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b. Two-phase deformations
A two-phase deformation is described by a pair yn (Tt«oc,p) of

deformations: yn associates with each material point X in a closed region
Bn a point x*yn{X) of space. The points X of Bn are then the
material points of phase n, S^^y^tB^) is the region of space occupied by
phase it.

a ^ . (2.2)

is the deformed body, and

Z * S^nS^ (2.3)

is the deformed interface (Figure 1). We write Yn for the inverse
deformation:

X * Y^x) «* x « y^X). (2.4)

We assume that Z is a smooth (possibly unbounded) surface; the surface
Sn in B^ that deforms to Z,

Sn * Yn(Z), (2.5)

is the undeformed phase n interface, it being tacit that the phases not
separate at the interface. We emphasize that — to allow for incoherency —
we do not require coincidence of the undeformed interfaces Sa and Ŝ .

We assume henceforth that a two-phase deformation yn (n*oc,p) is
prescribed. The invertibility (2.4) allows us to consider bulk fields as func-
tions of position x in B, which is the spatial description, or as functions
of the phase Tt and the material point X in B^, which is the referential
description. The spatial description is most convenient, as it allows a direct
comparison of the fields at the interface; conversion to the referential
description may be accomplished using the inverse mappings Y^.

Precisely, a (spatially described) bulk field is a mapping ip that
associates with each xcB, xtZt a scalar, vector, or tensor <p(x) with
<p(x) a smooth function of x away from Z and up to Z from either side.
For such a field, <p̂  denotes the limit of <p from phase TT at the

/ interface, while lq>] denotes the jump in q> across the interface:



lim [<p] (2.6)

Analogously, inter/aciaJ fieids are functions of xc£, examples being q)̂
and [q>]. (Fields subscripted by n will generally denote interfacial fields
associated with phase IT or bulk fields evaluated at the phase TI interface.)

We define the deformation gradient F(x) at points x away from
the interface through

F(x) * Vy^X), (27)

with XcB^ the point that deforms to x, where the gradient V in (27) is
the material gradient (with respect to X).

We will consistently write, for

n(x) for the unit normal to Z directed outward from

na(x) for the unit normal to Sa directed outward from
XcSBa , X=Ya(x);
for the unit normal to S^ directed inward from

Then

Further,

(2.8)

1 - n^(x)®n^(x) (2.9)

is the projection of R3 onto the tangent plane n ^ x ) 1 for at

We denote by

J * detF

the Jacobian of the deformation; the interfacial field

(2.10)

is then the surface Jacobian of the mapping that carries S_ into Z.



3. INCOHERENCY TENSOR. BURGERS VECTORS
a. The incoherency tensor

Material points X a cS a and X^cS^ will be referred to as compatible
if they deform to the same point

y«<xa) - y W. <3.D

Such points are related by the mapping

h(X) « Y,(ya(X)) (3.2)

from Sa to S^ The tangential gradient V a h«V s h of h maps tangent
vectors T to Sa at X into tangent vectors (Vah(X))T to S^ at h(X).

We will refer to

H - F ^ F , , (3.3)

as the incoherency tensor. H and Vah coincide on tangents vectors: for
all vectors T tangent to Sa at X,

(Vah(X))T * H(x)t, x«ya(X), (3.4)

or equivalently, using (2.9),

Vah(X) = H(x)Pa(x). (3.5)

The incoherency tensor also relates the orientations of the undeformed
interfaces, since, by (2.8) and (3.3),

na « coHTn ,̂ w « (X /̂Xa) * IHTn^r1. (3.6)

Choose compatible material points Xa and X ,̂ and let x^y^X^).
Further, let dXn be an "infinitesimal line segment" on S^ at Xn, and let
dxtt«Fir(x)dX1t. If dxa«dx^, then dXa and dX^ are compatible (coincide
when deformed). In this case dX^«H(x)dXa; thus H(x) relates compatible
infinitesimal line segments on the undeformed interfaces Sa and Sr If
dXp « dXa for all compatible infinitesimal line segments, then the deformed
lattices are — in some sense — coherent at x; and the same can be said if,
for some symmetry transformation Q, dX^«QdXa for all compatible
infinitesimal line segments (Figure 2). This should motivate the following
definition: the interface is infinitesimally coherent at xc-& if there is a

such that H(X)T*QT for all vectors T tangent to S a at X*Ya(x),



or, more succintly,

H(x)P«(x) - QPJx). (3.7)
Ot

Thus infinitesimal coherence at a point x on the deformed interface is the
requirement that infinitesimal pieces of the two lattices "fit together" at x.
The next proposition is a direct consequence of (3.7).

