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associated with heat and mass transport.” For (pure) martensitic transitions,
in which the lattice undergoes a mechanical strain but for which therearenore-
arrangements of atoms within cells, the order parameter might be viewed as an
artifice that yields aregularization of the mechanical equations, aregularization
that models surface energy and stress as well as transition kinetics.? There are
important situations, however, in which order parameters have a well-defined
physical interpretation. Ginzburg-Landau order-parameter equations alone are
used to describe interface kinetics for ordering transitions in which atoms un-
dergo rearrangements within cells (cf., e.g., Lai [13]). In similar situations, but
with the added complexity of non-negligible transition (misfit) strains between
phases (cf., eg., Lipman and Roitburd [14]), we expect the corresponding bulk
stress to effect growth kinetics and microstructural morphology; such processes,
involving a coupling between deformation and Ginzburg-Landau kinetics, should
be described within the general framework developed here.

Our approach follows closely that taken in [lj. To account for situations
involving a multiplicity of phases and/or phase variants, we introduce a vector
order-parameter. We also introduce forces that work against the rate at which
the order parameter changes and thereby characterize accretion (the growth
of one phase at the expense of another). These configurational forces—which
are distinct from the standard forces associated with momenta—are presumed
consistent with their own force balance (cf. Gurtin [15, 16, 17], Gurtin and
Struthers [17], Pried and Gurtin [1, 12]).2

We organize the paper as follows. In Section 2 we introduce the basic balance
laws and a suitable version of the second law. In Section 3 we consider con-
stitutive equations involving dependencies of the free energy, Piola-Kirchhoff
stress, configurational stress, and internal configurational force on the defor-
mation gradient, the order parameter, the order-parameter gradient, and the
order-parameter rate. We then deduce restrictions placed on these constitutive
equations by the second law. In conjunction with the local balance statements
the restricted constitutive equations lead to field equations that we present in
Section 4, where we also discuss boundary conditions and a Lyapunov relation.
In Section 5 we propose possible simple forms for the free energy and discuss
material symmetry. A theory appropriate to infinitesimal deformations is given
in Section 6. Finally, in Section 7, we study the manner in which transition
Kinetics and interfacial structure are generated within our theory. We find that
the theory allows for a full range of transition kinetics of the type discussed
by Abeyaratne and Knowles [19], Truskinovsky [20], Gurtin and Struthers [18],

In [2] we extend the theory presented here to include heat and mass transport.

®n contrast to regularizations that rely on strain gradients (cf., e.g., Falk [3, 4], Miiller
and Wilmanski [5], Achenbach and Mdller [6], Barsch and Kromhand [7, 8], Calli, Frénond
and Visintin [9], Hoffman, Niezgédka and Songmu (10]), the regularization provided by our
theory reaults, asin [1], from a congtitutive dependence on the order-parameter gradient (see
also [11, 12)).

8 n (1] we usethe adjective accretive instead of configvrrUional.



and Gurtin [17]. Further, granted certain smple constitutive assumptions, our
theory leadsto interfacial structure equivalent to that which arisesin the sharp-
interface theory of [16,17] for an interfacial energy that isisotropic and indepen-
dent of interfacial strain.* In the Appendix we examine certain aspects of the
configurational force system and balance from a fundamental perspective and
determine a connection between our configurational stress and the capillarity
vector of Cahn and Hof&nan [22].

2 Basic physical quantities. Balance laws. Dis-
sipation inequality
2.1 Kinematics. Momentum

We consider a homogeneous body B, identified with the region of R® it occupies
in a fixed uniform reference configuration with mass density Q. A motion of B
is a mapping y of material points x and timest into points of space

y(X,t) = s+ u(x,t) @
in R%. Here u is the displacement and
F=1+Vu 2

(with detJF> 0) is the deformation gradient. An appropriate measure of strain
is the right stretch tensor U defined by the polar decomposition F= RU of F
into a symmetric, positive definite tensor U and a rotation R; U may also be
defined through the relation
U=y/F*¥. 3
~ We associate with each motion a (first Piola-Kirchhoff) stress tensor S and
an external body force b. Letting V denote an arbitrary subregion of B, with
n the unit outward normal to dv> the balance laws for linear and angular
momentum take the form

/ Snda + fbdv = T giav, ]
&p i v

s > 4
/ yxSnda-r Jyxbdv = Tyxguadv, J )
av \Y v

for all V and all time; or equivalently,
divS+& = pi,
SF'=Fs". ] ()

“In [21] it Is shown that, under slightly more general constitutive assumptions, our the-
ory generates anlsotopic interfacial energy and interfacial stress consistent with the general
framework of [16, 17].



2.2 Vector order-parameters. Configurational force bal-
ance

Throughout the paper we use lists TJ = (i” tfe,....iya) €R*; wewrite

() i=p,m +p,m, o+ (6)

for the inner product of such lists to differentiate it from the inner product on
R®, which we denote by a dot. We also use this notation for the inner product
of lists £ = (*iCaj-.-tO » (*5)" of vectors £, in R% given two such lists £
andC

«,C):="NC1+" Cy + ——-+€5-Ca. ()
Finally, given £in (R%" and cin R®,
C-c:=("c,"c,...,{a.C)ER". (8)

We consder materials whose phase is characterized by alist <p = fa, <p,,...,
(pa) Of scalar order-parameterstpy,. The vector order-parameter (p will generally
be constrained; entries of (p may, for example, satisfy a constraint of the form

A
p. €0,1] for each a, £*>, =% 9

We allow for the possibility of more general constraints by restricting attention
to (p that lie in the closure $ of a relatively open subset of an affine set H
in R®. (Extension of the theory to the case where H is a smooth manifold is
sraightforward.) We write T(H) for the subspace of R* consisting of vectors
tangent to H and P(H) for the projection onto T(H) with the understanding
that P(H) denotes the identity on R® if T(H) = R®. T(H) generates a corre-
sponding space V/(H) contained in (R®* consisting of all (in (R%)* such that,
for each cin R®, ~cis an dement of T(W).

