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Abstract

In this paper we present an exact calculation of the transfer function as-
sociated with the nonlinear Fabry-Perot resonator. While our exact result
cannot be evaluated in terms of elementary functions, it does permit us to
obtain a number of simple approximate expressions of various orders of accu-
racy. In addition, our derivation yields criteria of validity for the approximate
formulae. Our approach is to be compared with others in which approxi-
mations are introduced in the model itself, either through the equations or
through the boundary conditions.

Our lowest order approximate formula turns out to be identical, interest-
ingly, with the result obtained from the slowly varying envelope approxima-
tion (SVEA). Thus, our validity criteria apply to the SVEA result, and predict
well its domain of validity and its breakdown for short wavelengths and for
very high intensities and nonlinearities. The simple higher order formulae we
present provide improved estimations in such regimes.
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1 Introduction

The interest in the nonlinear optical properties of materials, which are only ob-

servable at high field intensities, has grown steadily since such high intensities were

made available with the invention of the laser in 1960. Since then, a number of ef-

fects associated with various types of nonlinearities exhibited by materials have been

observed, and a number of practical uses of these effects have been found [2, 7, 3].

Here we deal with the so-called optical Kerr effect. Optical Kerr media are

characterized by an intensity dependent refractive index of the form

n2 = nl + non2\E\2

where E denotes the complex electric field. It is known [7] that Kerr media can be

used to construct bistable optical systems. These are systems in which a certain

input field can produce two (or more) different output states, or, in other words,

systems for which the transfer function is multivalued.

The simplest and best known of the bistable devices is the nonlinear Fabry-

Perot interferometer, first used by Szoke et al [8], in which a non-linear material

is placed in a cavity between two partially reflecting mirrors. The importance of

bistable devices lies on their potential applicability as optical switches in all-optical

computers: they make it possible to use a light pulse to have the input intensity

exceed threshold values, and therefore, to have the device switch between two output

intensity levels [7].

The basic nonlinear mechanisms underlying non-dissipative Fabry-Perot res-

onators are well understood, and several approximate theories that predict their

bistable behavior have been given [5, 6, 7]. One of the most accurate of these the-

ories, due to Felber and Marburger [6], is based on the well known slowly varying

envelope approximation (SVEA). A different, semi-exact theory was also presented

in [6]. This calculation, which incorporates approximations only through certain

boundary conditions, leads to results which are of the same order of accuracy as the

SVEA expression, see §4.

In this paper we present an exact calculation of the optical properties of these

devices. While our exact result cannot be evaluated in terms of elementary func-

tions, it does permit us to obtain a number of simple approximate expressions of
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various orders of accuracy. In addition, our derivation yields criteria of validity for

the approximate formulae. Our approach is to be compared with those mentioned

above, in which approximations are introduced in the model itself, either through

the equations or through the boundary conditions.

Our lowest order approximate formula turns out to be identical, interestingly,

with the result obtained from the SVEA. Thus, our validity criteria apply to the

SVEA expression, and predict well its domain of validity and its breakdown for short

wavelengths and for very high intensities and nonlinearities. The simple higher order

formulae we present provide improved estimations in such regimes.

2 The nonlinear Fabry-Perot interferometer

The simplest bistable optical device is the Fabry-Perot interferometer, first used in

nonlinear optics by Szoke et al [8], see Figure 1. The middle region in the figure is

occupied by a nonlinear material; on both sides of the nonlinear material we find the

mirrors, i.e., plates of glass coated with a reflective material. The device, consisting

of the mirrors and the nonlinear cavity, is placed in air.

In either of the seven regions of Figure 1, the electric field E, the displacement

vector D and the magnetic field H must satisfy the time harmonic Maxwell equations

V x E = iufi0H

V x H = -iuD. (1)

In any of these regions the displacement vector is given by

D = €0E + P,

where €o is the dielectric constant of vacuum and P is the polarization vector. The

polarization contains, in general, linear and nonlinear contributions

P = PL + PNL;

the linear part equals

PL =



where x*1* is the linear susceptibility of the medium. In the linear materials (glass,

coating) PNL « 0 and so

The cavity, on the other hand, is assumed to be occupied by a nonlinear Kerr

medium. In this case the vector PNL is cubic in E, and we have

where x̂ 3* is the third-order susceptibility tensor.