Proposition 3.1. Given a point X€«&. the following are equivalent:
(a) The interface is infinitesimally coherent at x.
(b) There is a Qc9 and a vector a such that

H(x) = Q + a®na(x). (3.8)

(c) There is a Qcg and a vector c such that

Fp(x)Q - Fa(x) * c®na(x). (3.9)

Fix the point x and suppress it in what follows. Assume that the
interface is infinitesimally coherent at x. Then the vectors a and c are
given by

a * Hna - Qna, c = -Fpa. (3.10)

Further,

K - V n, • Qn«. (3.11)

To establish (3.11), note first that, by (3.8),

detH « det(l + QTa®na) « 1 + (QTa)-na. (3.12)

On the other hand, (3.6) and (3.8) imply

co-*na * QTnp + (a«np)na, (3.13)

so that na«±QTnp; but by (3.12) the minus sign yields co-1not«-(detH)na,
a contradiction, since w and detH are strictly positive. Thus np«Qna.
Further, this and (3.13) yield

(QTa)-na « (Xa/Xp) - 1; (3.14)

since detH- Ja/JB , (2.11). (3.12), and (3.14) imply Ja-JB.



b- Burgers vector.3 Burgers set
Given a curve W in R3, we write

vector (W) * (terminal point of W) - (initial point of W). (3.15)

Let Iff be a closed curve in the deformed body with Iff a two-phase loop
in the sense that Iff intersects the interface exactly twice with corre-
sponding undeformed curves

Wn « Yn(1ff) (3.16)

nontrivial. Here W^ has orientation induced by Iff (Figure 3). The stan-
dard definition of the Burgers vector of Iff, in this setting, yields an
expression

* vector (Wa) • vector (W) (3.17)
Off

that is meaningless, since transformation of the references for phases oc and
p by material isometries trar forms (3.17) to a vector of the form

Q vector (Wa) + Q vector (W,) (3.18)

with Q,Qc9» and hence changes (3.17).4 Thus rather than a single
Burgers vector for Iff there is a set b(1ff) consisting of all vectors of the
form (3.18). We will refer to bttff) as the Burgers set for Iff. What is
most important to us is the notion of a "vanishing Burgers vector", which,
within our framework, is the assertion that (3.18) vanish for some Q,Qc9,
or equivalently, that OcbClff). Letting X and Z denote the initial and
terminal points of Wa , and V^ the portion of Iff in phase tt, we may
use the group structure of 9 to express the condition OebClff) in the
following equivalent forms (for some Qcfc):

3 The concept of a turf act Burger* vector is apparently due to Frank 17 J, who
restricts attention to small rotations between phases. The more general situation
involving finite deformations is due to Bilby (101, who essentially derives the left side
of (3.23) with Q»l as an expression for the Burgers vector. See also Brooks 18], Nye
19], Bilby, Buliough. and De Grinberg (111. Christian [12,131, Boliman (14]. Christian
and Crocker 115], and Pond [16,171.
4Bilby. Buliough, and De Grinberg (111 were apparently the first to notice this
indeterminacy of the Burgers vector.



Qvector (Wa) • vector (Wp) « 0, (3.19)

h(Z)-h(X) - QIZ-X], (3.20)

JF -1(x)dx • jQFa- l(x)dx « 0. (3.21)
p ot

Further, for rc*a,p, if we let W^ denote any curve on Sn from the
initial point of Wn to its terminal point, then additional conditions
equivalent to OcbHff) are (for son Qc9)-

Qvector (Wa) + vector (W )̂ * 0# (3.22)

J(H(x) - Q)dX • 0. (3.23)

4. COHERENT SUBSURFACES
Let C be a subsurface of Z, and write

Cn = Y.(C) (4.1)

for the subsurface of S^ that transforms to C. Then C is
infinitesimally coherent if the interface is anhnitesim^y coherent at each
X€C. A much stronger restriction is the content of the next definition. We
say that C is coherent if there is a material isometry f such that

X^ « f(Xa) whenever Xa€Ca and X êC^ are compatible (4.2)

(Figure 4). Thus infinitesimal coherence at x is the requirement that infi-
nitesimal segments of the lattices for the two phases fit together at x,
while coherency for C is the requirement that the lattices fit together
over all of C. Note that (4.2) is equivalent to the assertion that h restric-
ted to Ca is the restriction of a material isometry, so that, for some Qc9»

h(Z) - h(X) - QIZ-X] for all X,ZcCa. (4.3)

In comparing (3.20) and (4.3) it should be remembered that Q in (3.20)
depends on X and Z, but Q in (4.3) is constant. Note that, for C
coherent, not only is the set C0 obtained by rigidly transporting the set Ca

by an isometry f, but, in addition, compatible points of Ca and C^ are
related through I. Note that, for C coherent.
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Qna(x) (4.4)

for all xcC, where Qcfc corresponds to f.
By a two-phase loop for C we mean a two-phase loop that passes

twice through C.