When the dimension of H is A - 1, the elements |J of H are consistent with
an equation of the form (d, rf) = 6, with d in R* and 6 in R prescribed, and
T{H) is the set of all fi with (d,fi) =0. If each entry of d is 1, and if £ = 1,
then we recover (9),.

During an evolution of B the order parameter will be a fild <p on B for all
time. We associatewith each such evolution an configurational force system that
acts in response to changes in <p. This force system consists of a stress £ with
valuesin V(H),® an internal force n with valuesin T(W), and an external force
7 with values in T(W); most importantly, this system is presumed consistent
with theforce balance

f Z-nda+ [ftr + 7)<t = O (10)
8Vv \Y

*Thus, thestress£ isa list of vectors; in the Appendix £ I srelated tothe more conventional
tensorial notion of stress.




for al V (cf. (8)), where we have chosen to neglect microstructural inertia.
Thus

divt +ir +;= 0, divE = (div$y,dives....divE), (11)

or equivalently,
di<+*.+7.=0, (12)

for a= 1,2,..., A; because of the underlying constraint, the equations (12) are
generally not independent.

It is difficult at this stage in the development to give precise physical inter-
pretationstothestress£ and theinternal force TT, but some prdiminary remarks
of an intuitive nature might be helpful. Condder the special case of a single
scalar order-parameter <p. Across a transition layer between phases, tp should
vary rapidly in the direction m = -V<p/A\V<p\ and, for an isotropic material,
( should be paralld to m; in this case our intuitive expectation is that (*m
represents surface tension within the layer. For an anisotropic material, £+ v
would not generally vanish for v orthogonal to m; we believe that £ ¢ v would
in this case account for microstructural shearing, across the layer, induced by
anisotropy. For a scalar order-parameter (p, we view the scalar force TT as a
microstructural tension representing both configurational forces of the type dis-
cussed by Eshelby [23] and dissipative forces within transition zones associated,
for example, with the rearrangement of atoms. These intuitive remarks arejus-
tified by the discussion of the Appendix, the asymptotic analysis of Section 7.2
(in particular (117)), and the analysis presented in [21].

2.3 Disspation inequality

When thermal effects are suppressed the second law isthe assertion that therate
of energy increase cannot exceed the total expended power. Letting \p denote
the free energy, we write the second law in the form of a dissipation inequality
to be satisfied for al time and al V.

[+ etarmdvs jSnuda+ foudy -+ IZ,<p)da+ [(%S)dv, (13
P \% i \Y%

which makes precise our assertion that configurational forces act in response to
changes in the order parameter. We do not include the force TT in (13) as it
acts mternally to V. In this sense n has a role analogous to that of the internal
forces G' and g in Ericksen's theory of liquid crystals [24] since TT enters a
balance equation but does not contribute to the working.®

If we use (5); and (II)X to diminate the external forces 6 and 7 from the
local form of (13), we arrive at the local dissipation inequality

"-S.F-<tp$+ <* £><0, (14

$G1. (3.4M 3.7)0f[24).



where p, with valuesin V(W), is defined by
p=V¢ :={(Vp,,Vg,,....Vg,). (15)

3 Congtitutive equations. Compatibility with
the disspation inequality

We consider constitutive equations in which the independent variables are the
deformation gradient F and the configurational variables <= p, and <&

Y= ¢'(F1¢:Ps ﬁP). S= S(E 'P:pi‘b)! £E= E(E‘P:ps ¢)t n= *(‘F!‘P:pl SO)

(16)
We assume that, under observer changes, <p, p, £, £ and 7r are fnwriant,
and that the remaining fields transform in the standard manner, so that, for
example, .

*(F,v,P*) = ‘tev.P,V), )
with U the right stretch tensor (3). (We also require that 5 be consistent with
(5)2, but this is of no concern, since it will satisfied automatically by virtue
of (17) and (20)x.) We do not provide constitutive equations for the external
forces 6 and 7, but instead allow them to be assigned in any way compatible
with the balance laws for linear momentum and configurational force.

Given adisplacement field u and an order-parameter field <p, the constitutive
equations (16) can be used to compute a constitutive process consisting of u, <p,
and thefieldsij>, 5, £, and TT; the balances (5); and (11), for linear momentum
and configurational force can then be used to determine the external forces 6 and
7 needed to support this process. The second law remains to be satisfied in all
such constitutive processes, arequirement that we usetorestrict the constitutive
equations. Specifically, we assume that the local dissipation inequality (14) is
satisfied in all constitutive processes.

