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b. Two-phase deformations _

A two-phase deformation is described by a pair y, (Tt«ocp) of
deformations. y, associates with each material point X in a closed region
B, a point x*y,{X) of space. The points X of B, are then the
material points of phase n, S*y*tB") is the region of space occupied by
phase it.

B » B,UB . 2.2)
is the deformed body, and
Z* shnsh (2.3)

iIs the deformed interface (Figure 1). We write Y, for the inverse
deformation:

X * YAX) «* X « yNX). (2.4)

We assume that Z is a smooth (possibly unbounded) surface; the surface
S, in B" that deformsto Z,

S, * Ya(2), (2.5)

is the undeformed phase n interface, it being tacit that the phases not
separate at the interface. We emphasize that — to allow for incoherency —
we do not require coincidence of the undeformed interfaces S, and S\

We assume henceforth that a two-phase deformation y, (n*oc,p) is
prescribed. The invertibility (2.4) allows us to consider bulk fields as func-
tions of position x in B, which isthe spatial description, or as functions
of the phase Tt and the material point X in B”, which is the referential
description. The gspatial description is most convenient, as it allows a direct
comparison of the fields at the interface; conversion to the referential
description may be accomplished using the inverse mappings Y*.

Precisely, a (spatially described) bulk field is a mapping ip that
associates with each xcB, xtZ; a scalar, vector, or tensor <p(x) with
<p(¥) a smooth function of x away from Z and upto Z from either side.
For such a field, < denotesthe limit of <p from phase TT at the
interface, while Ig>] denotesthejumpin g> acrossthe interface:



P.(X) = lim o{z), xei; [<p] = ®p = Py (2.6)

z—x

Analogously, inter/acial fieids are functions of xc£, examples being or
and [g>]. (Fields subscripted by n will generally denote interfacial fields
associated with phase IT or bulk fieds evaluated at the phase Tl interface.)

We define the deformation gradient F(x) at points x away from
the interface through

F(x) * Vy~X), | (27)

with XcB” the point that deformsto X, where the gradient V in (27) is
the material gradient (with respect to X).
We will consistently write, for xe.3,

n(x) for the unit normal to Z directed outward from
x€0B,;
Na(X) for the unit normal to S, directed outward from
XCcSB,, X=Y4(X);
n,(x) for the unit normal to S* directed inward from
XedB,, X=Y,(x).
Then
fi = F,"n,, A = IF. "0 . (2.8)
Further,
P (x) = 1 - n*(X)®N"(X) : (2.9)

is the projection of R® onto the tangent plane n”~x)' for S, at
X=Y_.(x),
We denote by

J * detF (2.10)
the Jacobian of the deformation; the interfacial fied

= I/ (2.11)

is then the surface Jacobian of the mapping that carries S, into Z.



3. INCOHERENCY TENSOR. BURGERS VECTORS
a. The incoherency tensor

Material points X,cS; and X*cS* will be referred to as compatible
if they deform to the same point xe&8:

Yy«<Xy) - YW. <3.D
Such points are related by the mapping

h(X) «Y,(ya(X)) (3.2)

from S, to S* The tangential gradient V,h«Vs h of h maps tangent
vectors T to S; at X intotangent vectors (Vh(X))T to S at h(X).
We will refer to

H - FAF,, (33)

as the incoherency tensor. H and V,h coincide on tangents vectors: for
all vectors T tangentto S, at X,

(Vah(X)T * H(X)t, X«ya(X), (3.4)
or equivalently, using (2.9),
Vah(X) = H(X)Pa(x). (3.5

The incoherency tensor also relates the orientations of the undeformed
interfaces, since, by (2.8) and (3.3),

N, « coH™n?, W« (XMX) * TH nArt, (3.6)

Choose compatible material points X, and X*, and let x"y~X™).
Further, let dX, be an "infinitesmal line segment" on S* at X,, and let
dx«Fi (X)dX . If dxa«dx”™, then dX, and dX* are compatible (coincide
when deformed). In this case dX*«H(x)dX, thus H(x) relates compatible
infinitesimal line segments on the undeformed interfaces S, and S |If
dXp « dX, for all compatible infinitessimal line segments, then the deformed
lattices are — in some sense — coherent at x; and the same can be said fif,
for some symmetry transformation Q, dX*«QdX, for all compatible
infinitesimal line segments (Figure 2). This should motivate the following
definition: the interface is infinitesimally coherent at xc& if there is a
Qeg such that H(X)T*QT for all vectors T tangent to S, at X*Y,(x),



or, more succintly,

H(X)P«(x) - QPJX). - (3.7)

Thus infinitesimal coherence at a point x on the deformed interface is the
requirement that infinitessmal pieces of the two lattices "fit together” at x.
The next proposition is a direct consequence of (3.7).