Theorem 4.1. Let C be a subsurface of Z.
(i) C is coherent «+ C is infinitesimally coherent;

(ii) C is connected and infinitesimally coherent -* C is coherent;
(iii) C is coherent ** Ocbttff) for any two-phase loop Tff for C;
(iv) C is connected and Ocbttff) for any two-phase loop Iff for C ••

C is coherent.

We now prove this theorem.
(i) Let C be coherent. Differentiating (4.3) with respect to X on Ca

yields

Vah(X) * QPa(x), (4.5)

and, by (3.5), the required condition (3.7) for infinitesimal coherence is
satisfied. (ii) Let C be connected and infinitesimally coherent. Then, for
each XtCa,

Vah(X) « Q(X)Pa(X) (4.6)

for some Q(X)c9, where, for convenience, we consider Pa as a function
of X rather than x. Choose arbitrary points Z,ZcCa. Since Ca is
connected we can find a smooth curve W in Ca from Z to Z. Let X
denote the set of all points XcW with Q(X)*Q(Z). Assume, for the purpose
of contradiction, that X*W. Then, since X is closed, there is a point
Xc3X, XtfdW, such that Q(X)*Q(Z). Further, since X*dW, there is a
sequence Xn->X, XncW, such that, for each value of n, Q(Xn)*Q(Z). By
(4.6), Q(X)Pa(X) is continuous along W. Thus Q(Xn)Pa(Xn)-*Q(X)Pa(X).
But, since 9 is a finite group with orthogonal elements, and since Pa(X)
is continuous, this can happen only if Q(Xn)«Q(X)«Q(Z) for all sufficiently
large n, a contradiction. Therefore X«W and Q(Z)«Q(Z); hence Q is
constant on Ca. Finally, choosing X,ZcCa and integrating (d/da)h(Z(cx))
along a smooth path Z(a)cCa with Z(0)*Z and Z(1)*X yields



h(X) - h(Z) « ](Vah(Z(a))Z'(a)da * QIX-Z], (4.7)
o

which, by (4.3), yields the coherency of C.
(iii) If C is coherent, then there is a Qcfc such that (4.3) and (hence)

(3.20) is satisfied.
(iv) Assume that C is connected and that OcbHff) for any two-

phase loop Iff for C. Choose X,ZcCal and let x*ya(X) and z*ya(Z) be
the corresponding points on C. Since Z is smooth, it is possible to
construct a two-phase loop Iff for C that passes through x and y;
hence, by (3.20), there is a symmetry transformation Q(X,Z) such that

h(Z) - h(X) « Q(X,ZHZ-X]. (4.8)

This relation must hold for all X,ZcCa; thus, since C is connected, an
argument similar to that following (4.6) leads to the conclusion that Q(X,Z)
is constant. Thus C is coherent.

5. TWO-PHASE MOTIONS
We now turn our attention to time-dependent situations. A two-

phase motion is a smooth one-parameter family yn(t) (ir«oc,p) of two-
phase deformations, the time t being the parameter; thus, writing
y^(Xft)«y1l(t)(X), yn associates with each time t and each material
point X in a closed region Bn(t) a point x^y^tX/t). As before, Y^ is the
(fixed-time) inverse of y n ,

X-Yn(x,t) *+ x - y ^ X . t ) , * (5.1)

®n^«ylc(Blt(t),t) is the region of space occupied by phase TI,

B(t) * Sa(t)uS^(t) (5.2)

is the deformed body,

Zit) * 3a(t)nB,(t) (5.3)

is the deformed interface, and

) (5.4)

is the undeformed phase n interface. We assume that Z{t) evolves
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smoothly with t.
We define the material velocity at points x away from the interface

through

y-(x,t) « dy^X/O/dt (5.5)

with X€Bn(t) the point that deforms to x, where the derivative is the
material time derivative (with respect to t holding X fixed). The
remaining fields associated with the motion, such as the deformation
gradient F(x,t), are defined as before, but now depend on t.

