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Abstract

Current peer-to-peer systems based on DHTs struggle with routing locality and content locality because of random node ID assign-
ment. To address these issues, we promote the use of location-based node IDs to encode physical topology and improve routing.
This gives applications explicit knowledge about and control over data locality at a coarse-grain. Applications can place content
in particular regions or route towards a close replica. Schemes to address the difficulties that ensue, particularly load imbalance,
are discussed.



 



1 Introduction

Structured peer-to-peer overlay networks such as CAN [18], Chord [24], Pastry [20] and Tapestry [25]
provide a scalable and robust data location and request routing service for large-scale distributed applications
such as decentralized storage [4, 21,13] and content distribution [2]. They provide a Distributed Hash Table
(DHT) function to map keys to overlay nodes using variants of consistent hashing [11] algorithms. A node
participating in an overlay is assigned a random identifier from a numeric space, e.g., through hashing
of its IP address. A document key associated with a data item obtained from the same numeric space is
mapped onto a node whose identifier immediately succeeds the key. This node is called the document
root. Storage load is naturally balanced since each node receives roughly the same number of keys. DHT
routiiig algorithms form logical connections between nodes based on their identifiers in the numeric space
and messages are routed to their destinations through O(log N) hops. Different DHT algorithms define their
set of routing table entries differently, forming different underlying routing geometries g], but the size of
the routing table entries is normally O(log N) in a system of N nodes. Finally, when nodes join or leave,
O(log2 N) messages [24] are exchanged to maintain routing consistency and to transfer keys.

Many problems exist with the deceptively simple DHT structure that could defeat DHTs' purpose of
constructing highly available and robust wide-area services. First, current routing algorithms optimize the
path length to O(log N)9 but the expansion of an overlay path, defined as the ratio between the overlay path
communication cost and the shortest network distance between source and destination, can be quite high
since the overlay topology is not congruent with the physical topology; each hop can potentially traverse a
long-haul link. This issue is normally refered to as routing locality. While locality aware DHTs [17, 18, 20,
25] aim to reduce the overlay path expansion, they achieve it at an increased protocol complexity and overlay
construction and maintenance cost. Second, DHTs achieve storage load balance at a high communication
cost: physical distances between document roots and document origins can be long, thus causing registration
and possibly query traffic to traverse wide area links. This is especially undesirable when content is mostly of
local interests such as local traffic updates and news. Third, replication, which is an important aspect of data
availability and durability, in current systems [4,21], relies entirely on randomization, depriving applications
of any control of replica locations. We refer to both issues above as the loss of content locality p], i.e., the
capability that systems should possess to explicitly control data locations. Finally, DHTs constantly re-
balance load by transferring documents between neighboring nodes in the numeric ring when nodes join or
leave, generating even more traffic across wide area long-haul links.

We think the fundamental cause of DHTs struggle with routing and content locality is the random
nature of node IDs, through which no information about a node's own physical location or its proximity to
other nodes can be deduced. Worse yet, no information can be aggregated regarding any subset of nodes
along the numeric ring without active probing. This is against the wisdom |5] that addresses need to be
assigned along network topological lines to maximize the reduction in routing overhead such as routing
table size and amount of route advertisements for reachable prefixes. Randomness in ID assignment is
perfect for storage load balance, but at the cost of increased wide-area communication. In response to this,
we propose a new DHT architecture that embeds hierarchy in the node identifier space to address routing and
content locality issues while keeping the DHTs desirable properties, especially, load balance, deterministic
location, decentralization, and robustness to dynamics of nodes and links.

We construct a structured ID space through a hierarchical location-based node ID assignment. A
location-based node ID is a concatenation of a hierarchical prefix assigned to a node's region and a suffix of
randomly generated bits. By assigning prefixes in a hierarchical manner, the network topology information
can be efficiently embedded into a DHT's logical structure and used by the routing system. Neighborhood
relations of regions along the ring reflect their proximity relations in the physical space and the logical dis-
tances between regions reflect their physical distances. When DHT routing makes progress in the numeric
space, similar progress is made in the physical space and overlay path costs are bounded within a constant



factor of physical path costs, thereby achieving an 0(1) expansion. A constant expansion is achieved with
low protocol complexity and routing table construction cost; messages will traverse the longest physical
hop first toward the remote region before it follows smaller steps approaching the destination within the
remote region. Document transfers for load-rebalancing now traverse local-area links between neighbor-
ing nodes along the ring instead of wide-area long-haul links. In addition, hierarchical routing will further
scale the system by reducing the routing state maintained at each node and localizing routing information
propagation; especially, the influences of node or link dynamics are largely confined within a leaf region.