Proposition 3.1. Given a point X&&. the following are equivalent:
(@ The interface is infinitesmally coherent at x.
(b) Thereisa Qc9 and a vector a such that

H(X) = Q + a®n,(X). (3.8)
(0 Thereisa Qcg and a vector ¢ such that
FIO(X)Q - Fa(X) * C®na(x)- (3-9)

Fix the point x and suppress it in what follows. Assume that the
interface is infinitesimally coherent at x. Then the vectors a and c are
given by

a* Hn, - Qng, c = -Fpa. (3.10)
Further,

K-V n, * Qn« (311)
To establish (3.11), note first that, by (3.8), '

detH « det(l +Q"a®n,) « 1 + (Q'a)-n,. (3.12)
On the other hand, (3.6) and (3.8) imply

co-*na * Q'n, + (axnp)n,, (3.13)

so that na<<iQTnp; but by (3.12) the minus sign yields co-'ng«-(detH)n,,
a contradiction, since w and detH are strictly positive. Thus ny«Qn,.
Further, thisand (3.13) yield

(QTa)-na « (Xa/Xp) - 1; (3.14)

since detH- J./Jg, (2.11). (3.12), and (3.14) imply Ja-Js.



b- Burgersvector.® Burgers set
Given acurve W in R® wewrite

vector (W) * (terminal point of W) - (initial point of W). (3.15)

Let Iff be a closed curve in the deformed body with Iff a two-phase loop
in the sense that Iff intersects the interface exactly twice with corre-
sponding undeformed curves

W, « Yq(1Ff) (3.16)

nontrivial. Here W” has orientation induced by Iff (Figure 3). The stan-
dard definition of the Burgers vector of |Iff, in this setting, yields an
expression

JF-3(x)dx * vector (W,) * vector (W) (3.17)
5 _

that is meaningless, since transformation of the references for phases oc and
p by material isometries trar.-forms (3.17) to a vector of the form

Qvector (W,) + Qvector (W) (3.18)

with Q,0c9» and hence changes (3.17).* Thus rather than a single
Burgers vector for Iff thereis a set b(1ff) consisting of all vectors of the
form (3.18). We will refer to bttff) as the Burgers set for Iff. What is
most important to us is the notion of a "vanishing B'urgers vector"”, which,
within our framework, is the assertion that (3.18) vanish for some Q.Qc9,
or equivalently, that OddClff). Letting X and Z denote the initial and
terminal points of W,, and V” the portion of Iff in phase tt, we may
use the group structure of 9 ' express the condition OebClff) in the
following equivalent forms (for some Qcfc):

® The concept of a turf act Burger* vector is apparently due to Frank 17 J, who
restricts attention to small rotations between phases. The more general situation
involving finite deformations is due to Bilby (101, who essentially derives the left side
of (3.23) with Q»l as an expression for the Burgers vector. See also Brooks 18], Nye
19], Bilby, Buliough. and De Grinberg (111. Christian [12,131, Boliman (14]. Christian
and Crocker 115], and Pond [16,171.

“Bilby. Buliough, and De Grinberg (111 were apparently the first to notice this
indeterminacy of the Burgers vector.



Qvector (W,) * vector (W,) « 0, (3.19)

h(Z)-h(X) - Q1Z-X], (3.20)
JF,-1(X)dx * jQF4-'(x)dx « 0. (3.21)

Further, for rc*a,p, if welet W* denote any curve on S, from the
initial point of W, to its terminal point, then additional conditions
equivalent to OdoHff) are (for son  Qc9)+

Qvector (w;) + vector (W?) * 0y (3.22)
JHK) - Q)dX + 0. (3.23)
W |

-3

4. COHERENT UBIURFACES
Le C beasubsurface of Z, and write

Co=Y.(C) @4

for the subsurface of S that transforms to C. Then C is
infinitesmally coherent if the interface is anhnitessm”y coherent at each
X€C. A much stronger restriction is the content of the next definition. We
say that C is coherent if thereis a material isometry f such that '

XN « f(X3) whenever X, €C, and X"eC* are compatible (4.2

(Figure 4). Thus infinitessmal coherence at X is the requirement that infi-
nitessimal segments of the lattices for the two phases fit together at x,
while coherency for C is the requirement that the lattices fit together
over all of C. Note that (4.2) is equivalent to the assertion that h restric-
ted to C, istherestriction of a material isometry, so that, for some Qc9»

hZ) - h(X) - QI1Z-X] _ for all X,ZcCa. (4.3)

In comparing (3.20) and (4.3) it should be remembered that Q in (3.20)
depends on X and Z, but Q in (4.3) is constant. Note that, for C
coherent, not only isthe set Co obtained by rigidly transporting the set C,
by an isometry f, but, in addition, compatible pointsof C, and C* are
related through 1. Notethat, for C coherent.
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n,(x) = Qnu(x) (4.4)

for all xcC, where Qcfc correspondsto f.
By a two-phase loop for C we mean a two-phase loop that passes
twice through C.