We deal with normally incident TE-polarized light, with the electric field directed

along the (vertical) z axis

E = Eez.

Therefore, and since d/dz = 0, V • E = 0, equations (1) reduce, in the nonlinear

region, to

(2)

Here n0 = y 1 + x(1^ is the linear part of the nonlinear refractive index and P^1 is
the z component of PNL. Since

equation (2) can be rewritten as

E" + ^{n\E + n0n2\E\2)E = 0 (3)

where

„ _ _ 3X3333

Thus, the intensity dependent refractive index of the Kerr medium is

n = y/nl + non2\E\2,



or, accurate to first order in n2,

n = n0 + y \E\2 = n0 + n2(E
2) (see e.g. [2]).

In our geometry, the nonlinear medium is placed between two partially reflective

mirrors. The mirrors consist of dielectric layers of widths d\ and d[ (d\ + d[ = d)

and refractive indices rt\ and n'1? representing the glass and coating respectively

(see Figure 2). The problem of determining the optical response of this device

can be reduced to a problem in the cavity. Indeed, equations (27) and (28) in

the Appendix (see also the discussion below equation (28)) relate the incident and

transmited intensities to the electric field at the boundaries of the cavity. The cavity

equations can then be written

E" + (k2 + k0k2\E\2)E = 01 0 < z < L, (4)

E(L) = beik^L^ET, E'(L) = i

where Ej is the complex amplitude of the transmitted electric field. Here a and b

are the mirror parameters defined in equation (30) of the Appendix, and we have

put

k = —, fco = —no and £2 = ^^2-
c c c

Now, from the Appendix we have

E, = \eikd (aE{0) + ^ £ ' ( 0 ) ) , (5)

and, therefore, the solution of the cavity problem permits us to relate Ej to £7, i.e.,

to obtain the transfer function.

Equations (4) and (5) can be simplified by introducing the variables

u(z) = ME(L - f ) , uT = J^e^^Erb aad u, =

In these variables, equations (4) and (5) translate into

u" + (1 + |u|2)u = 0, 0 < x < kQL, (6)

ti(0) = ur , u'(0) = -iKuT



and
«/ = iKu(k0L) - u'(k0L) (7)

where K = Q = a + i/3, see also (32).

3 Exact solution and explicit approximations

3.1 Exact solution

In order to solve equation (6) let us put

u(z) = p(z)ei0M

so that

u'(z) = (p'(z) + ip(z)6'{z)) e'«(*) and

u"{z) = [(p"(z) - p{z)e'{zf) + i {2p'{z)e'(z) + p{z)d"(z))) e"(*>.

Notice that equation (6) is invariant under the transformation u —• etcu for any real

constant c. Thus, without loss of generality we may assume that tij > 0; from (6)

we then get

(p"(z) - p{z)6'{zf + (1 + p{zf) p(z)) + i (2p'(z)d'(z) + p{z)6"{z)) = 0

= uT, 6(0) = 0

-a (8)

Taking imaginary parts in (8) and multiplying by p it follows that

We can therefore write the real part of (8) as

(9)



or, integrating once, as

We note here that oscillatory solutions of equation (10) are in one to one corre-

spondence with the solutions of the second order equation (9) from which (10) was

derived.

Multiplying (10) by 4p2 and setting 7 = p2 we get the equation

£fe£ + I(zf + 21{z)2 - KT(Z) + c = 0

7(0) = g, 7'(0) = 2/?g (11)

where

q = u\, c = 2q2a2 and K = 2(1 + a2 + (32)q + q2.