Whereas our work is not the first to propose location-based node ID assignment, we are the first to
address the important load balancing issues that ensue. We argue for the separation of load balancing
concerns for storage from routing. For routing load balance, we assign prefixes to regions with the length of
the prefix reflecting their node density and communication capacity. This guarantees a uniform distribution
of nodes along the ID space so that each node assumes roughly the same amount of routing cost in terms
of incoming and outgoing links, route computation and bandwidth for transit traffic. For storage, we allow
applications to embed location prefixes in document keys; instead of sending keys to random locations for
global load balance, an application can decide its region of load balance so long as it obeys a localized
communication pattern, which ultimately enables true system robustness and scalability. The structured
ID space therefore provides an abstraction from which applications can learn physical network topology
and make informed decisions to achieve content locality. We inherit the definition of content locality from
SkipNet [9], to refer the ability of applications to explicitly place data in specific locations in the system.

The rest of the paper is organized as follows. Section 2 describes the structured ID space and provides
a system overview. Section 3 discusses its advantages for routing. Section 4 discusses the explicit control
applications gain for content locality. Section 5 discusses prefix coding algorithms. Section 6 compares our
approach with related work and Section 7 concludes.

2 Structured ID Space

In this section, we first present an overview of the structure of location-based node IDs and document keys.
We then present the construction of a hierarchical location-based ID space and the embedding of network
distances in the numeric space. Finally, we argue for the load-balance aware prefix assignment and discuss
its flexible usage through subnetting and supernetting.

2.1 Overview

Region Sub-region Leaf region Random bits

Figure 1: Structure of a node ID with hierarchical prefixes

The structure of a location-based node ID is shown in Figure 1. It consists of a prefix with components
that are hierarchically related to its containing regions and a suffix of randomly generated bits significant
only within the leaf region. The entire ID is a random value from the leaf region identifier space. The
boundaries between different components of a prefix are not fixed, since the size of each component is related
to the node density of the region it represents. Physical locations and network distances are effectively
embedded in the numeric space, inducing congruity between overlay topology and physical topology, and
thereby improving routing locality. Routing hierarchies can be built to further scale the routing system.

Similar to node IDs, document keys can be a concatenation of two strings, a prefix that has a semantic
meaning and a suffix of randomly generated bits; a string of entirely random bits is still valid. Applications



control data locality by exploiting the semantics of key prefixes. For example, registration of information
such as local news and traffic update should be constrained within a leaf domain by embedding content
publisher's location prefix in the document key. Document roots thus reside in the leaf domain whereas
the random bits help spread keys across the leaf domain. On the other hand, document keys comprised of
entirely random bits spread popular content across the global region, regardless of the publisher's location,
to better serve a uniform access pattern. Access locality for popular data will rely on replication and caching.

This architecture deviates significantly from current DHT designs where node IDs and documents keys
are randomly generated and a distributed hash function is used to spread keys evenly among the nodes. A
particularly important question concerning embedding location prefixes in node IDs and document keys is:
what is the influence on the load balance, the desired property of DHTs? We answer this question from two
aspects: routing load and storage load, discussed in Section3 and Section 4 respectively.

2.2 Node Locations

Region and location can be geographical, network topological, geometric or administrative entities depend-
ing on the metric we use to define a space and construct a hierarchy. Locality of nodes refers to their
proximity relations in the metric space. One can construct a hierarchy of arbitrary number of levels. We use
region, sub-region and leaf region, as shown in Figure 1 liberally to refer to top, intermediate and bottom
levels of the hierarchy. We use physical space and distance to refer to the metric space and its metric. Here
are some examples of how one can partition the underlying network into a hierarchy based on different
metrics.

• Geographical hierarchy: use a quadtree to cover a planar region of interest with a square and then
recursively partition squares into smaller squares until each square contains a uniform subset of nodes.