6. INTERFACE VELOCITIES. SLIP
We write V^ for the normal velocity of Sn in the direction n^

and V for the normal velocity of Z in the direction n, with Vn and V
both described spatially.

A vector function z of time that satisfies z(t)c£(t) for all t is
called a trajectory for Z\ the normal component of z# is then the
normal velocity V, so that

z-(t) * V(z(t),t)n(z(t),t) • (z-)tan(t), (z-)tan(t)-n(z(t),t) « 0,

or more succintly,

z- * Vn • (z0 tan, (z#)tan-n * °; (6#2)

if (z*) tan«0, then z is a normal trajectory for %. Normal trajectories
satisfy the ordinary differential equation

z-(t) « V(z(t),t)n(z(t)ft); (6.3)

thus (granted sufficient regularity for Z), given an arbitrary time t0 and
an arbitrary point xo€<&(to), there is exactly one trajectory z through
x0 at time t0, with z(t) defined for all t.

A similar definition applies to the trajectories Z^ for Sn. In this
case,

Zn*(t) « V1t(zn(t),t)n1T(ztl(t),t) ^ (Z/ )U n ( t ) , (Ztt-)tan(t)-nn(z1t(t),t) « 0,
(6.4)

where

^(t ) - yn(Zn(t),t) (6.5)



is the corresponding trajectory for Z. As before, we rewrite (6.4) in the
abbreviated form

* « - 0. (6.6)

and refer to Zn as normal if (Z1l*)tan«0.
Given an arbitrary time t0 and an arbitrary point xo€A(to), there

is exactly one normal trajectory Zn through XQ^Y^CXQ^Q) at time t0.
Letting zn(t) denote the corresponding trajectory (6.5) for Z, we define

<yw)#(xo.to> - V^o*. ( £>7)

so that the interfacial field (y^)* represents the time derivative of y^
following the normal trajectories of the undeformed interface Sn. The
trajectory z^ will generally not be normal, but n*(yTr)°

cV. By the chain
rule,

(yw)- « ( y ) n * V^F^n^; (6.8)

we therefore have the compatibility relation

n-(y% + V a n-F a n a « n-(y)^ • V ^ n - F ^ , (6.9)

or equivalently, appealing to (2.8),

< y V f i + x a v « e (y#)^-n * xpvp « v. (6.10)

We write

(6.11)

for the normal velocity of the deformed interface measured relative to the
material of phase tt.

(Possibly nonnormal) trajectories Zn for S^ that satisfy

y*(Za(t).t) « y/ZpW.t) (6.12)

for all t are called compatible trajectories, as they correspond to the same
trajectory for the deformed interface Z. Differentiating (6.12) we see that,
for such trajectories,



14

Conversely, if (6.13) is satisfied for all time, and if (6.12) is satisfied at some
time t0, then the trajectories Zn are compatible.

The interfacial field

* - (y,)° - (ya)° (6.14)

represents the interfacial slip; by (6.8),

* - (y% • V > p - <y)a - vaFana - ly) + rvmi. (6.15)

Further, (6.6), (6.13), and (6.15) yield the alternative expression

» - - W > t a n + F«(Za-)tan • -lF(2')tanl (6.16)

for compatible trajectories Za and Z .̂ If there is no slip, then, by (3.3),

(Z,')tan - H (Za*)tan. (6.17)

and we have the following result.

Proposition 6.1. Assume there is no slip. Then, given any choice of
compatible trajectories Za and Zp, if Za is normal, then so also is Zp.

7. PRODUCTION OF REFERENTIAL VOLUME

The field

W ^ - V ^ - I V J . (7.1)

represents the flow of referential volume across the phase TT interface in the
direction - n, per unit deformed area, and characterizes the production of
lattice points at the interface.

Given a control volume (fixed region) 3fc in the deformed body, if m
denotes the unit outward normal to 3fc, then

(d/dt){JJ(x,t)-1dv(x)} * JJ(x,t)-V(x,t)-m(x,t)da(x) (7.2)

represents the rate at which referential volume is produced in !fc. A
production of referential volume indicates a (positive or negative) produc-
tion of lattice points (Figure 5) and, since atoms are conserved, this, in turn,
signals a production of defects.