Writing h == (p and £ = (F,~,p,h), we see that, granted (16), (14) is
equivalent to the inequality

($p($) - $(O) F+ () +#(E) By + (n () —€(L).B) + <7(C), *> < o (18)
with subscripts indicating partial differentiation, so that

UQeTH), "KeTM), ¥,()eVH). (19)

Since we can always find fields u and (p such that F, F, p, p, h, and h have

arbitrarily prescribed values (consstent W|th the constramt) at some chosen

point and time, we must have |f>h =0, ipe = S and A —£
The free energy, stress, and configurational stress aretherefore independent
of (p and related through

S=gF.¢p), *="p(F*>p), (20)



and the internal configurational force admits the representation

x = —,(F. ¢,p) - B(F, ¢,p,9)%, (21)

where the kinetic coefficient B(F,”,p, <p) = B(Uy<p,p,(p) is, for each value of
its argument, a linear transformation from T(H) into itself consistent with

D := (¢, B(F,,p,9)¥) 2 0. (22)

In view of (20) and (21), a complete constitutive specification of the material
consists of prescription of the free energy fp and kinetic coeflSdient B as functions
of (F,*>,p,h).
The relations (20)-(21) yield the dissipation balance
ij, _SF- (Ep) + ¢r,(f) = -V< 0, (23)

identifying V and hence transformation kinetics as the sole source of dissipation
in the theory.

4 Field equations. Boundary conditions. Lya-
punov relation

Using (20)-(21) in the local balances (5), and (11), yields

div(tiv;.(F, ¢, F>) + 6 = £1i,
e - ** *
dl"(ﬁi',(F- %P)) - ‘t’p(i‘l 'F»P) +r= K« )). }
While the configurational force balance (11)" involves no time derivatives, rate
terms enter the final equation (24), through the constitutive equation for the
internal force n. For that reason we do not view (24), as a transport equation
for (f, but rather as a balance law for force in which a rate term arises as a

consequence of the dissipative nature of the internal configurational force. We
assume, for the remainder of the paper, that the external forces vanish:

6=0, 7=0. (25)
Note that, by (24) and (9), writing B = JB(F, <p,p, <p), we have

A —_— A
1 -

(24)

di(V> — XE|u[?)] — FTS—="8p«@€«) + QF i 138 Byi<pepa =0,  (26)

a balance that involves a ger;erali’zalion A
(¥—3el¥[}; _F's. £p.ot. 27)



of the Eshetby tensor appropriate to our theory (c/. [23]).

Appropriate boundary conditions for the general equations (24) might con-
sist of classical conditions prescribing Sn on a portion C of dB and u on dB\C
in conjunction with the prescription of (n on a portion C of 8B and (p on
8B\C.

In the case of an order parameter with two components tp, and (p,, con-
strained via di(p + dtp, = £ with d, ds, and 6 nonzero, only one of the scalar
order-parameters is independent. Writing (f = d<p = 6- dytp,, and expressing
the free energy as a function of F, y> and p := V<p through

¥ F,0,0) = ¥(F, 0,,¢,, Ve, Vip,), (28)
(24) reduces to

div (\z’F(E ' p))

" . 3 (29)
div(¥,(F,v2p)) - %{F,ip,p) =/2(F,v2p,")", J
with
fi := Bulrff - 2B/dd, + By/d> = 0 (30)

a Soalar kinetic coefficient. Equations (29) are identical to the specialization of
(24) that arises when the order parameter is a scalar.

Returning to the general equations (24), our development ensures consis-
tency with (14) and hence yields the growth relation

L4

/ (+deuf)dv- | Snuda- | (E(Mda<_- / Vav. (31
Y & &

B B

If Sn = Sin on dC with S. constant, ifu =0on 3B\C, and if ((-n,<j>) =0
on dB, then (31) reduces to the Lyapunov relation

[os i

t(tl> - S-Vu + y\Wu\%)dv = - fvdv < 0. (32)
B

5 Freeenergies

5.1 A model with separable free energy

We now describe a simple model that should yield many of the qualitative
features of displacive phase transitions. We assume that the order parameter
cpisconstrained asin (9) and consider freeenergiesi> that are separable in the
sense of the decomposition

V¥ (F,¢.p) = W(F,¢) + f(¢) + 5(p),

A (33)
W(F,¢)= .;1 W (F).

8



Writing
M.:=(0,0,...,0,1,0,...,0), gentry=1), (34)
we assume that / and g comply with the normalization

[(fij =0 for each a, a{0) = 0. (35)

For this modd there are A phases, labeled a= 1,2,..., A, and phase a may
be identified with the particular value <p = /i of the order parameter. The
function W(F, <p) represents the strain energy, with WJ*F) the strain energy
of phase a. Wp(F) should be of the type usually considered for single-phase
materials; in particular, we assume that W,(F) is rank-one convex (or even
quasiconvex) and that W*(U) redtricted to right stretch tensors U (c/. (17)),
has a strict global minimimum L£,

Wi{U)sW(U) for U*U (36)

with I£ the natural stmin for phase a.

Whiletheindividual strain energiesdisplay the ener getic preference—within
each phase—of the natural strain for that phase, the exchange energy f((p)
should characterize the ener getic favorability of the individual phases. Wethere-
forerequire that the JAq form the complete set of global minima for /(<p); thus,
by (35), assuming the minima are strict,

/(/O=0, f(<p)>0 fa v?pm. (37)

Finally, the structure of transition layersis characterized by the dependence
of the free energy on p, while the bulk material should correspond to states
with p = 0. Further, the gradient energy g(p) should, in some sense, regularize
the system. With thisin mind, we assume that g(p) is strictly convex with a
minimum at p = 0.