• Geometric hierarchy based on network distance: divide an N-dimensional Euclidean geometric space
recursively into sub-spaces, where geometric distances between nodes approximate the Internet net-
work distances, as explored in GNP [16].

• Hybrid hierarchy similar to the Internet: first divide geographical regions along continental bound-
aries, then divide each continent based on organizational hierarchies with geographically proximate
cites of AS domains connecting to regional network service providers as leaf nodes.

The construction of geographical hierarchies is straightforward. The construction of hierarchies reflect-
ing network topology will have to rely on a routing underlay [15] or more generally, a knowledge plane [3],
where information such as the AS domain peering graph [15] that represents the coarse-grain connectivity of
the Internet are gathered that one can query from. Evaluation of different hierarchies is an important future
work.

A hierarchical prefix encoding scheme based on geography without load balancing concern is shown
in Figure 2, where 2-D geographical regions at each level are divided into four sub-regions and contiguous
prefixes 00,01,10,11 are assigned to regions according to their spatial order along the Hilbert Curve, with
NE quad being 00 and NW quad being 11. Prefixes correspond to segments along the numeric ring with a
shorter prefix representing a longer numeric range. When each range is subdivided into smaller ranges cor-
responding the sub-regions, more prefix bits are appended to the existing range prefix to form a longer prefix
representing the sub-region; this process repeats until a leaf region with a pre-determined size is reached,
where size could be defined in terms of the node count, geographical coverage or sites of administrative
domains. The partition of regions and assignment of prefixes at each level of the hierarchy might be a
centralized algorithm, but the overall scheme is decentralized and scalable since each region is responsible
for its own subregion partition and prefix assignment; therefore, only a relatively small number of top level
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Figure 2: Quadtree-based prefixes

regions need to obtain prefixes from a central authority, and a delegatable method similar to the allocation
of network numbers can be adopted. Each node retrieves its region prefix through a bootstrap mechanism
by contacting nodes that belong to the same leaf region, which most likely will be a stub AS domain.

2.3 Embed Network Distances in the Ring

We will show in Section 3 how preserving physical locality in the numeric space will improve routing
locality without requiring extra probes from individual nodes to the networks. In this subsection, we explore
the embedding of physical distances in the numeric space and its implications on routing algorithms. The
logical distance between nodes in Chord is the numeric difference between IDs, while for prefix routing, it
is the matching of prefix digits, where two IDs are considered closer to each other when they share more
high-order bits. Forward progress for Chord is purely numerical steps in the clockwise direction, while for
prefix routing, it is the matching of more high-order prefix digits. For Chord |24] to take full advantage of
the structured ID space, one can use space filling curves, such as the Hilbert Curve in Figure2(a), to map
regions in a hierarchical high-dimensional physical space onto a one-dimensional numeric ring and assign
contiguous prefixes to neighboring regions along the ring. The spatial ordering of regions in the physical
space is kept in the numeric space continuously and numeric distances between nodes reflect their physical
distances. The concept of space filling curve exists for any number of dimensions.

For prefix routing [17, 20, 25], inter-region alignment need not obey a strict order since messages
are forwarded through hops that match prefix digits with the destination ID without traversing regions in
between. Proximity relations along the numeric ring become discrete since they are disjunctive across
certain fixed boundaries along the ring; sub-regions under each parent are relatively adjacent to each other.
This discontinuity occurs recursively at a fixed set of boundaries. A fixed division of prefix digits into
different components is necessary to guarantee the relative continuity of proximity relations within each
region. These fixed boundaries are formed through prefix aggregation and division to be explained in details
in the next subsection. More flexible routing algorithms, such as Pastry [20], that combine prefix and chord
routing algorithms, send messages toward nodes with IDs closer to the destination ID in numeric distance
when entries matching more prefix digits are not available. A strict spatial order, especially among top level
regions are necessary to achieve good routing locality. Finally, spatial ordering across the entire physical
space as in Figure 2(b) is desirable when one wish to do prefix summarization at any level to form super-
regions of arbitrary size while keeping the adjacency property for their containing regions.