Proposition 7.1.
(a) L(tfc)*O if 3£ lies solely in one phase.
(b) Let & shrink to an arbitrary subset Q of Z. Then

- - J[U/J]da « - JlWlda, (7.3)
Q Q

so that

-IW] « -[U/J] (7.4)

measures the interfacial volume-production rate, per unit deformed
area.

To establish (a) assume that 3R, lies in one phase. Let dt denote
partial differentiation with respect to t holding x fixed, and let grad and
div denote the gradient and divergence with respect to x holding t fixed.
Then differentiating the first term in (7.2) under the integral, applying the
divergence theorem to the second, and combining the two integrals leads to
an integral over R with integrand

-J-23tJ • J^divy- - J-2y*-grad J; (7.5)

but5 vT*Jdivy'*c)tJ+y#«grad J; hence (7.5) vanishes.
On the other hand, letting & contain and shrink to an arbitrary

subset Q of i, we find that

(d/dt){ J J ^ d v } - - JU^lVda, J J ^ y - m d a - JlvTVl-nda, (7.6)
ft Q dtt Q

which, by (7.1) and (6.11), yields (7.3).

8. WHEN IS AN INTERFACE COHERENT?
We will refer to the interface Z as coherent for all time if £(t) is

coherent at each tf and if the corresponding material isometry f for %{t)
is independent of t. Granted this, we may change reference configuration
for phase a so that the material isometry f is the identity. Therefore,
without loss in generality, we may take f to be the identity in the
definition above, and this we shall do. Also, for consistency, the assertion

is coherent" will have associated with it the requirement the material
5Cf.. t.g.. 1221. p. 62. «qt. (4); p. 72. «qt. (2).



16

isometry corresponding to Z{0) be the identity. A direct consequence of
this definition is

Proposition 8.1. Let Z be coherent for all time. Then:
(i) The undeformed interfaces coincide

Sa(t) « S^t) « Sit). (8.1)

(ii) The motion is continuous across the interface in the sense that

y«(X,t) * y,(X,t) for all XcS(t). (8.2)

(iii) The normals and normal velocities coincide: for all xc£(t),

na(x,t) « n,(x,t) «: n(x,t), Va(x,t) * V^(x,t) «: V(x,t). (8.3)

A more important result is

Theorem 8.1. Suppose that the initial interface Z(0) is coherent.
Then the interface Z is coherent for all time if and only if, at each time:
(a) the interface is infinitesimally coherent;
(b) the interfacial volume-production rate vanishes identically;
(c) the interfacial slip vanishes identically.

To establish this result assume first that the interface is coherent.
Theorem 4.1(i) then implies (a). Next, differentiating (8.2) following an arbi-
trary normal trajectory of S(t) yields, by (6.14), conclusion (c). Finally,
(3.11)! and (8.3) imply that Wa«W,, which is (b).

Conversely, consider an initially coherent interface consistent with
(a)-(c) for all time. By (a), (3.11)! is satisfied. Thus (b), (7.1), and (7.4)
imply that, for all

V,(x,t) * Va(x,t). (8.4)

Assume first that Zit) is connected. By (a) and Theorem 4.1(ii), Zit)
is coherent at each t; thus the function h defined by (3.2) at each t is
the restriction to Z{t) of a material isometry

h(X,t) « QX * q(t), (8.5)

where Q is independent of t, since 9 is discrete and h(X,t) continuous
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in t; in fact, the initial coherence of the interface and our agreement in
the first paragraph of the section yields

Q * 1. q(0) * 0, (8.6)

so that, by (4.4),

n^(x,t) * na(x,t) *:n(x,t). (87)

Next, let Za and 2^ be compatible trajectories; then, by definition,
Za(t) and Zp(t) coincide in the deformed configuration and

Z (̂t) « Za(t) • q(t). (8.8)

Assume further, that Za is normal (such trajectories always exist), so
that, by (a), (c), and Proposition 6.1, 2^ is also normal. We may therefore
differentiate (8.8) and use (8.4) and (8.7) to conclude that q#(t)«O for all t.
But the initial coherence of the interface yields q(0)«0; hence q(t)*0 for
all t, and h(X,t) is the identity on Sa(t) at each t. Thus Z is coherent.

If Z is not connected, then the foregoing argument applied to each
connected component of Z again renders h(X,t) the identity on Sa(t),
which completes the proof.