Theorem 4.1. Let C be a subsurface of Z.
(i) C iscoherent «+ C isinfinitesmally coherent;
(i) C is connected and infinitesimally coherent -* C is coherent;
(iii) C iscoherent ** Odbttff) for any two-phase loop TF for C;
(iv) C isconnected and Ocdhbttff) for any two- phaseloop Iff for C e
C is coherent.

We now prove this theorem.
(i) Le¢ C be coherent. Differentiating (4.3) with respect to X on C,
yields

Vah(X) * QPa(x), (4.5)

and, by (3.5), the required condition (3.7) for infinitesimal coherence is
satisfied. (i) Lt C be connected and infinitessmally coherent. Then, for
each XtC,,

Vah(X) « Q(X)P(X) (4.6)

for some Q(X)c9, where, for convenience, we consder P, as a function
of X rather than x. Choose arbitrary points Z,ZcC,. Since C, is
connected we can find a smooth curve W in C, from Z to Z. La X
denote the set of all points XcW with Q(X)*Q(Z). Assume, for the purpose
of contradiction, that X*W. Then, since X is closed, there is a point
Xc3X, Xtfdw, such that Q(X)*Q(Z). Further, since X*dW, thereis a
sequence X,->X, X,cW, such that, for each value of n, Q(X,)*Q(Z). By
(4.6), Q(X)P4(X) is continuous along W. Thus Q(Xn)Pa(Xn)-* Q(X)P4(X).
But, since 9 is a finite group with orthogonal elements, and since P,(X)
is continuous, this can happen only if Q(X.)«Q(X)«Q(Z) for all sufficiently
large n, a contradiction. Therefore X«W and Q(2)«Q(2); hence Q is
constant on C,. Finally, choosing X,ZcC, and integrating (d/da)h(Z{(cx))
along a smooth path Z(a)cC, with Z2(0)*Z and Z(1)*X yields



h(X) - h(2) « ](V.h(Z(@)Z' (@)da * QIX-Z], 4.7)
o]
which, by (4.3), yields the coherency of C.

(@iii) If C is coherent, then thereis a Qdc such that (4.3) and (hence)
(3.20) is satisfied.

(iv) Assume that C is connected and that OdoHff) for any two-
phase loop Iff for C. Choose X,ZcC, and let x*y,(X) and z*y,(Z) be
the corresponding points on C. Since Z is smooth, it is possble to
construct a two-phase loop Iff for ‘C that passes through x and v;
hence, by (3.20), there is a symmetry transformation Q(X,Z) such that

h(Z) - h(X) « Q(X,ZHZ-X]. (4.9)

This relation must hold for all X,ZcC, thus, ssnhce C is connected, an
argument similar to that following (4.6) leads to the conclusion that Q(X,2)
isconstant. Thus C is coherent.

5 TWO-PHASE MOTIONS

We now turn our attention to time-dependent situations. A two-
phase motion is a smooth one-parameter family y,(t) (ir«ocp) of two-
phase deformations, the time t beng-the parameter; thus, writing
yN (Xit)«yq(t)(X), yn associates with each time t and each material
point X in aclosed region Bn(t) a point x*y*tX/t). Asbefore, Y~ isthe
(fixed-time) inverse of y,,

X-Yn(x,t) *+ x-y*"X.t), X 5.1
®'n’\<<y.c(B|t(t),t) isthe region of space occupied by phase TlI,

B(t) * Sa(t)uS~(t) (5.2)
Is the deformed body,

Zit) * 3,(t)nB,(t) (5.3
is the deformed interface, and -

S, (t) = Y (8(1),1) 5.9

is the undeformed phase n interface. We assume that Z{t) evolves
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smoothly with t.

We define the material velocity at points x away from the interface
through

y-(X,t) « dy”~X/O/dt ' (5.5)

with X€B,(t) the point that deforms to x, where the derivative is the
material time derivative (with respect to t holding X fixed). The
remaining fields associated with the motion, such as the deformation
gradient F(x,t), are defined as before, but now depend on t.