2.4 Load-balance Aware Prefixes

Due to the heterogenous node density and capacity distributions across different geographical regions, the
naive scheme in Figure 2 results in a skewed node distribution along the numeric ID space. For example,
the NW segment comprising both Silicon Valley and Seattle is much more densely populated with nodes
than the SW segment. Since a node in the numeric ring is responsible for storing keys mapped onto the
range between its previous identifier and itself, SW nodes will assume higher storage load since each node
is responsible for a longer segment along the ring. In addition, they will receive large amount of inbound
query traffic for keys mapped to themselves and possibly transit traffic from NE and SE toward NW as an
intermediate hop depending on the DHT routing algorithms.

A balanced node distribution along the numeric ring is essential for both routing and storage load
balance assuming a uniform distribution of document keys. We preserve the uniform node distribution by
allocating prefixes to regions with corresponding segment lengths proportional to their node density and
capacity, which we expect to be relatively stable, especially for large regions at the top of the hierarchy. We
will discuss the implications of non-uniform key distributions intentionally generated for content locality on
load balancing in Section 4. Till then, we assume a uniform key distribution in the same numeric space as
node IDs.

An example prefix allocation that populates nodes uniformly across the numeric ring is shown in Fig-
ure 3(a). Densely populated regions such as NW occupy half a ring and sparsely populated regions such as
SE and SW each occupy 1/8 of the ring. A manifestation of the previous warning that boundaries between
different components of a prefix are not fixed is shown: at the same level of hierarchy, prefixes of different
lengths 1 3 3 2 are assigned to the four top US regions. For prefix routing or hierarchical routing (to be
discussed in Section 3), one might want to divide prefixes at fixed boundaries to generate prefix components
of desirable lengths, thereby forming artificial regions with similar node capacity. We use the term artificial
region to contrast with natural physical regions, such as AS domains or geographical regions to refer to the
regions that we form out of fixed-length prefixes.
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Figure 3: Load-balanced prefixes

We introduce abstractions similar to IPv4 subnetting and supemetting, where division and summariza-
tion of prefixes at any location is possible. As shown in Figure3(b), a subnetting analogy is drawn to divide
top level region NW into two sub-regions, Lower NW and Upper NW, each assigned a prefix of 2 bits, 10
and 11 respectively. The supemetting concept is applied to summarize SE and SW prefixes 010 and 011 to
a shorter prefix 01, thus forming a super-region of SE+SW. Super-regions must be formed out of proximate
sub-regions for routing entries matching summarized prefixes to make sense. This is similar to IP address
prefixes summarization [5], where a set of longer prefixes can be summarized into a single short prefix to



aggregate multiple routing entries into a single entry. Prefixes that can be summarized must represent sites
adjacent in network topology so that one single route entry provides reachability information for all of them
as seen from a remote region. Finally, the hierarchical classification of nodes in the US into four equal node
capacity top level regions {NE, SE+SW, L_NW, U_NW} leads to a tree representation as shown in Fig-
ure 3(b); the tree structure can be easily extended to represent a general multi-level hierarchical partitioning
that incorporates sub-regions and leaf-regions.

The division and summarization processes can be recursively applied until regions satisfying certain
requirements such as the prefix length, node capacity or geographical coverage are reached. For prefix
routing algorithms [20, 25], where fixed-length prefix digits are continuously matched at each routing step
to match destination ID, subnetting and supemetting help form prefixes of the same length out of regions
of heterogeneous node density and capacity. As an example, when prefix routing routes a message two bits
at a time toward its destination, a message to node Id with prefix 11 will be sent to the Upper NW region
while a message to node Id with prefix 01 will be sent to the SE+SW super-region at the first step. However,
during forwarding, the prefix with the longest match will identify the routing entry to be used, just as in the
Internet. In prefix routing, the longest match will be the matching with the most number of high order bits,
while Chord selects the entry that has the closest numeric distance to destination ID. Algorithms for prefix
encoding are discussed in Section 5.

In hierarchical routing to be discussed in Section 3, subnetting and supemetting really means sub-
regioning and super-regioning, through which load balanced regions with the same node capacity are formed
to participate in routing at the higher level of the hierarchy. Finally, alternative algorithms such as geograph-
ical routing can be applied to route across top level regions; a service that maps prefixes to geographical
regions or network topological regions is needed to fully take advantage of the semantic meaning embedded
in the node prefix. Construction of such a service is orthogonal to the Subnetting and Supemetting concept,
which is concerned with forming artificial regions out of the natural geographical or topological regions.