One can ask whether Theorem 8.1 remains valid if the no-slip con-
dition (c) is omitted. To answer this let ^(0) be coherent, and assume that
the interface is infinitesimally coherent and that the interfacial volume-
production rate vanishes identically. Then the results (8.4)-(8.8) remain
valid, so that, by (8.4), (8.7), and (8.8),

q-(t)-n(x,t) * 0. (8.9)

Let us agree to call the interface cylindrical at t if there is a unit vector
m(t), its axis, such that xn(t)«n(x,t)*0 for all x. Then (8.9) is satisfied at
a planar interface provided q*(t) is tangent to the interface, and at a cyl-
indrical interface if q*(t) is parallel to the axis of the cylinder. In either case,
we may use (6.16), (8.5), and (8.6) to conclude that the slip V is given by

* - -F^q- « - F a q \ (8.10)

On the other hand, if, at each t, Zit) is neither planar nor cylindrical,
then Z is coherent for all time.
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APPENDIX ON LATTICES
a. Lattices. Invariant transformations

We use the term lattice to mean Bravais lattice. To describe these we
write

V3 * the set of all linearly independent
triples (g1,g2,B3) w i t h BjcR3>

and given (g1,g2»g3)€ V3, we say that xclR3 is an integer combination of
the g's if x-Mjgj with |i l f \i2,

 anc* ^3 integers (summation conven-
tion, from 1 to 3, is implied for the subscripts j and k).

A set £ of points of R3 is a lattice if £ is generated by a triple
(gi*g2'83)€ *̂ 3 *n ^e sense that £ is the set of all integer combinations of
the g's. The gj are then called lattice vectors for £. Let

7ft * the set of all 3*3 matices M whose determinant
is ±1 and whose entries Mjk are integers;

if
gj - Mjkgk, Mctni,

then (gv62,63) also generates £, and conversely (cf., e.g., Ericksen 118]).
Let £ be a lattice generated by (g1,g2»g3)- Given an invertible

tensor F, we write

F£ * the lattice generated by (Fg^Fg^Fgj).

a definition that is independent of the choice of lattice vectors (g1,g2»g3^
Note that

£• « F£ ++ T-if « £. (Al)
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By an invariant transformation of £ we mean an invertible tensor
G such that G£«£, or equivalently,

Ggj * Mjkgk for some MctJTl. (A2)

The point group P(£) of £ is then the set of all orthogonal invariant
transformations of £• Let F and G be invertible tensors. Then

G is an invariant transformation of £ «+
FGF"1 is an invariant transformation of F£. (A3)

a result which follows from (Al) and the identity FGF"1(F£)*F£, which is
valid if either G is an invariant transformation of £ or FGF"1 is an
invariant transformation of F£.

Given any set T of tensors, we write T* for the set of all tensors
in T with strictly positive determinant, so that

P(£)+ * the set of all rotations (proper orthogonal
tensors) in the point group P(£).

A direct consequence of (A3) is that, for any orthogonal tensor Q,
P(Q£)-QP(£)QT and P(Q£)*«QP(£)+Q\ so that if F*RU is the polar
decomposition of F into an orthogonal tensor Q and a positive definite,
symmetric tensor U, then

P(F£)+ « QP(U£)+Q\ . (A4)

and similarly for the point group.

b. Relation of lattice theory to continuum theory. Admissibility sets for
deformation gradients from a configuration with lattice £

Lattice theory is related to continuum theory through the Cauchy-
Born rule (cf. Ericksen 1191) in which a reference configuration of a body is a
fixed region B of R5 together with a lattice £(X) attached to each point
XcB; £(X) defines the microstructure of the body at X. Here we restrict
attention to homogeneous bodies, for which there is a choice of reference
configuration, called uniform, such that the reference lattice £ is
independent of X. A deformation y of B then associates with each point
x*y(X) in the deformed region S the lattice F(X)£.



We here limit our discussion to deformations for which — granted an
appropriate choice of uniform reference configuration with lattice £ — the
deformation gradient F lies in an open srt 7 that excludes excessively
large shears, but otherwise allows for finite deformations. In particular, we
exclude from 7 those invariant transformations of £ that do not lie in
the point group P(£)+. What seems to us to be a physically reasonable set
of properties for 7 are (71)-(74) stated below; there and in what follows

Lin+ « the set of all tensors F with detF > 0,

and we write "F is admissible" to signify that Fc7.

(71) 7 is an open subset of Lin*.

(72) 1 is admissible,

(73) QF is admissible for all admissible F and all rotations Q.

(74) Let F be admissible. Then GcP(£)* if and only if FG is
admissible and FGF"1 is an invariant transformation of F£.