When viewing this mode as a regxdarizaUon of a more standard theory in
which phase transtions are the result of a lack of rank-one-convexity in the
underlying strain energy W(F) = W(l/), one might choose the energy Wy{U)
as an approximation of W(U) near thewe| describingphase a (c/., e.g., Grinfdd
[25], FWed and Gurtin [11]).

A standard gradient energy is

*(p) = i<p,4p), (38).

with A a (constant) symmetric, positive-definite linear transformation from
V(H) intoitsdf; theisotropic version of thisrelation has the smple form \A|p|%
A standard exchange energy, for a system constrained by (9),, is

A
)= J[a-e), (39)
o=|

9



with (p* the a-th component of <p.
The constitutive equations appropriate to a separable free energy have the
form

A
S(E ‘P) = El 'P-S-(F)i S(F) = HW(F)I

é(p) = g,(p),
*('Fa @D, ‘P) = —W(F) - fw('P) - B(E V2% N ¢)¢’1

with S,(F) thepartta/ atress in phase a, and ti>(F) := PW)(W” (F), WE(F), ...,
Wi (F)), where P(W) isthe projection onto T(W); and in the absence of external
forces, the governing equations (24) reduce to

divS(F,¢) = ois, W |
div(g (@) - w(F) - £+ «CF..... N, | <>

Thus far we have not distinguished between pure phases and phase variants.
To do so requires a discussion of material symmetry, which is the subject of the
next section.

(40)

5.2 General theory. Coarse-grain free energy. Material
symmetry

We now return to the theory described by a general freeenergy V>(F, (p,p). Here
bulk phases are associated with properties of the coarse-grain free energy

#(F,if)=~(F,tf)0), (42)

while the structure of transtion layers is characterized by the dependence of
the gradient energy

o(F,<p.p) =tj,(F,<p,p) - 4>(F,<p,0) 43)

on p. We now focus on ideas of material symmetry for individual phases using
the coarse-grain free energy as basis. Symmetry considerations for the gradient
energy should, in some sense, entail the interaction between phases (cf. Lai
[13]).

Using separable free energies as motivation, we assume that there are K
phases, labeled k = 1,2,..., K, and we associate with each phase k a unique
value (p in * of the order parameter, with (p*<p; for k ~ /. Focusing on the
dependence of #(F, (p) = #(17, (p) on the stretch tensor U, we assume that, for
each phasefc, &{U, (p,) has a strict global minimum at U, that is

Wh=* (Uk,iph)<*(U,<ph) for  UzxU. (44)
Then
W(F) = #(F v>J (45)

10



isthe strain energy of phase *, while Uy isthe natural state for k; by (44),
wk = Wh(U) < Wi (U) for U?U,. (46)

We define the symmetry group for phase k to be the group Qx of unimodular
tensors H (tensors H with detH = 1) such that

Wi(F) = Wi(FH) (47)

for all F.” Thisreation restricts the natural strains Uy, since (47) with F= t/,
(17) with F= UH> (3), and (46) yield

Ul = ITUIH (48)

for al Hin Q.

The definition (47) describes symmetry within a given phase; variants are
described by symmetry transformations between phases. Precisdly, phases k
and / are equivalent if there is a unimodular tensor JJ, called a symmetry trans-
formation from k to /, such that

“(F<p) = *(FH.v) (49)

for all F. This defines an equivalence réelation on the set of all phases; the
corresponding equivalence classes are called pure phases. If a pure phase C has
more than one member, then its members are called variants of £ (or of / € £).
Let k and / be variants of a pure phase and let if be a symmetry transfor-

mation fromk to L Then
G= -~ ff'ftff (50)

and
W(F)=W,(FH), w,=w, U'=HU]H. (51)

We will verify only (50); the proof of (51) is Smilar to that of (48). Choose F
and A € Q¢ arbitrarily and let G = FIT". Then

9GAH, *>) = #(04, ip) = #(G, y>J = MGH, v); (52)

thus IP(Fff"'AHT Vi) = 9{Fsip) and IT'AH is an edement of ft; hence
H~'G\H C Gi. A smilar argument yields H''GM D Gi-

Since thematerial under consideration issolid, it seemsreasonable to assume
that, given a phase k there is a choice of reference configuration such that all
symmetry transformations in ft, as wel as all symmetry transformations to
variants of k are orthogonal. Granted this, (47) and (48) imply that, for any Q

W) =W.Q'UQ), Ui =QUWQ, (53)
Cf. Truesddl and Noll [26] and Gurtin [27] for discussions of material symmetry.

n



while (51) yield the relations
Wi(U) = W(Q'UQ), Ui = Q'C7iQ, (54)

for any symmetry transformation Q from k to /.
Phases k and | are kinematically compatible if there are orthogonal tensors
Q¢ and Q such that

QUn — QiUi is atensor of rank one; (55)

in which caseit is kinematically possible for a coherent sharp interface—involving
ajump in the deformation gradient F—to form between phases k and / at the
stretches U, and LE Condition (55) ismost often satisfied when k and / are vari-
ants of martensite, but not generally between austenitic and martensitic phases
(c/, eg. [28, 29]). Conditions of the form (55) are important in equilibrium
theories, since they allow for the possibility of layering between k and /.