3 Routing

A decade ago, network address assignment along network topological lines was proposed to maximize the
reduction in routing overhead and ultimately scale inter-domain routing systems to the Internet [5]. The
specific scaling problems on the Internet are related to memory and computational overhead for routing
information, bandwidth for routing information distribution, and the stability of distributed routing compu-
tations. Despite the salient differences between IP routing and DHT routing, we explore a similar theme
in this section: the opportunities for routing improvement through hierarchical location-based IDs. Specifi-
cally, we achieve overlay routing locality by exploiting the topology information embedded in the structured
ID space and explore hierarchical routing to further scale DHT systems.

We place nodes and document keys around a ring for the analysis of DHT algorithms, as Chord and
Pastry do. This does not influence the applicability of our analysis to other DHT routing algorithms, since
the numeric ring is common to all DHTs that use a one-dimensional identifier space. Techniques here can
be equally applied to CAN despite its different addressing scheme. We avoid making distinctions between
different algorithms as much as we can to generalize our design and analysis.

3.1 Improving DHT Routing Locality

In a structured ID space, one can follow exactly the same routing algorithms as existing DHTs; they scale
to O(log N) in the number of routing table entries and overlay path length to reach a destination. Given a
key, a DHT routes the request to a node immediately succeeding the key in the numeric ring. We assume
document keys are unique and randomly generated for the moment. In current DHTs, each node keeps a set



of links to other nodes satisfying certain requirement, e.g., Chord [24] establishes fingers to nodes in powers
of 2 distances away while Pastry and Tapestry [17, 20, 25] maintain routing table entries that share an
increasing number of common prefixes with the current node. In addition, Pastry keeps a leaf set composed
of nodes with IDs closest in numeric distance from current node, which makes it a hybrid routing algorithm.
Messages are forwarded through O(log JV) number of intermediate hops, whose nodes IDs are progressively
closer to the destination. Locality-aware DHTs [17, 20, 25] reduce overlay hop cost by picking a proximate
subset of the nodes that satisfy the prefix requirement to set up logical connections.

Unlike current locality-aware DHTs, location-based ID assignment improves routing locality without
requiring individual nodes to probe the network for proximity information when they establish connections
to other nodes. This is due to the appropriate embedding of network distances along the numeric ring as
explained in Section 2.3. For Chord routing, whose forward progress is defined as the numerical distance
traversed in the clockwise direction, low expansion overlay paths will be achieved via space filling curves
as in Figure 2(a); when an overlay path makes forward progress in the numeric space, it makes forward
progress along a certain physical direction as well, due to the spatial alignment of regions along the numeric
ring as shown in Figure 2(a). At the same protocol complexity, this is a clear advantage over current Chord
routing, whose overlay path can be rather erratic, zigzagging from Boston, west to San Francisco, and east
back to Europe.

With prefix routing, whose routing table is shown in Figure4(b), the first overlay hop connects directly
to a remote top level region that shares the destination's top order prefix digits and messages stay within
a remote region once they reach it. Assuming network distances within each region are shorter than inter-
region distances, a low expansion of overlay path is even more tractable than Chord since when DHT routing
algorithms make forward progress in the numeric space with non-increasing steps, costs of overlay hops
are also non-increasing with a safe landing within the remote destination region at first stride; while for
Chord, traversing regions in the middle of the numeric ring could still be slightly deviating from a straight
path toward the destination region. This is in clear contrast with current locality-aware DHT routing |20,
25] where communication paths take overlay hops at increasing costs with the last hop being the most
expensive and most difficult to optimize. While the number of hops in an overlay path is still O(logiV),
the communication cost is bounded within a constant factor to the actual physical distance at low protocol
complexity.

3.2 Routing Hierarchy

In their classical paper [12], Kleinrock et al. presented the scalability properties of hierarchical routing: in
the limit of a very large network, enormous routing table reduction may be achieved with essentially no
increase in network path length. DHT routing table size, which is logarithmic in number of nodes in the
system, has relatively good scaling properties due to the logical hierarchies embedded in the routing table
structures; Chord forms a structure that resembles a skip-list while prefix routing encodes a tree structure as
shown in Figure 4. The routing table size reduction follows exactly the same idea described in [12]. They
keep detailed routing information about nodes that are close-by and coarser information about nodes located
further away, both in terms of logical distance, which is realized by providing one entry per destination for
the neighboring nodes, and one entry per set of destinations located on remote segments along the ring; the
size of this set increase exponentially with the logical distance.