6. INTERFACE VELOCITIES SLIP

We write VA for the normal velocity of S, in the direction n”
and V for the normal velocity of Z in the direction @, with V, and V
both described spatially.

A vector function z of time that satisfies z(t)c£(t) for all t is
called a trajectory for Z\ the normal component of Zz* is then the

normal velocity V, sothat

z-(t) * V(z(t),)N(z(1).1) * (Z)an(t),  (z-)ean(t)-MI(z(1),1) « 0,(

or more succintly,

6.1)

z- * VN ¢ (z0¢an, (tan-n * °; (6%2)

If (z*)tan«0, then z is a normal trajectory for %. Normal trajectories
satisfy the ordinary differential equation

z-(t) « Y(z(t),)AZ(t)t); (6.3)

thus (granted sufficient regularity for Z), given an arbitrary time t, and
an arbitrary point x£<&(t,), there is exactly one trajectory z through
Xo at time to, with z(t) defined for all t.

A similar definition applies to the trajectories Z* for S,. In this
case,

Zn*(t) « Va(zn(t),1)nar(zu(t),t) N (Z)un(t),  (Zi-)tan(t)-Nn(zwu(t) 1) « O,
(6.4)
where

" (1) - yn(Za(t),1) (6.5)



Is the corresponding trajectory for Z. As before, we rewrite (6.4) in the
abbreviated form

2. =Von, +{Z Y., (2w - 0. (6.6)

and refer to Z, as normal if (Zy*)ian«O.

Given an arbitrary time tp and an arbitrary point X.€A(t,), there
Is exactly one normal trajectory Z, through XQry~CcxQrQ) at time to.
Letting z,(t) denote the corresponding trajectory (6.5) for Z, we define

<Yuw)(Xt0> - VA 0*, ' (E>7)

so that the interfacial fidd (y*)* represents the time derivative of y”
following the normal trajectories of the undeformed interface S,. The
trajectory z* will generally not be normal, but 7*(yr,)°°V. By the chain
rule,

(Yw)- « (Y)n* VAFADY, (6.8)
we therefore have the compatibility relation
A-(y% + Van-Fang « 1-(Y)N « VA n-FA, (6.9)

or equivalently, appealing to (2.8),

<yV'"*Xav« ® (y)r-nT* xpv, « V. (6.10)
Wewrite
U= V- (y) s =2\, V, (6.11)

for the normal velocity of the deformed interface measured relative to the
material of phase tt.
(Possibly nonnormal) trajectories Z, for S that satisfy

y*(Za(t).t) « y/IZpW.t) (6.12)

for all t are called compatible trajectories, as they correspond to the same
trajectory for the deformed mterface Z. leferentlatlng (6.12) we see that,
for such trajectories,

(¥)o + FoZ,° = (y')y + F,2,°. (6.13)
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Conversely, if (6.13) is satisfied for all time, and if (6.12) is satisfied at some
time ty, then thetrajectories Z, are compatible.
The interfacial fidd ‘

* - (y)° - (Ya)° (6.14)
represents the interfacial dip; by (6.8),

- (YoeV >, -<y)a-VaFana - ly) +rvmi. (615
Further, (6.6), (6.13), and (6.15) yield the alternative expression

» - -W>tan " F«(Za)an * -1F(2')tanl (6.16)

for compatible trajectories Z, and Z”~. If thereisno dip, then, by (3.3),
(Z,")tan - H (Za*)tan. (6.17)

and we have the following result.

Proposition 6.1. Assume there is no dlip. Then, given any choice of
compatible trajectories Z, and Z,, if Z, isnormal, then so also is Z,.

7. PRODUCTION OF REFERENTIAL VOLUME
The field '

WA-VA-IVI. 71

represents the flow of referential volume acrossthe phase TT interface in the
direction -, per unit deformed area, and characterizes the production of
lattice points at the interface.

Given a control volume (fixed region) 3 in the deformed body, if m
denotes the unit outward normal to 3¢ then

LIR) = (d/dD){II(x,1)-Tdv(x)} * JI(x,1)-V(x,1)-m(x,)da(x) (7.2)
R aR

represents the rate at which referential volume is produced in l!fc A
production of referential volume indicates a (positive or negative) produc-
tion of lattice points (Figure 5) and, since atoms are conserved, this, in turn,
signals a production of defects.



Proposition 7.1.
(@ L(tfo*O if 3£ lies solely in one phase.
(b) Let & shrink to an arbitrary subset Q of Z. Then

L(R) - - J[U/J]da « - JIWIda, (7.3)
Q Q
so that
-IW] « =[U/J] (7.4)

measures the interfacial volume-production rate, per unit deformed
area.