6 Linearly elastic phases

To model situations in which the displacement gradient is small, it might be
appropriate toreconsider the theory assuming, from the outset, that both strains
and rotations are infinitesmal. To set our theory within that framework we
redefine Fto be Vu and replace (5), by S=5"; the steps leading to (20)-(21)
and (24) then remain unchanged, as do these relations. Further, invariance of
the constitutive equations under infinitesmal rotations (t.e., replacement of Vu
by Vu + W with W skew) implies that the constitutive hinctions can depend
on F only through the infinitesmal strain

E:= }(Vu+ Vu"). (56)
Again we consder free energies that are separable:
V(E,@,p) = WEY) +/(V) + 5P |

A
W(E,¢)= ¥ ¢ W(E)

with / and g as defined in Section 5.1 and <p constrained asin (9). Consistent
with our assumption of infinitesmal deformations, we require that the individual
energies WJJ2) be quadratic functions of the infinitesmal strain:

W.(E) = w, + }(E - E.)-C.[E ~ E\), (58)
with Ey, the natural strain of phase o and C.[ « —a symmetric, positive-definite

linear transformation from the space of symmetric tensors into itself—the elas-
ticity tensor of phase 0. The stress S= S(E, <p) is then given by

(57)

4

A
a=1

12



with S(E) the partial stress for phase a
For a separable free energy such as (57)1, (40)2s remain valid, and, ignoring
external forces, the governing equations are
div8(E, ) = oii, }
div{g,(p)) T\P) = B\L, &, P, P)P
where W(E) ** P(H)(HMNE?), W4(25),...,Wa{B)).

An alternate free energy that might be ussful in describing ordering transi-
tions has the separable form of (577 with the strain energy given by®

(60)

W(E,¢) = w(<p) + {E-E{<p))-C{<p)\E -E{<p% (62)

where <p is constrained in a manner consistent with the particular transition
under consideration.

7 Comparison with sharp interface theory

We now investigate the formd consistency of our theory with the sharp inter-
face approach. As a basis for this, we list the governing eguations derived by
Gurtin and Struthers [18] and Gurtin [17] specidized to the case of an isotropic
interfacial energy that is independent of the deformation gradient. Neglecting
body forces, the bulk equations consist of the momentum balance

divs = g, (62)
supplemented, in each phase g = 0,1, by constitutive equations
W=W(F), S=ZW(F). (63)

The equations that hold across a phase interface, represented by a smoothly
evolving surface E with orientation m and norma velocity V, consst of the
compatibility condition

M=0, (64)
expressing the requirement of coherence, the momentum balance
[81m = —oVii], (65)
and the normal configurations! force balance
W\ ~ <G {F\ +wK = bV. (66)
Here [4>\ and {<f) denotethejump and average of abulk field<j> at theinterface,
[W] - (5)-[F] = m-[WI - F'S+ \oWV'F'F]m (67)

Cf. Libman and Roitburd (14).

13



isthe Eshdlby (or "driving") traction, wisthe interfacial energy (per unit area),
K istwice the mean curvature of 27, and 6 > 0 isthe kinetic coefficient.

Condistent with (62)-(67), we focus on situations local to a single interface
separating two phases. (Werecall that such an interface may represent, depend-
ing on the congtitutive details, a boundary separating either two variants of a
purephaseor twodistinct phases.) Specifically, we consider situations described
by a single unconstrained order parameter (p (c/. the paragraph following (25))
and, hence, restrict attention to the system (29).

7.1 Relation between Eshelby traction and interfacial ve-
locity

Let B occupy all of space, and consgder a longitudinal motion described by the
axial coordinate x. In this setting the displacement and order parameter are
functions of x and t, and the displacement may be identified with a scalar-valued
function u. Therefore, letting

e:=tXy, P:=<px (68)

we may consider the response functions\j) and /? of the general theory as func-
tions of (e<p,p) and (ey?,p.<£), respectively, and, in the absence of external
forces, reduce the governing equations (24) to

T ] (69)
€z ~ Y e, 0, p) = Ble, o0, @), ]
where . .
s=vy.(e,pp), £= ’by(es . p)- (70)
We seek a solution of (69) of the form
ti(x,t)=tl(y), <p(M)=£(y), y=x-Vt, V=20, (72)
subject to the far-fidd conditions
g(xo00) = et, <f(x00) =v*, r(£00) =p(x00) ="(x00) =0, (72)

wherec = €', p=<p'. A solution of this type represents a traveling wave with
velocity V connecting the states (e~,yr) and (c*,A>).

Substituting (71) into (69), we obtain the following system of ordinary dif-
ferential equations

n 73
Gulenorp) — € = VBler o Vil | (73)

14



where for convenience we have suppressed the overbars We now invetigate
properties of solutions of (73) that are congsent with (72).
First, by (72) and (73)a,

A(e* \V*,0) =0, (74)

50 that the energy of states connected by a traveling wave is sationary with
respect to the order parameter. Next, letting

**o«&e*y>*,0), **:=tf.(e*.**.0), [a] :=o0"-a", fa) = "+av),
(79)
we nhote that (73), can be integrated to give

s-0) = V" (e-(e» (76)
andtheRankine-Hugoniotrdation
W = *VM«l- (77)
Further, multiplying both sides of (73), by p and using (77), we obtain

(fa,<P,P) ~ « -J* + *<?VV)' = VP(e,<p,p,-Vp)p>, (78)

which, when integrated fromy = —m to y = +00, yidds, with the aid of
(75)-(76), :

M-{*)M = TV, (79)
where

+00

r:= 1 P(e(y)My),P(v),-Vp(y))p(y)dy. (80)

Fvam (74) and (76) one might expect that—granted suitable congitutive hy-
patheses—if* and the functions o) and tp{) are uniquely determined by the
limiting values € of the grain; in thiscaser =r(e~, e+, V).