Once the solution to (11) is known, the normalized incident intensity To = \uj\2 can

be obtained from (7). Indeed,

70 = \u!\2 = \u'(k0L) - iKu(k0L)\2 = \p\hL) + tp(fc0L)^(fc0L) - i(a + i(3)p(k0L)\2

- (1 - a2 - p2)T(kQL) + pT(kQL).

Finally, the transmissivity r is given by

\ET\2~ 4

\^j$ i 2) 0-

K '

where P = Pq = - is the oscillatory solution of the equation

qP{zf + 2P(z)2 - KP(Z) + c = 0 , (13)
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P(O) = 1, P'(0) = 2/?, (14)

and where

c = 2a2 and K = 2(1 + a2 + /?2) + q.

3.2 Asymptotic formula for q small

When ri2 = 0 equation (13) reduces to a second order linear equation whose solution

i4£l
with A and <i> given by

f Act
\ As\

2
= - / ? .

using equation (34) in the Appendix, we then find

PQ(z) = (1 + Ql+ ^} + y^ + (1 - a2 - /?2)2 cos(2z + (?) (15)

l + R + 2y/Rcos(6) (l + R

In this case our expression (12) for the transmissivity gives

7

(1 - Rf

which is the classical formula for the transmissivity of a linear Fabry-Perot resonator
(see e.g. [4, p. 325]).



In the nonlinear device we consider, however, the coefficient n2 and therefore q

are not zero, though we have 0 < n2 < 1. The oscillatory solution Pq of (13)-(14)

is still a periodic function, but in this case we do not have a simple formula such

as (15). Of course, for small values of g, the solution Pq is close to Po. In the

expression (12), however, we need values of P at the point z = k0L > 1. Clearly,

then, we cannot use Po as an approximation to Pq in (12) since small differences

in the periods may yield widely different values of the solutions at the large value

z = koL.

A good approximation can be obtained from Po, however, by simply adjusting

its period, as we show now. Let us denote by Tq the period of Pq (To = TT). Prom

(13), (14) we see that

= — r dP

where Pz <0 <p2 <Pi are the roots of the polynomial

Fq(P) = qP3 + 2P2 -kP + c.

(It is not hard to show that for all q > 0 the roots of Fq are indeed ordered as

indicated above.) We note now that Pq(z) solves the equation (13) subject to the

conditions

P(zM)=Pi, P'(zM) = 0 (16)

where ZM < 0 is a point where P attains its maximum

=-fx dP_

Then, it is easily checked that the oscillatory solution P of the equation

\ K- KP(Z) + c = 2 Q 0 p\ - KPI + c (17)



subject to (16) satisfies
\P(z) - Pq(z)\ = O(q) (18)

for zM < z < zM + Tq/2 and therefore, by periodicity, for all real z. Indeed, since
Fq(pi) = 0 it follows that the right hand side of (17) vanishes for q = 0, which
implies that, for q = 0, Pq = P. In particular, P(0) = Pq(0) + O(q) = 1 + O(q) and
since

we conclude from (15) that

Now, from (19) we see that the amplitude and phase of P can be perturbed by
O(q) and the resulting function will still satisfy (18). More precisely, if we let

* ) + 0 { q ) = W T "2Z+0{q)

$ = -2Tr/TqzM + O(q) = 6 + O(q)

then

\Pq(z) -(& + Acos(2n/Tqz + $)) \ = O(?) for all real *.

The simplest expressions we can take for these constants are those that correspond
to q — 0, i.e.,

* * • " " " • A



and we have

+ P2) + \yJAp + (1 - a* - py cos(2*z/Tq + 6) + O(q) (20)

cos(27rz/r, + 6) + 0(q)

Furthermore, if the conditions

q < 1 and k0Lqn = 0(1) , (21)

are satisfied, the error in the approximation will be of order q at z = k$L even if we

replace Tq in (20) by its Taylor polynomial in q of degree n

Tq « t2q
2

A simple calculation shows, for example, that

to = TT

+ + / )
a2 + /?2)2 + 50a2 + 70/?2 + 19]