To establish (a) assume that 3R liesin one phase. Let d; denote
partial differentiation with respect to t holding x fixed, and let grad and
div denote the gradient and divergence with respect to x holding t fixed.
Then differentiating the first term in (7.2) under the integral, applying the
divergence theorem to the second, and combining the two integrals leads to
an integral over R with integrand

-J-23,J « J~divy- - J-y*-grad J; (7.5)

but®> vT*Jdivy'*c)J+y"«grad J; hence (7.5) vanishes.
On the other hand, letting & contain and shrink to an arbitrary
subset Q of i, we find that

(d/dt){ JJ~dv} - -JUAIVda, JJ~y-mda - JlvTVI-rida, (7.6)
ft Q dtt Q

which, by (7.1) and (6.11), yields (7.3).

8 WHEN IS AN INTERFACE COHERENT?

We will refer to the interface Z as coherent for all timeif £(t) is
coherent at each t; and if the corresponding material isometry f for %ft)
Is independent of t. Granted this, we may change reference configuration
for phase a so that the material isometry f is the identity. Therefore,
without loss in generality, we may take f to be the identity in the
definition above, and this we shall do. Also, for consistency, the assertion
"8(0) is coherent” will have associated with it the requirement the material

°Cf.. t.g.. 1221 p. 62. «qt. (4); p. 72. «qt. (2).
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isometry corresponding to Z{0) be the identity. A direct consequence of
this definition is

Proposition 8.1. Let Z be coherent for all time. Then:
(i) The undeformed interfaces coincide

Sy(t) « S't) « Sit). (8.1)
(i) The motion is continuous across the interface in the sense that
y«(X,t) * y,(X,t) forall XcS(t). (8.2
(iii) The normals and normal velocities coincide: for all Xxc£(t),
Na(X,t) « n,(x,t) « n(x,t), Vaxt) * VA(xt) « V(xt). (83

A more importarit result is

Theorem 8.1. Suppose that the initial interface Z(0) is coherent.
Then the interface Z is coherent for all time if and only if, at each time:
(@) the interface is infinitesimally coherent;

(b) the interfacial volume-production rate vanishes identically;
(c) the interfacial dlip vanishes identically.

To establish this result assume first that the interface is coherent.
Theorem 4.1(i)) then implies (a). Next, differentiating (8.2) following an ar bi-
trary normal trajectory of S(t) yields, by (6.14), conclusion (c). Finally,
(3.11)! and (8.3) imply that W.«W,, which is (b). -

Conversely, consider an initially coherent interface consistent with
(a)-(c) for all time. By (a), (3.11)! is satisfied. Thus (b), (7.1), and (7.4)
imply that, for all xeB8(t),

V,(x,t) * Va(x,t). (8.4)

Assume first that Zit) is connected. By (a) and Theorem 4.1(ii), Zit)
Is coherent at each t; thusthe function h defined by (3.2) at each t is
therestriction to Z{t) of a material isometry

h(X,t) « QX * q(t), - (85)

where Q isindependent of t, since 9 isdiscrete and h(X,t) continuous
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in t; in fact, the initial coherence of the interface and our agreement in
the first paragraph of the section yields

Q*1 q(* O, (8.6)
so that, by (4.4),
N (Xt) * na(x,t) *:n(x,t). (87)

Next, let Z, and 2" be compatible trajectories; then, by definition,
Z4(t) and Zp(t) coincide in the deformed configuration and
ZN1) « Za(t) * q(tb). (8.8)

Assume further, that Z, is normal (such trajectories always exist), so
that, by (a), (c), and Proposition 6.1, 2" isalso normal. We may therefore
differentiate (8.8) and use (8.4) and (8.7) to conclude that qg*(t)«O for all t.
But the initial coherence of the interface yields q(0)«0; hence q(t)*0 for
all t, and h(X,t) istheidentity on S,(t) at each t. Thus Z is coherent.

If Z is not connected, then the foregoing argument applied to each
connected component of Z again renders h(X,t) the identity on S(t),
which completes the proof.