However, certain assumptions are made in Kleinrock [12]'s analysis in order to guarantee no increases
in network path lengths despite the hierarchical clustering structure of nodes. Specifically, among others,
they assume that the diameter of any kth level cluster subnet is less than or equal to a quantity (i,k =
1,.... m, with m being the levels of routing hierarchy, d^ representing the diameter of the entire network,
and dk > dk-\ > 0 for all k. Mapping to DHT prefix routing algorithm, m is O(logiV) and 4* is the
diameter of any set of nodes that share m — k common prefix digits; 4n is still the diameter of the entire



Internet and do is the nodes that share all common prefixes. Since worst case distance between any two
nodes in current DHTs is the diameter of the entire Internet, 4 = dm,k = 1,..., m, hierarchical clustering
of nodes based on numeric IDs in current DHTs breaks the assumptions in Kleinrock |12] that guarantee
bounded network path lengths.

Now that we have aligned the physical topology along the numeric ring, numeric hierarchies in current
DHTs map naturally to geographical or network topological hierarchies. Routing entries at the top of the
hierarchy, such as the longest Chord fingers or entries that share no common digits with current node in
prefix routing, connect to remote regions while entries in the bottom of the hierarchy connect to nodes
within the leaf region. Assumptions in Kleinrock [12] are easily satisfied and this again proves our assertion
that overlay path lengths are bounded within a constant factor of physical paths.

Level 3

Level 2 00,

Level 1

(a) A tree representation of a 4-level hierarchy
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(b) Prefix routing table for node A
that embeds a natural hierarchy

Figure 4: Prefix routing and its natural hierarchy

The salient difference between DHT's entrenched hierarchy as in Figure4 and a more explicit hierarchy,
as in the Internet inter-domain routing systems, is that every node can become the representative node of
its entire top-level cluster, since that responsibility is essentially randomized over the entire set of nodes in
that cluster; representative here means that the node appears in the routing table of some other nodes for
reaching its top level cluster. Desirable as it is for nodes to assume equal responsibilities, that can only cause
problems especially when nodes join or leave, since O{\o$ N) messages are needed to maintain routing
table consistency. We postulate that further reduction in routing overhead is possible through reducing the
entire set of nodes in a cluster to a robust subset as representative nodes for that cluster. This maximal
reduction in routing table size and update propagations will result in recovery of storage, network capacity,
and computation power, especially from those due to the fluctuations of ups and downs of overlay nodes and
links, thereby improving system robustness and scalability. This further reduction can come in two forms:
implicit and explicit. Notice clusters in current DHTs are formed out of nodes that share common prefixes
or nodes that are numerically close, while in our system, clusters naturally map to regions in a hierarchical
manner, which enables the further reduction of routing overhead without influencing robustness.

With implicit hierarchical routing, one instance of DHT routing is running across the entire system.
However, each node can reduce its full set of routing table entries that flat DHT routing forms to a useful
subset based on the levels of routing they wish to participate in. For example, a Chord node that has
advertised itself to remote regions and established a long link to a node N/2 distance away in a system of N
nodes has decided to route at the highest level of the hierarchy. In the contrary, a node has only short fingers



reaching nodes within the same leaf region participates routing only in the base level. A node can choose
to have an arbitrary set of long or short incoming links and/or outgoing links, depending on its willingness
to receive and/or send traffic across regions. A message should always be forwarded toward the destination
while taking advantage of the longest routing table entry in each intermediate node preceding the destination
ID. A similar implicit routing hierarchy can be designed based on prefix routing.

Similar to IP address prefixes in CIDR, prefixes of location-based IDs provide a hierarchical abstraction
that enables explicit hierarchical routing in DHTs. For example, we can build an explicit two-tier routing
hierarchy based on the hierarchy encoded in Figure 3(a). We partition US regions logically into several DHT
routing domains, where an instance of DHTs such as Chord or Pastry is running to maintain reachability
information for the entire set of node identifiers within each region. The partition of routing domains can
be based either on a natural partition of the physical space, or can be based on the artificial regions formed
through prefix division and summarization as in Figure 3(b) so that each routing domain contains roughly
the same number of nodes. A subset of nodes from each region form a virtual top-level DHT ring where an
inter-region routing protocol is running to establish the connections across regions.