A set 7 with properties (71)-(74) will be referred to as an admissibility
set for deformations from a reference configuration with lattice £.

In the reference configuration the deformation gradient F is the
identity; hence the restriction (72). (73) is the requirement that if the
deformed body is rigidly rotated, the resulting deformation gradient remains
in 7. (74) requires more explanation. The reference configuration has £
as its lattice. Taking F=l in (74) yields the conclusion:

(75) An admissible G is an invariant transformation of £ if and only if

Thus the only admissible invariant transformations of the reference lattice
are rotations in its point group so that, in some sense, the reference
configuration is undistorted with cspect to 7. But (74) asserts more. If
we deform the body B with (constant) deformation gradient F, then F£
is the lattice in the deformed body S, and (74), a consistency condition,
asserts that the invariant transformations of F£ with FG admissible are
exactly those induced in the natural manner from rotations in the point
group P(£).

Another consequence of (72)-(74) is:

(76) Let F be admissible and let G be an invariant transformation of
£. Then G is admissible if and only if FG is admissible.
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In fact, granted (73),

(74) <* (75), (76). (A5)

The implication (74) -+(75) has already been established. The remainder of
(A5) follows upon using (A3). (72M74) also imply

(77) If U is admissible, symmetric, and positive definite, then
P(U£)+CP(£)+; in fact,

P(U£)+ * the set of all QcPte)* such that QUQT « U. (A6)

This result with (A4) yields the conclusion that if F«RU is the polar
decomposition of an admissible F, then P(F£)*CRP(£)+RT.

For any lattice £', let

*y(£§) * the group of invariant transformations of £\

To verify (77), choose RcP(U£)*. Then Rc#y(U£), so that, by (A3),
U- iRUcVO. Hence RU«UF with F€^(£). By (73), RUc7; hence
UFc7 and (76) yields Fc7. Thus Fc7n fy(£), so that, by (75),
F*QcP(£)+- Therefore RU=Q(QTUQ), and by the uniqueness of the polar
decomposition of a tensor, R«Q and U*QTUQ. These conclusions yield the
validity of (77).

The following result, which we shall prove in Subsection d, is a direct
corollary of a theorem of Ericksen and Pitteri.

Existence theorem for admissibility sets. Given any lattice £,
there exists an admissibility set 7 for deformations from a reference
configuration with lattice £.

c. Two-phase systems
Our discussion in the body of the paper is based on a single reference

lattice £ in conjunction with symmetry transformations of £ that are
rotations. We now use the theory developed in this Appendix to justify
these suppositions.

Consider a two-phase system with phases a and p. Choose fixed
uniform reference configurations for a and p with corresponding lattices
£a and £^. Let 7a and 7^ denote admissibility sets for a and p for
deformations from their respective reference configurations. At this point it
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is most convenient to view the admissibility sets Ta and ¥p as unrelated;
that is, as lying in unrelated copies of Lin*.

The phases may be related by choosing a tensor U such that

£ , « U£a . (A7)

What is important, we assume that there is a choice of U such that
U€7 a ; granted this we may, modulo a rigid rotation of the reference
configuration for oc, choose U to be symmetric and positive definite. By
(77), a consequence of this assumption is that the point groups for £a and
£p satisfy

P(£^)cP(£a); (A8)

thus a represents a parent phase, p a product phase.
Consider the set Sap of all a-admissible transformations of £a into £&:

Ja^ * the set of all V c ? a such that £^ * V£ a . (A9)

Choose Vc3aB. Then, by (A9), V £ a * U £ a , so that 6*V"1U is an inva-
riant transformation of £ a . Trivially, U«VG with both U and V in
7 a ; we may therefore conclude from (76) that G€7a, so that, by (75), G
and hence G"1 belongs to P(£a)+ . Thus every Vc $a^ may be written in
the form V*UQ, QcP(£a)+. Since, trivially, the converse is also true, Sap

is the set of all tensors UQ, QcP(£a)+:

*«* S U P ( C / . (A10)

Note that, using the right coset decomposition of P(£a)* with respect to
P(£p)*, we can also write Jap as the set of all tensors of the form Q^UQa

with Qa€P(£a)+
f Q^€P(£,)*; that is, Ja, « P ( t / U P ( £ a ) + .