One can ask whether Theorem 8.1 remains valid if the no-slip con-
dition (¢) is omitted. To answer thislet *(0) be coherent, and assume that
the interface is infinitesimally coherent and that the interfacial volume-
production rate vanishes identically. Then the results (8.4)-(8.8) remain
valid, so that, by (8.4), (8.7), and (8.8),

4-(t)-n(x,t) * O. " 89)

Let us agree to call the interface cylindrical at t if thereis a unit vector
m(t), its axis, such that xn(t)«n(x,t)*0 for all x. Then (8.9) is satisfied at
a planar interface provided g*(t) istangent to the interface, and at a cyl-
indrical interface if g*(t) is paralld to the axis of the cylinder. In either case,
we may use (6.16), (8.5), and (8.6) to conclude that the dip V isgiven by

* - -FMg- « -FaQq\ o (8.10)

On the other hand, if, at each t, Zit) is neither planar nor cylindrical,
then Z is coherent for all time.
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APPENDIX ON LATTICES
a. Lattices. Invariant transformations
We use the term lattice to mean Bravais lattice. To describe these we
write
V3 * the set of all linearly independent

trlp|eS (91,92,83) with BjCR3>

and given (g.,0»g3)€V?3, we say that xclR® is an integer combination of
the gs if x-Mjgi with [i;; \i,, 2" ~3 integers (summation conven-
tion, from 1 to 3, isimplied for the subscriptsj and k).

A set £ of points of R® is a lattice if £ is generated by a triple
(gi*g2'83)€*"® *" ne sense that £ isthe set of all integer combinations of
the gs The g arethen called lattice vectors for £. Let

h * theset of al 3*3 matices M whose deter minant
iIs +1 and whose entries Mj, are integers;

T - MjkOk, Mctni,

then (0,62,63) also generates £, and conversely (cf., eg., Ericksen 118)).
Let £ be a lattice generated by (g:,0,»g3)- Given an invertible
tensor F, wewrite

FE * the lattice generated by (Fg"Fg*Fgj).

a definition that is independent of the choice of lattice vectors (gi,0,»g3"
Note that

f£e « FE ++ T-if « £. (Al)
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By an invariant transformation of £ we mean an invertible tensor
G such that GE£«£, or equivalently, '

Gg * Mgk for some MdaJTI. (A2

The point group P(£) of £ isthen the set of all orthogonal invariant
transformationsof £+ Let F and G beinvertible tensors. Then

G isan invariant transformation of £ «+
FGF'! is an invariant transformation of F£. (A3

a result which follows from (Al) and the identity FGF"Y(F£)*F£, which is
valid if either G is an invariant transformation of £ or FGF'' is an
invariant transformation of F£.

_ Given any set T of tensors, wewrite T* for the set of all tensors
in T with strictly positive determinant, so that

P(£)" * the set of all rotations (proper orthogonal
tensors) in the point group P(£).

A direct consequence of (A3) is that, for any orthogonal tensor Q,
P(Q£)-QP(£)Q" and P(Q£)*«QP(£)"Q\ so that if F*RU is the polar
decomposition of F into an orthogonal tensor Q and a positive definite,
symmetric tensor U, then

P(FE)+ « QP(U£)+Q\ . (A4)

and similarly for the point group.

b. Relation of lattice theory to continuum theory. Admissbility sets for
deformation gradients from a configuration with lattice £

Lattice theory is related to continuum theory through the Cauchy-
Born rule (cf. Ericksen 1191) in which a reference configuration of a body is a
fixed region B of R® together with a lattice £(X) attached to each point
XcB; £(X) defines the microstructure of the body at X. Here we restrict
attention to homogeneous bodies, for which there is a choice of reference
configuration, called uniform, such that the reference lattice £ s
independent of X. A deformation y of B then associates with each point
x*y(X) in the deformed region S the lattice F(X)E.
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We here limit our discussion to deformations for which — granted an
appropriate choice of uniform reference configuration with lattice £ — the
deformation gradient F liesin an open st 7 that excludes excessively
large shears, but otherwise allows for finite deformations. In particular, we
exclude from 7 those invariant transformations of £ that do not lie in
the point group P(£)+. What seems to us to be a physically reasonable set
of properties for 7 are (71)-(74) stated below; there and in what follows

Lin" « the set of all tensors F with detF > 0,

and wewrite "F is admiésible" to dgnify that Fc7.
(71) 7 isan open subset of Lin*.
(72) 1 is admissible,
(73) QF is admissible for all admissble F and all rotations Q.

(74) L&t F be admissible. Then GcP(£)* if and only if FG is
admissible and FGF'! is an invariant transformation of F£.

A set 7 with properties (71)-(74) will be referred to as an admissibility
set for deformations from a reference configuration with lattice E£.

In the reference configuration the deformation gradient F is the
identity; hence the restriction (72). (73) is the requirement that if the
deformed body is rigidly rotated, the resulting deformation gradient remains
in 7. (74) requires more explanation. The reference configuration has £
as its lattice. Taking F=I| in (74) yields the conclusion:

(75) An admissible G isan invariant transformation of £ if and only if
GeP(L)*.