Recognizing that the geometry of the problem at hand obscures potential
sources of interfacial sructure and disregarding the finite thickness of the phase
interface, we see that (79) is the one-dimensional counterpart of the normal
configurational force balance (66). Our theory therefore contains an implicit
"kineticrelation" betweentheEshdby traction and theinterfacial velocity of the
type introduced by Abeyaratne and Knowles [19] and TVuskinovsky [20]. Since
the function O isredricted by thermodynamics only in sign, the kinetics of our
theory is more general than that based on viscosty-capillarity or maximum-
dissipation criteria (c/. Abeyaratne and Knowles [30, 31] and the references
therein).

To identify sources of interfacial structure in our theory, we turn next to a
problem that allows for the study of curved interfaces
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7.2 Formal asymptotics of a transition layer. Interfacial
tension

In our theory phase interfaces are modeled by thin transition layers in which
the order parameter sufferslarge gradients. We now study the behavior of the
basic fields across such a layer assuming that /? is constant and that the free
energy hasthe form

V(F,¢,p) = W(F,¢) + f(e) + $AlpI", (81)
in which case the basic equations (24) become

div(W,(F, o)) = pi. |

ST T, ) (82)

AAY> — V¥ (iIS<f) —f\ip) = p<f- ¥

Regarding the strain energy W(F, <p)> we require only that the constitutive
equation for the stress, '

8= 8(F,¢) = W-(F,¢), (83)

satisfy
\${Fi<p)\-+00 as |F|-00, (84)

uniformly for <p in any bounded set.® Further, we suppose that the exchange
energy is a double-wdll potential with minima at (p=0and (p = 1, so that (c/.

(37)
(0) = /(1) < /¥) for v/0,1, (85)

with / strictly convex except for a " spinodal" interval [go, 0x) contained in (0,1).
We then identify the two phases, " phase zero™ and " phase one," with thein-
tervals (-00,00) and (*,-foo), respectively. A standard example of such an
energy is
Fo) =M e(d-¢) . (89)
We allow the body to occupy all of space, and consider a processin which one
phase, say phase zero, occupies a bounded region. Wewrite| for acharacteristic
length associated with this region during the time-interval under consideration;
we let /i and v denote scale factors for W and / (for example, the maximum
of |Se(l/,,0)] and |*¢(1/;¢1)| and the maximum value of |/*| in (0,1)); we
introduce diménsionless variables X := x/I, i := ct/C, G(X,t) := u(xt)/£,
with ¢ := y/I*/Q, as well as dimensionless constitutive functions W := W/Ii,
S := i, f7:= ffw and we assume that the dimensionless moduli /3c/i/£,
A/vf, and /x/i/ scale according to ¢/3; ¢A, and c, respectively, with ¢ > 0 small

°In particular, we do not requirethat the strain energy have a specific form such as that
specified in (33)2, (57)2, or (61).
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and W, 5, /, 0, and A of O(l). With this scaling (82) become, upon suppressing

the overbars,
div(W,(F,)) = 4, 1
€Ay — W, (Fp) — [ (p) =€8p. )
We now perform a formal asymptotic analysis for e small, assuming that the

thickness of the transition layer is O(e). We choose a value g in the spinodal
interval (go, 0x) and identify the phase interface with the set

@87)

£(*,*) = {x:*>(x,M) = 9}, (88)

which we assume to be a smoothly evolving surface. We write d(x,t, €) for
the signed distance between x and E(t,e) with d(x,tt) < 0 in the phase
zero region and d(x,t,€) > 0 in the phase-one region. We focus attention on
an arbitrary but sufficiently small open subset S(t, c) of E(ty€) and define a
function C(x,t,e) with values in R? such that (d(x,t,e),C(x,M)) provides a
local orthogonal coordinate field near 5(t,e). In the transition layer we stretch
the coordinate normal to S(t, c) by letting

r(*,t,e) :=€-'(*(*,*,€). (89)

For each field r?(x,t,c) of interest, in particular, for t; = u and tj = > we
introduce an outer expansion

n(z,t,€) = f(d(w,t,€), {(=, 8, €), t) + e, (d(x, 2, €), {(=, 8, €),8) + O()), (90)

that we assume to be valid away from the layer, and an inner expansion
q(z, t: E) = ’?o(f(zi t‘ f)! C(cv t: 6)1 t) + €I};(‘l"(2, t! E), C(zi t: 6), t) + 0(63)) (91)

that we assume to be valid within the layer. The inner expansion at r = +00 is
related to the outer expansion at d = 0; in particular, writing

7i(lt) = n(Foo, 1), FEGH =R {0£42), k=01, ]
+ - 1 + - j (92)
[[1=0)Y =), Cy=3()+())
we have the O(l) matching conditions (see, for example, Caginalp and Fife [32])

ﬂf = '-:'::! [ﬂo} = lﬁoL (qo’ = ‘ﬁn, (93)

We consider first the outer expansions of u(xte) and *>(x,t,c). By (87),,

ftpi&o) = 0, so that <pg is constant in each of the two regions separated by the

layer; assuming that these constant values lie outside the spinodal, we conclude
that <py =0 or <py = 1. Thus, by (87)y, at O(l),

<iiVSo = io, 1 P

- . - > (94)