This inter-region routing protocol could be another DHT routing protocol, or could combine geograph-
ical and Internet inter-domain routing notions, which we will not elaborate on in this work further. The size
of each subset that participates in high-level routing should be proportional to its region node density so that
the top-level ring is uniformly populated with nodes as well. These nodes, similar to BGP border routers,
advertise reachability information for the entire region that share a common prefix and possibly regions that
it want to carry traffic for. They propagate route changes into remote regions and build up routing table
entries that interconnect regions so that messages can be routed across the entire numeric ring. In fact, one
can build a routing hierarchy of an arbitrary number of levels by partitioning regions recursively and by
having each node choose randomly how many levels of routing to participate in based on its communication
capacity and computation power, which is more robust than having a static subset of nodes participating in
the routing at each level.

Routing hierarchy does not influence robustness in our system since the logical links established be-
tween a set of adjacent nodes in one leaf region and the mirroring set of nodes in a remote region tend to
share the same underlying physical paths; therefore only those that traverse different physical paths should
be kept. Communication costs and processing of routing updates, however, is reduced to the complexity
based on the number of regions or the number of the subset of nodes that participate in routing at each level,
rather than on the total number of nodes in the system. In addition, the impact of node joins and leaves
will be confined within the highest level region in which they participate in routing. Thus a low degree of
dynamics within any leaf region or subregion does not sum to a high degree of dynamics across the entire
ring. The direct measure for gains obtained from hierarchical routing will be a reduction in routing table
size and routing overhead caused by node joins or leaves, which translates to recovery in storage, network
capacity and computational power. Finally, different DHT algorithms can be deployed in different regions
so long as there exists a clean interface between them and the inter-region routing algorithms. This enables
region autonomy and isolates faults within each routing region effectively.

33 Routing Load Balance

Nodes participate in routing, message forwarding, document publishing and query processing for keys and
their associated documents. We separate the role of nodes acting as an endpoint of a communication path
from the role of acting as a transit hop, and leave the first issue to be discussed at Section 4. DHT routing
overhead involves the storage for routing table entries, the processing of route updates when nodes join and
leave, and the passing of transit traffic through the node for key registration and query. The actual data
retrieval associated with keys normally does not go through overlay hops once an IP address is resolved.
By populating nodes uniformly across the identifier space, we achieve routing load balance since each node



has roughly the same number of incoming and outgoing logical connections and carries roughly the same
amount of transit traffic given a uniform and random key distribution. For hierarchical routing, nodes with
more communication bandwidth and computational power will participate in higher levels of the routing
hierarchy. With a good randomized algorithm, statistically, the number of nodes in each region participating
in a certain level of DHT routing should be proportional to its node density, ensuring routing load balance
across regions at each level.

3.4 Dynamic Behavior and Evolution

In the absence of large-scale correlation among node join or leave activity in a region, the influence of
individual join or leave will naturally balance out so that the node density distribution remains relatively
stable most of the time. Especially, a subset of nodes from each region are expected to have long alive
time so that they can perform cross-region routings, document storage and retrievals even when other nodes
within the region are dormant or disconnected during off-peak hours. One potential drawback of the system
is that once one allocates a certain segment size to a region, the ID space for nodes in that region is fixed.
Thus, when segments change sizes due to node density changes, a certain amount of documents will have
to be moved. At the top level, though, the relative ratio of node density, computing power and network
capacity do not change dramatically in a short period of time. Therefore, the region node densities should
be relatively stable at both a macro and micro scale of time intervals so that document transfers across
regions, especially across top level regions, will not be tremendous over a short period of time. This will be
important to verify in future work.