Thus the only admissible invariant transformations of the reference lattice
are rotations in its point group so that, in some sense, the reference
configuration is undistorted with -cspect to 7. But (74) asserts more. |f
we deform the body B with (constant) deformation gradient F, then F£
Is the lattice in the deformed body S, and (74), a consistency condition,
asserts that the invariant transformations of FE with FG admissible are
exactly those induced in the natural manner from rotations in the point
group P(£).
Another consequence of (72)-(74) is:
(76) Let - F be admissible and let G be an invariant transfor mation of
£. Then G isadmissbleif and only if FG isadmissible.



22

In fact, granted (73),
(74) <* (75), (76). - (AD)

The implication (74)-+(75) has already been established. The remainder of
(A5) follows upon using (A3). (72M 74) also imply

(77) If U is admissible, symmetric, and positive definite, then
P(U£)"CP(£)"; in fact, -

P(UE)" * theset of all QcPte)* such that QUQ' « U.  (A6)

This result with (A4) yields the conclusion that if F«RU is the polar
decomposition of an admissble F, then P(F£)*CRP(£)'R".
For any lattice £, let

*y(£) * the group of invariant transformations of £\

To verify (77), choose RcP(U£)*. Then Rcy(U£), so that, by (A3),
U-iRUcVO. Hence RU«UF with F€~(£). By (73), RUc7; hence
UFc7 and (76) yields Fc7. Thus Fc7n'y(£), so that, by (75),
F*QcP(£)*- Therefore RU=Q(Q'UQ), and by the uniqueness of the polar
decomposition of a tensor, R«Q and U*Q'UQ. These conclusions yield the
validity of (77). |

The following result, which we shall prove in Subsection d, is a direct
corollary of a theorem of Ericksen and Pitteri.

Existence theorem for admissibility sets.  Given any lattice £,
there exists an admissibility set 7 for deformations from a reference
configuration with lattice E£.

c. Two-phase systems

Our discussion in the body of the paper is based on a single reference
lattice £ in conjunction with symmetry transformations of £ that are
rotations. We now use the theory developed in this Appendix to justify
these suppositions. ‘

Consder a two-phase system with phases a and p. Choose fixed
uniform reference configurations for a and p with corresponding lattices
£, and £7. La 7, and 7" denote admissibility sets for a and p for
deformations from their respective reference configurations. At this point it
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is most convenient to view the admissbility sets T, and ¥, as unrelated;
that is, aslying in unrelated copies of Lin*. |
The phases may be related by choosing atensor U such that

£, « UE,. (A7)

What is important, we assume that there is a choice of U such that
U€7,; granted this we may, modulo a rigid rotation of the reference
configuration for oc, choose U to be symmetric and positive definite. By
(77), a consequence of this assumption is that the point groups for £; and
£p satisfy

P(£")cP(£a); (A8)

thus a represents a parent phase, p a product phase.
 Condder the set S,, of all a-admissible transformations of £, into £g:

JN * theset of all Vc?, suchthat £ * V£,. (A9)

Choose Vc3.. Then, by (A9), VE,*U£,, sothat 6*V"'U is an inva-
riant transformation of £,. Trivially, U«G with both U and V in
7a.; we may therefore conclude from (76) that G€7,, so that, by (75), G
and hence G'' bdongsto P(£.)". Thusevery Vc$” may be written in
the form V*UQ, QcP(£,)". Since, trivially, the converseis also true, S,
isthe set of all tensors UQ, QcP(£,)":

**SUP(C/. ] (A10)

Note that, using the right coset decomposition of P(£,)* with respect to
P(£p)*, we can also write J,, asthe set of all tensors of the form Q*UQ,
with Q.€P(£.)"r QMEP(E)*; that is, Ja, « P(t/UP(£.)".

The theory developed in the body of the paper is easily formulated
within the current framework involving "unreated" references for the two
phases. In particular, the discusson of two-phase defor mations would now
carry the restrictions F,€7, and Ty,€7, on the deformation gradients
but would otherwise remain essentially unchanged. (Here we use the * to
differentiate the current theory from that discussed in the body of the
paper.) The definition of infinitesmal coherency at x would now be the
requirement that the incoherency tensor SR = = satisfy
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fi))PLX) = GP,(x)  for some Gclgp, | (Al

and similar changes apply to the material on Burgers vectors. _

To convert this theory to the theory discussed in the body of the
paper, we change reference configurations for p so that its reference lattice
coincides with that of a. We accomplish this by a change in reference
configuration via the tensor U; precisely, we change reference
configurations via the map X«U*X; so that the class of admissible
deformation gradients is 7, for phase a and 7,U for phase p. Then in
terms of the deformation gradients F.«F, and F"T‘ﬁJ relative to the
common reference with lattice C*£,, H*FAF«U" *FAYF,«U"H, and,
bearing in mind (A10), (All) becomes