Thus, for n = 2, the approximate formula for Pq reads

cos

2-/Rcos(<5)
8R

[2(1

cos [2(1 + fiiq + H2q2)z +

where
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Prom (12) we then find that the transmissivity r is given by

r =

Alternatively, setting

_ n2fii _ 3n2 (1 + -R)
Vl ~ nla " 4nl(l-R)

n2
2fi2 = 3n^ [7 -f 24i? + 7i?2 -

the approximate formula for r reads

This is our new approximate expression for the transmissivity. It yields very accurate

results provided the validity criteria

( 2 3 )

and

W = 0(1) (24)

are verified, as is usually the case in practice. Of course, formulae which incorporate

phase terms of order higher than n = 2 can be obtained easily. The n = 1 approxi-

mation, on the other hand, is easily seen to coincide with the SVEA result of [6]; it

gives good approximations provided the more restrictive conditions q < 1 and

k0Lq =

are satisfied.
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4 Discussion

Approximate formulae for the transmissivity, similar to the ones we present here,

were given by Felber and Marburger [5, 6]. In the first of these papers an expression

for the transmissivity was obtained under the assumption that the nonlinear refrac-

tive index is constant throughout the cavity. This expression is of the form (22)

except for the phase of the sine function, which is incorrect even to first order in the

nonlinearity ri2. As acknowledged by the authors, the corresponding values for the

transmissivity differ substantially from the true values. The results in [5] are more

interesting for the insight involved in their derivation and for the light they shed on

the mechanisms at work in optical bistability than for their quantitative accuracy.

In [6] the authors present two different approximate formulae for the transmissiv-

ity of the nonlinear Fabry-Perot interferometer: one of them is obtained by means

of the slowly varying envelope approximation (SVEA); the other, which involves

approximations only through the boundary conditions, is given in terms of a certain

elliptic function.

The SVEA expression again coincides with (22) except for the phase, though this

time the phase is correct to first order in ri2. Our validity criterion (21) tell us then

that the SVEA result is accurate as long as the conditions (23) and k^Lq = 0(1)

are verified, as is often the case in the applications. In Figure 3 we present plots of

\Ej\2 vs. \ET\2 as given by the exact solution, by SVEA and by the approximate

formula (22). Here we focus on the high nonlinearity and field intensity range,

where the SVEA begins to break down; similar plots can be obtained in the short

wavelength regime. This figure shows us the beneficial effect of incorporating the

second order term in the phase of the transmissivity.

Finally, let us discuss the semi-exact calculation given in [6]. The authors only

present expressions corresponding to mirrors with vanishing phase change 6 = 0,

but their methods apply also to the general case. The corresponding general result

is

= jl + ̂ ^ ) 2 sin2 [cos-HawK*)) + 6/2] I ' (25)
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where cnm(;z) is a Jacobian elliptic function (see e.g. [1]),

M2

and C+ is determined by the approximate phase-change condition at the back mirror

The only approximations in this semi-exact derivation occur in the cavity bound-

ary conditions, see also [6, Eqns. (18)-(22)]. As it happens, however, these errors

affect the transmissivity phase to second order in the nonlinearity. In other words,

the result (25) contains errors of the same order as those occurring in the SVEA

expression.

A Appendix: Mirrors and equivalent jump con-
ditions

Here we derive certain relations between the values of the fields at the two surfaces

of a mirror in a nonlinear Fabry-Perot resonator. We consider first the case in which

the mirror is substituted by an uncoated piece of glass; that is to say, we take d[ = 0

in Figure 2. In the case of coated mirrors (with d[ / 0) the calculation is similar

and we will only present the final results.

