a
solution <p0 exists and is unique, so that, necessarily, <p0 depends only on r; when
the unsealed exchange energy has the form (86) such a solution is furnished by

(102)

Our next step is to consider the lowest-order terms in (87),. Since Sc =

, M = $ + O(e), (103)

and
div 5 = t-'S'Vd + O(l) = c- '^m, + 0(1), (104)

so that, by (101), (87)j yields V*u" = 5om
0; we therefore have the relations

(S, - {So))mo = V?(«; - (u;», [$,]m0 = Vo
a[u'J. (105)

At O(e), (87)a has the form

Wv(F0,<p0) =: z. (106)

Differentiating (101) with respect to r shows that (p'o is a solution of the equation
L(<po)ip'o = 0; hence tp'o and z satisfy the orthogonality condition

+00JJ ti(r)z{r)dr = 0. (107)
—00

Next, by (99) and (105)a,

•KI-(«;w,)) ' , (108)

so that, if we introduce the material constants

a := y/2/X / y/f(<P) &P, ° •= ^a, r := 0a, (109)

(101) gives

j&{r)%dr, (110)a
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and, since Ko and Vo are independent of r, (107)-(110) yield

m&<p.)\ - (flLl-Kl + ^0 = rv.. (in)
Finally, by (99), (105)2, and (111), we have the formal estimates

[S]m + V[u]^O(e\ [W] - (S) [F] +*K = rV + O(e). (112)

In conclusion, as c —> 0 the system (87) is formally asymptotic to

d iv5=t i (113)

away from phase interfaces, with

S=W^(F,0) in phase zero, S=Wp(F,l) in phase one, (114)

in conjunction with the jump conditions

[u] = 0, [S]m = -V[ti], lW]-(S).[F\ + a)C = TV (115)

across phase interfaces. Equations (114)—(115) are, modulo the underlying non-
dimensionalization, equivalent to (62)-(66).

We emphasize that, while (115)s, like (79), relates the Eshelby traction and
the interfacial velocity, unlike (79), it also includes a term a/C, allowing us to
identify a oc \/A, appropriately rescaled, with interfacial tension. Thus for free
energies of the form (81), the gradient term models the effect of a constant
interfacial tension.

Next, using the inner expansions, we find that the scaled configurational
stress £ and internal force 7r have the forms

J
(116)

thus, since /(0) = /(I) = 0, we have, formally,

(117)

1 / ^i(r){(r, •) dr) = am,

o(^T0^(r)w(r9 -)dr) = [W\- {5>-[F] - TV.
—oo

This allows us to identify £ with a vector whose magnitude is the interfacial
tension and whose action is normal to the transition layer, and to identify n as
the sum of the Eshelby traction [W] - (S>[FJ and a drag force - T V .

It is interesting to note that, granted the scaling used above, the particular
form of f(ip) effects the limiting equations (114)—(115) only through the inte-
gral of y/f(<p) from well to well across the spinodal. Inspection of (109) reveals,
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father, that at most two of the constants a, A, and 0 are independent. The
asymptotic correspondence of (82) to (62)-(66) is, in this sense, insensitive to
the particular features of the exchange energy, gradient energy, and kinetic co-
efficient. We view this flexibility, which allows the portions of the constitutive
description associated with the order parameter to be selected based on prac-
tical considerations (associated, for example, with the desire for computational
simplicity), to be a major strength of the theory.
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A Appendix
To simplify the presentation, we restrict attention to the case of a scalar order-
parameter ip.