H(X)Pa(X) * QP4(X) for some QcP(£,)". (A12)

Thus the definition of coherency used in the body of the text — in which the
group 9 °f symmetry transformations is a finite subgroup of the proper
orthogonal group — follows naturally within the theory discussed in this
appendix, with  $ the point group of the parent phase.

d. Proof of the existence theorem for admissibility sets 7. The Ericksen-
Pitteri theorem

We now show that there is always an open set 7 with properties
(71)-(74) for any choice of reference lattice £. To accomplish thiswe use a
theorem conjectured by Ericksen [18,19,20] and proved by Pitteri 121].°
It is convenient to sometimes write (fj) as shorthand for triples
(fisi)EVZ Let TlcV?, let Q be atensor, and let’ NUH; then QTl is
the set of all triples (Qfj) with (fj)c7l; while MJl isthe set of all triples
(Mjfy) with  (f])€3ri.

We assume for the remainder of the section that a lattice £ with
lattice vectors (0:,8,*g3) is prescribed.

Ericksen-Pitteri Theorem. There is an open set 71cV® with the
following properties:
M1) (g,.8,.85)€N;
(712) QTU3Ml for &U orthogonal tensors Q;
(713) for each McW, MTU3l or MJIn3l«O0;

*Relattd ideas appear also in the work of Schwarzenberger (23] and Parry (24,25].




(724) if M7W71, then
Qg * Mgk for some QcP(C). (AL13)

A dear, concise proof of thistheorem is given by Ball and James 126].
We now convert this result to one appropriate to deformation gradients by
defining an open neighborhood 7 of IcLin* as follows:

7 * theset of all FcLin* such that (Fg"Fgj.Fgj) liesin 71. (Al4)

Then 7 defined by (Al4) satisfies (72), (73), (75), and (76); and
hence (72)-(74). (72) and (73) follow from (711) and (712). The following
result is helpful in proving (75) and (76):

for Fc7, Gc'ytC)*, and Mdro, consistent
with (A2), FGc7 ++ M7UT7L (A15)

The implication MTU71 -* FGc7 follows from (A2) multiplied by F and
the hypothesis Fc7. Conversely, assume that FGc7. Then, since the
triples (FGg) and (Fgj) liein 71, we may conclude from (A2) that
MTIn71*0. Thus (713) yields MJW3L

To prove (76), let Fc7, let Gc'ytC)*, and choose MCITI consistent
with (A2). Note that (A15) with F«l vyields the conclusion Gc7 ++
M71*71, and this and (A15) for arbitrary F yield Gc7 «* FGcy.

To establish (75), let Gc¥|(JI)n7 and choose MdFR consistent with
(A2). Then (A15) yields MTU71, so that (A2 and (A13) yield GE€P(£)+.
Thus 7 satisfies (72)-(74). ;

The conditions (72)-(75) are, in a certain sense, equivalent to (711)-
(714) with (712) and (714) restrlcted to rotations, but a proof is beyond the
scope of this paper.
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Figure 1. The lattice, the undeformed phase regions, and the deformed body.
Note the possibility of didocations along the interface Z.
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* Figure 2. dX, and dX” are compatible infinitesimal line segments at X,
[ " and X* that deform to dx, and similarly for dX,, dX”; and
L dX. The interface is not infinitesimally coherent at x and X
{ because of didocations.



.

» Undesformed Body

e
it

li..
/|
o
>
I
:E.‘
-
N\

Deformed Body B

Figure 3. A two-phase loop Iff. W, and W, arethe corresponding
undeformed curves.
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Figure 4. The portion C of theinterface from aa* to bb* iscoherent. The
underlying material isometry is equivalent to a rotation of B
clockwise by 90* followed by a suitable translation.



L oe=] 2550 ud a99f <3ut ay3 Jo ogout ayy (NHYM ur ajdws - ‘c

(a2 S [[rws AQ payswu) syutod 0O 3wf aduay p

S U

1 awif je Apog pawiojepun

W+ Je Apog patuiojapun
_ : /
\ —
/r ITH..\V
N
X
7 N\
- av+)'a - va)°g
,.J._r um A
. -4 —
| T
| — .
) — "~
m‘\
!
\C }
A \
\
0% g
X =
n A
Jr - 7
! /

\.‘-‘



IRV A

3 fl4fl2 D137D 7DSD