Consider, then, an arrangement like the one in Figure 2 with d[ = 0, where a

nonlinear medium is placed between two dielectric layers of width d\ and refractive

index n\. Assume an electromagnetic field, with electric field in the plane of the

figure, is normally incident on the left end of this device, i.e. at z = — d\. To obtain

relations for the values of the fields on the surfaces of the linear dielectric layers,

we need to consider the characteristic matrix of the dielectric (see e.g. [4, p. 61]),

which relates the values of the electric and magnetic fields at different points in the

13



layer. For a dielectric of index n\ and for points with abscisae differing by di, the

characteristic matrix is given by

Taking into account the continuity of the tangential component of the electromag-

netic field, it then follows (see [4, §1.6]) that the amplitudes of the incident and

reflected fields are related to the fields at z = 0 by

Note that this relation does not depend on the refractive index of the medium to

the right of z = 0. Analogously, we have

E(L)

In particular we can write

| * " ( | ) (27)

and

E(L) = beik(L+dl >£rf E\L) = ikaeik{L+dl ^T (28)

where

a = (cos(fcidi) - ini sin(fcirfi)) and 6 = (cos(fcidi) sin(fcidi)). (29)
n i

These equations provide relations between the values of the electric field at the
boundary of the cavity and the incident and transmitted amplitudes.
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If an additional dielectric layer with index of refraction n\ = ck[/u and width

d[ ^ 0 is added so as to model a glass plate coated with a reflective material (see

Figure 2), a similar calculation to the one carried out above shows that equations

(27)-(28) continue to hold as long as we replace d\ by d = d\ + d\ and (29) by

ni .

— i sin(fcirf/
1) + n\ sin(fcidi) cos(k[d!l)) and

\ si6 = cos(fcidi) cos(k[d!l) \ sin(fcidi) sin^ic^) (30)
n i

— t [ — sin(fcirfi)cos(k[ctl) + — cos(fcidi)sin(^df
1) j .

The quantities a and 6 introduced above characterize the transmission properties

of the mirrors. Usually, however, two different numbers, the reflectivity R and the

phase change on reflection 6, are used for this purpose. To find expressions for R and

6 in terms of a and b we again consider first the case of an uncoated glass. Assume

the incident electromagnetic wave, of amplitude £7, propagates in a material of

refractive index no (see Figure 4). The electric field is then given by

where

k = —, fci = — ni o
c c c

Using the characteristic matrix (26) and the continuity of the tangential components

of the electromagnetic field we obtain

ikd> \ I 6 \ ikdi
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Thus,

\ eikd>ET ( 1 fiok/ko \ (
j 2 \1 -(M)k/ko ) \ ;idi) - inx sm{kxdx)) ///0

that is
ka

(31)

Letting

K- —

equations (31) give us

ED b — kalkcx 1 — K
r"" e "" ^7 "" 6 + ka/k0 ~ \ + K

where i? and 6 are the reflectivity and phase change on reflection of the dielectric

layer. In particular, if a and /? denote the real and imaginary parts of K we have

ka 1-R (-2y/Rsin(6J)
K = T-7 = a + i/? = 7= — + i—* = — ' — . (33)

kob 1 + R + 2 V J? cos(<5) 1 + R + 2 vJ? cos(<5)

and, therefore,

5- (34)

In the case of actual mirrors with a reflective coating of width d\ ^ 0 (on the incident

side), a calculation similar to the one above shows that equations (32)-(34) give the

correct reflectivity and phase change provided a and 6 are defined as in (30).
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Captions for figures

Figure 1: The nonlinear Fabry-Perot interferometer.

Figure 2: The geometry. A nonlinear medium is placed between two coated
glass plates.

Figure 3: Plot of |£/ |2 vs. \ET\2 for n0 = 3.0, n2 = 10"8, k0L = 100, R = 0.7
and 6 = 0. The three curves represent the exact solution ( ), the solution under
SVEA ( ) and the solution under the approximation (25) ( ).

Figure 4: Incident, reflected and transmitted waves for the calculation of the
reflectivity and phase change of a mirror.



Air

Glass t-y ^ . Nonlinear MediumCoating

Air

Figure 1

» / \l/2
ni

n.

-M
L L+d'j'j 0 L+d

Figure 2



3*+08 4*+08 5*

l£7 l2

Figure 3

rt,

Figure 4



3 fliflE D137D 70=12