S> = Wi-*0.0) »" Phasezero, S = Wy(Fo1) in phaseone, J
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with F, = 1 + VU, so that, avay from the interface,

divS= ti + O(e),
S=W(F,0) + O(e) in phase zero, S= WA(F, 1) + O(c) in phase one. 3
(95)
We will show further, as aconsequence of the matching condition, that [Ug] = 0
and hence

[u] = O(e). (96)

We next examine behavior within the transition layer. Considering C(-,*, ¢)
as a coordinate field on 5(t,c), let m(C,M), V(CM), and £«,t,e) denote,
respectively, the unit normal to S(t, ¢), the normal veocity of St, ¢), and twice
the mean curvature of 5(t, c) (taken as positive whenever the osculating sphere
lies in the phase zero region). Then, assuming that these fields have inner
expansions of the form (91), it fdlows (c/ Evans and Spruck [33]) that

Vd(x. 1, €) = mo(Clgt,€),4) + O(e), 1
d(z,t,6) = V,({(Z «e) 1) + O8), | 97
Ad(z,te) =K ({(= t ) )+ O(e). )
We assume that within the transition layer the stress S(x,t,e) is bounded

in e in fact, we assume that Shas an inner expansion of the form (91) (as do
u and <p). Expanding the deformation gradient F= 1 + Vi, we see that

F = e'u,@m, + 0(1), (98)

where a prime indicates differentiation with respect to r, and consistency of
this estimate with (93) and the inner expansions for Sand (p yields u', = 0, so
that ug is independent of the normal coordinate r. Therefore [ug] = 0 and the
conclusion [dg] = 0, and hence (96), fdlows from (93). Further,

F=1 + Vup + w,@m, +0(e), 3
E
F'=tt;'®@my+0(e),
F; ) (99)
4 =, — V,u + 0(e),
et = VZiul + O(e),
ep = =V, + O(e),
ws + e(py — Kop) + 0(€?). )
Note dso that (99):s yield

VIF] + [e]l®m = O(¢), (100)
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a kinematic condition consistent with (96).
Next, (87), gives

Af = />.)e (101)

By (93), to match conditionsin the far field requires a solution of this equation
satisfying (pp =0at r = —mand tp, = 1 at r = +00. We assume that such a
solution <pp existsand isunique, sothat, necessarily, <po dependsonly onr; when
the unsealed exchange energy has the form (86) such a solution is furnished by

@o(r) = §(1 +tanh (/VX)). (102)

Our next step is to condder the lowest-order terms in (87),. Snce §

S(E. ¢,), ‘ _
S = S (Fp)F]+8,(F. M = $ + 0@, (103)

and
div5 = t'Svd+ O(l) = c-'*m, + 0(1), (104)

so that, by (101), (87)j yidds Vifuy =50"; we therefore have the rdations
(S, - {So))m, = V2« - (u;», [$,]mo = VoTu'd. (105)
‘At O(e), (87), hasthe form
L(py ), = 2] = Lol )i, = (AKX, — BV, ) + W (Fo,<po) =: z.  (106)

Differentiating (101) with respect tor showsthat (p', isa solution of the equation
L(<po)ip'o=0; hencetp', and zsatisfy the orthogonality condition

joti ("Zr)dr = 0. (107)

Next, by (99) and (105),,
Ww('!‘:s‘po)w; = (W(F;s'po) - (So,"E - V:(%’K I '(«;W’))'! (1CB)

90 that, if we introduce the material constants

a:.= y/ﬁ/ y/f@&P, °e="g, r :=0q, (109
(1012) gives
a = j&{n"dr, (110)
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and, snce K, and V, are independent of r, (107)-(110) yield .
mé&<p.)\ - (fILI-KI + g =rv.. (in)
Finally, by (99), (105),, and (111), we have the formal estimates
[SIm + V[u]*O(&\  [W] - (S {F] +*K =1V + O(e). (12
In concluson, asc—> 0 the system (87) is formally asymptatic to
div5=ti (113)
away from phase interfaces, with
S=W"(F,0) inphaszero, S=Wp(F,l) in phase one, (119
in conjunction with thejump conditions '
[u =0, [Sm=-V[ti], IW]-(S).[F\+a)C=TV (115

across phaseinterfaces. Equations (114—(115) are, modulo the underlying non-
dimengonalization, equivalent to (62)-(66).

We emphasize that, while (115),, like (79), reates the Esheby traction and
the interfacial velocity, unlike (79), it also indudes a term a/C, allowing us to
identify a oc VA, appropriatey rescaled, with interfadal tenson. Thus for free
energies of the fom (81), the gradient term modes the effet of a congant
interfacial tenson.

Next, using the inner expansions, we find that the scaled configurational
gress£ and internal force 7r have the forms

€= rgm, +0(e), } (119
7 =1, (00) = U o 00N + Wy (Fonipy) — BV,) + O(E):

thus, since /(0) = /(1) =0, we have, formally,

timeofe™" / ~i(r){(r, ¢) dr) = am,
= (117)
lim.0(" TN (r)W(rg -)dr) = [WA- {5>-[F] - TV.

This allows us to identify £ with a vector whase magnitude is the interfadal
tenson and whose action is normal to the trangtion layer, and to identify n as
the sum of the Eshdby traction [W] - (S>[+J and adragforce-T V.