This parameter is a field that describes the state—in the sense of phase—of
points of the body. We now identify states with possible values of <p, and write
Ee(t) for the set of points x for which <p(x,t) = c. We assume that these sets
Ec{t) describe smoothly evolving surfaces, called state surfaces, in the body B.
The fields

then define a unit normal and corresponding normal velocity on each state sur-
face. Given a local parameterization x = r(C, t) for £e(t), v(x, t) = (d/dt)r(C t)
satisfies

V = v m ; (119)

we will refer to fields v consistent with (119) as admissible velocity fields (for
the family of state surfaces). Different admissible velocity fields correspond
to different choices of time-dependent parameterization for the state surfaces.
Each admissible velocity field admits the representation

v = Vm + (1 - m®m)w, (120)

with w an arbitrary vector field, and conversely.
We now consider a somewhat different treatment of forces in which the

configurational system consists of a stress tensor C, an internal force TT, and
an external force 7, which enter the theory through an configurational force
balance

I Cnda+ A(ir + 7)dv = 0 (121)
BV V

21



for all P, or equivalently,
divC+7r + 7 = 0. (122)

We assume that configurational forces work to change the state of points of
the body by expending power over the velocity of state surfaces. Precisely, we
assume that the configurational power expended on a part V is given by

= Jcnvda + fr^dv. (123)
erp v

A basic stipulation of our theory is that P(V) is independent of the choice
of velocity field v used to describe the motion of the state surfaces. Writing
CXma := (1 — m<g>m)C and 7tan := (1 - m ® m ) 7 , it follows that

I Ctmnnwda+ I 1%mnwdv = 0 (124)
BV V

for all vector fields it?, which yields

(divCtM> + %J-w + Ctmn Vw = 0 (125)

for all such to. Thus Ctmn = 0 and 7taa = 0, so that C and 7 admit the
representations

C=m<g>c, 7 = $m. (126)

Therefore (123 has the intrinsic form:

= / cnVda + JgVdv. (127)
BV V

Hence, given a part V of B, the power expended on V by the configurational
stress is computed by integrating the measure c • nVda over dV. Consider a
state surface E(t) that intersects dV in a smoothly evolving closed curve C(t).
Let i/(x, t), a vector in the tangent space to E(t) at x, denote the outward unit
normal to C(t). Then the vectors m, n, and 1/ are coplanar, and the intrinsic
velocity of C has two components: Vm, which is normal to E; and vtani/, which
is tangent to E but normal to C. Let 1? denote the angle between m and n, and
assume that t9 ^ O,TT. Then n = (cost?)m + (sini9)i/, vtmn = Vcott?, and

cnVda = (c-mv^^ ci/FJsintf da. (128)

The tangential velocity vtmn represents the rate at which the area enclosed by C
is increasing, per unit length of C. Thus c • m works to increase the area of state
surfaces, and hence represents a "surface tension." Similarly, cu represents a
"surface shear." (In fact, the vector c is a counterpart for state surfaces of the
ucapillarity vector" of Cahn and Hoffman [22] for sharp interfaces.) Finally,

22



sintf transforms the area measure da on 8V to its projection sin t? da on the
plane perpendicular to i/.

Next, writing 7riMI := (1 - mg>m)7r, and substituting (126) into (122), we
find that

(dive + wm + 7-m)m + wtM + (Vm)c = 0. (129)

At each (x, t), Vm(x, t) maps vectors into vectors tangent to the state surface
through x; thus (129) yields a normal oonfigurational balance

dive + t r m + 7m = 0 (130)

and a tangential balance ntmn = —(Vm)c. The normal balance governs the
motion of state surfaces. The intrinsic velocity of such surfaces is normal; tan-
gential motion is irrelevant; for that reason we take ictmn to be indeterminate
(not specified by a constitutive equation, but rather, defined by the tangential
balance).

Next, we introduce £, 7r, and 7 through the relations

c = \V<p\& *m = |V<P|TT - £ V|Vy>|, *y m = |V^7; (131)

the normal balance (130) then takes the form

div£ + 7r + 7 = 0, (132)

and the power becomes

P(P)= [<pSnda+f<rfdv. (133)
ar v

These are consistent with the local configurational balance (11 )x and the con-
figurational contribution to the working in (10) for the case of a scalar order-
parameter.

Finally, we emphasize that the assumption V<p ^ 0 is crucial to the foregoing
discussion, and note that, using (118)^ (130), and the tangential balance, the
decompositions of C, TT, and 7 simplify to:

C = -VV®£ it = -7rV^> + (VV^>)£, 7 = -7V<p, (134)

which can be used to obtain (132)-(133) directly from (122)-(123).
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