The theory developed in the body of the paper is easily formulated
within the current framework involving "unrelated" references for the two
phases. In particular, the discussion of two-phase deformations would now
carry the restrictions F a € 7 a and Tp€7p on the deformation gradients
but would otherwise remain essentially unchanged. (Here we use the * to
differentiate the current theory from that discussed in the body of the

/ paper.) The definition of infinitesimal coherency at x would now be the
requirement that the incoherency tensor H«F^"1Fot satisfy
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fi(x)Pa(x) = GPa(x) for some GcJap, (All)

and similar changes apply to the material on Burgers vectors.
To convert this theory to the theory discussed in the body of the

paper, we change reference configurations for p so that its reference lattice
coincides with that of a. We accomplish this by a change in reference
configuration via the tensor U; precisely, we change reference
configurations via the map X«U -1X f so that the class of admissible
deformation gradients is 7a for phase a and 7pU for phase p. Then in
terms of the deformation gradients F a«F a and F^TAJ relative to the
common reference with lattice C*£a , H*F^1Fot«U"1F^1Foc«U"1H, and,
bearing in mind (A10), (All) becomes

H(x)Pa(x) * QPa(x) for some QcP(£a)+ . (A12)

Thus the definition of coherency used in the body of the text — in which the
group 9 °f symmetry transformations is a finite subgroup of the proper
orthogonal group — follows naturally within the theory discussed in this
appendix, with $ the point group of the parent phase.

d. Proof of the existence theorem for admissibility sets 7. The Ericksen-
Pitteri theorem

We now show that there is always an open set 7 with properties
(71)-(74) for any choice of reference lattice £. To accomplish this we use a
theorem conjectured by Ericksen [18,19,20] and proved by Pitteri I21].6

It is convenient to sometimes write (fj) as shorthand for triples
(fvi2$iz)€.Vz. Let TlcV3, let Q be a tensor, and let NU3H; then QTl is
the set of all triples (Qfj) with (fj)c7l; while MJl is the set of all triples
(Mjkfk) with (fj)€3ri.

We assume for the remainder of the section that a lattice £ with
lattice vectors (g1,82*g3) is prescribed.

Ericksen-Pitteri Theorem. There is an open set 71c V3 with the
following properties:

(712) QTU3TI for &U orthogonal tensors Q;
(713) for each McW, MTU31 or MJln3l«0;
*Relattd ideas appear also in the work of Schwarzenberger (23] and Parry (24,25].



(714) if M7W71, then

Qgj * Mjkgk for some QcP(C). (A13)

A dear, concise proof of this theorem is given by Ball and James 126].
We now convert this result to one appropriate to deformation gradients by
defining an open neighborhood 7 of lcLin* as follows:

7 * the set of all FcLin* such that (Fg^Fgj.Fgj) lies in 71. (A14)

Then 7 defined by (A14) satisfies (72), (73), (75), and (76); and
hence (72)-(74). (72) and (73) follow from (711) and (712). The following
result is helpful in proving (75) and (76):

for Fc7, Gc'ytC)*, and Metro, consistent
with (A2), FGc7 ++ M7U71. (A15)

The implication MTU 71 -* FGc7 follows from (A2) multiplied by F and
the hypothesis Fc7. Conversely, assume that FGc7. Then, since the
triples (FGgj) and (Fgj) lie in 71, we may conclude from (A2) that
MTln7l*0. Thus (713) yields MJW31.

To prove (76), let Fc7, let Gc'ytC)*, and choose McTTl consistent
with (A2). Note that (A15) with F « l yields the conclusion Gc7 ++
M7l*7l, and this and (A15) for arbitrary F yield Gc7 «•* FGc7.

To establish (75), let Gc€\|(Jl)n7 and choose MctFR consistent with
(A2). Then (A15) yields MTU71, so that (A2) and (A13) yield G€P(£)+.
Thus 7 satisfies (72)-(74). ;

The conditions (72)-(75) are, in a certain sense, equivalent to (711)-
(714) with (712) and (714) restricted to rotations, but a proof is beyond the
scope of this paper.
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Figure 1. The lattice, the undeformed phase regions, and the deformed body.
Note the possibility of dislocations along the interface Z.



Undeformed Body

Deformed Body

; Figure 2. dXa and dX^ are compatible infinitesimal line segments at Xa

[ ^ . and X^ that deform to dx, and similarly for dXa, dX f̂ and
dx. The interface is not infinitesimally coherent at x and x
because of dislocations.
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Figure 3. A two-phase loop Iff. Wa and W, are the corresponding
undeformed curves.
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Figure 4. The portion C of the interface from aa* to bb* is coherent. The
underlying material isometry is equivalent to a rotation of B
clockwise by 90* followed by a suitable translation.
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