It isinteresing to note that, granted the scaling used above, the particular
form of f(ip) effects the limiting equations (114>—115) only through the inte-
gral of y/f(<p) from well to wel across the spinodal. Inspection of (109) reveals,
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father, that at most two of the constants a, A, and 0 are independent. The
asymptotic correspondence of (82) to (62)-(66) is, in this sense, insensitive to
the particular features of the exchange energy, gradient energy, and kinetic co-
efficient. We view this flexibility, which allows the portions of the constitutive
description associated with the order parameter to be selected based on prac-
tical considerations (associated, for example, with the desire for computational
simplicity), to be a major strength of the theory.

Acknowledgement

We thank J.K. Knowles, M.T. Lusk, G.B. McFadden, P. Rosakis, AX. Royt-
burd, and P.W. Voorhees for valuable discussions. This work was supported by
the Army Research Office and by the National Science Foundation.

A Appendix

To smplify the presentation, we restrict attention to the case of a scalar order-
parameter ip.

This parameter is a field that describes the state—in the sense of phase—of
points of the body. We now identify states with possible values of <p, and write
Ec(t) for the set of points x for which <p(x,t) = ¢. We assume that these sets
E{t) describe smoothly evolving surfaces, called state surfaces, in the body B.
Thefields Ve

N
Vel Vel
then define a unit normal and corresponding normal velocity on each state sur-
face. Given alocal parameterization x = r(C, t) for £¢(t), v(x, t) = (d/dt)r(Ct)
satisfies

(118)

V=vm: (119)

we will refer to fields v consistent with (119) as admissible velocity fields (for
the family of state surfaces). Different admissible velocity fields correspond
to different choices of time-dependent parameterization for the state surfaces.
Each admissible velocity field admits the representation

v=Vm+ (1 - me&m)w, (120)

with w an arbitrary vector field, and conversdly.

We now consder a somewhat different treatment of forces in which the
configurational system consists of a stress tensor C, an internal force TT, and
an external force 7, which enter the theory through an configurational force
balance

I Cnda+ jA:Gr +7dv=0 (121)
BV Vv
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for all P, or equivalently,
divC+7r + 7= 0. (122

We assume that configurational forces work to change the state of points of
the body by expending power over the velocity of state surfaces. Precisely, we
assume that the configurational power expended on a part V is given by

P(P)= Jcnwda + frdv. (123)
érp {

A basic stipulation of our theory is that P(V) is independent of the choice
of velocity field v used to describe the motion of the state surfaces. Writing
Cxma := (L —m<g>m)C and 7i5n := (L-m®m)7, it follows that

r
| Cimnwdat If lyymawdv = 0 (124)
BV %
for all vector fields it?, which yields
(divCiys + %J-w + Cipp- VW = 0 (125)

for all such to. Thus Gy = 0 and 7:22 = 0, so that C and 7 admit the
representations
C=m<g>c, 7=3%m. (126)

Therefore (123 has the intrinsic form:

P(P) = / cnVda + JgVav. (227
BV v

Hence, given apart V of B, the power expended on V by the configurational
stress is computed by integrating the measure ¢ « nVda over dvV. Consider a
state surface E(t) that intersects dV in a smoothly evolving closed curve C(t).
Let i/(x,t), a vector in the tangent space to E(t) at x, denote the outward unit
normal to C(t). Then the vectors m, n, and 1/ are coplanar, and the intrinsic
velocity of C has two components: Vm, which isnormal to E; and via,i/, which
is tangent to E but normal to C. Let 1? denote the angle between m and n, and
assume that t9~ O,TT. Then n = (cost?)m + (sini9)i/, vy, = Veott?, and

caVda = (c-mv™ cifFJsintf da. (128)

Thetangential velocity vim, represents the rate at which the area enclosed by C
isincreasing, per unit length of C. Thus cem works to increase the area of state
surfaces, and hence represents a "surface tension." Similarly, eu represents a
"aurface shear." (In fact, the vector c is a counterpart for state surfaces of the
“capillarity vector" of Cahn and Hoffman [22] for sharp interfaces) Finally,
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antf transforms the area measure da on 8V to its projection sint?da on the
plane perpendicular to i/.
_ Next, writing 7ry = (1 - mg>m)7r, and substituting (126) into (122), we
find that
(dive+wm + 7-m)m + wyy + (Vm)c = 0. (129)
At each (x, 1), Vm(x,t) maps vectors into vectors tangent to the state surface
through x; thus (129) yields a normal oonfigurational balance

dive+ trm + 7m = 0 (130)

and a tangentia balance ny, = —(Vm)c. The normd balance governs the
motion of state surfaces. The intrinsic velocity of such surfaces is normal; tan-
gential motion is irrelevant; for that reason we take icyy, to be indeterminate
(not specified by a constitutive equation, but rather, defined by the tangentia
balance).

Next, we introduce £, 7, and 7 through the relations

c=\W<p\& *m= VAT -£VNVY>, *ym=|VAT7;. (131
the normal balance (130) then takes the form
divE+7r+7=0, (132
and the power becomes
P(P)= é&<p&nda+f€rfdv. (133

These are consistent with the local configurational balance (11), and the con-
figurational contribution to the working in (10) for the case of a scalar order-
parameter.

Finally, we emphasize that the assumption V<p ~ 0 is crucia to the foregoing
discussion, and note that, using (118)" (130), and the tangential balance, the
decompositions of C, TT, and 7 smplify to:

C=-VVRE it=-TV">+ (VWAE  7=-7V<p, 134
which can be used to obtain (132)-(133) directly from (122)-(123).
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