4 Content Locality

As mentioned in Section 2, applications control data locations through the manipulation of document keys.
In this section, we illustrate the advantages a structured ID space gains for content locality through three
example replication scenarios. Applications use replication for different purposes such as availability, per-
formance and durability. Current replica placement schemes |4, 21] put replicas in nodes sequential in the
numeric space, hoping the random distrubtion of identifiers will spread replicas across geographical re-
gions. Instead of relying on nodes sequential in the ID space, we will have to use explicit names to represent
a replica root set, thus avoiding the correlation of node failures in the same leaf region. This is not a disad-
vantage since at a moderate lookup cost for discovering names of a replica root set, applications gain explicit
control over replica locations, which is unattainable in current DHTs of the same complexity. We assume
users obtain keys and their associated replica root set through a separate naming service using systems such
as CDS [7], which resolves a unique document key and a replica root set from a high-level descriptive name
such as attribute value pairs. The encoding of a replica root set can be very simple in our design. Separation
of naming and location service is a conscious design decision following [22], and we focus on a location
service that resolves a unique key identifier to a replica location.

4.1 Variations on a Theme of Load Balance

Whereas random hashing is great at spreading load evenly across nodes in the entire system, the downside
is the loss of content locality since applications have no control over data placement. Worse yet, commu-
nications caused by registration and query of keys, and the actual data store and retrieval is a vast waste of
wide-area bandwidth. In order to give applications the control for data locality and to form a better commu-
nication pattern, we draw a clear distinction between load balance for DHT routing which is desirable due
to its shared nature, and load balance for storage despite their intricate interactions.
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Routing table entries and routing update processing remain invariant regardless of key distribution since
they are determined by the interconnections among nodes based on numeric IDs. Key forwarding cost will
be influenced largely by registration and query locality. When a large number of keys are mapped to a
particular region, nodes along the lookup path will be influenced by the corresponding query traffic. Nodes
in remote regions and earlier in the lookup path will be less influenced than nodes with IDs closer to the
keys, which will be inundated by the query traffic from all directions.

Whereas we allow an application to decide its region of storage load balancing, we require registra-
tion and query traffic generated by the application to be contained within the load balancing region. We
present several simple replication mechanisms to illustrate how applications can satisfy this requirement
while achieving content locality. By localizing registration and query traffic for keys, rippling effects along
the registration and lookup path will be minimized. Within a load balancing region, traffic concentration can
be reduced by the provision of extra storage and communication capacity. Finally, when nodes join or leave,
DHTs re-balance load by transferring documents between nodes that are adjacent in numeric space; with
location-based node IDs, document transferring becomes a local behavior since nodes that are sequential in
the numeric ring are also close in the physical distance.

4.2 Deterministic Replica Locations

In order to achieve deterministic replication, an application should decide its replication policy and com-
municate that to the system so that the system creates a unique replica root set for each document key. For
example, an application can decide to replicate for load balance across entire systems or it may decide to
replicate across different geographical regions, which the system can deduce from the mapping between
prefix and region. In addition, obtaining failure distributions across a well structured identifier space will be
much more tractable, which is important for applications that demand high availability |1]. Finally, caching
instead of replication should be used to handle flash crowds, and each replica can in turn act as a proxy
root for deeper replication and caching to address dynamic access pattern. We introduce three examples that
support efficient replication and retrieval to illustrate different policies.

Uniform Replication with Bit Mask. We introduce a concept called bit mask to let an application
specify its desired level of replication for a particular document key and allow a client to access a close-by
replica. For example, a bit mask with four preceding Os followed by all Is such as 00 00 11 11 for an
8-bit ID space, would specify a replica root set of 16 nodes that are uniformly distributed across the numeric
ring as shown in Figure 5(a). Nodes in any of these regions that best match the document key in bits not
masked off will be picked as a replica root. The registration and discovery of the tuple (fcey, bitmask) as the
replica root set is another level of indirection to be addressed by the naming service mentioned earlier. After
the client gets the tuple, it sends a request directly towards its local replica root. The ID is calculated from
the key by replacing the masked-off prefix bits indicated by zeros with its own prefix of the corresponding
length. Without a bit mask, the client would have to do an expanding search to discover a close-by replica,
replacing its own prefixes with the document key prefix following a leaf to region order.

Replication Favoring Adjacent Domains. Some applications might prefer placing more replicas in
close-by domains relative to the document origin rather than remote regions as shown in Figure5(b). There
is a simple way to achieve this: first, encode the publisher domain prefix in the document key; then replicate
the document to a set of nodes with IDs {2f | 0 < i < logN) distances away from the root, where N is the
number of nodes in the system. After the client gets the unique document key, it can calculate the node IDs
in the replica root set and send a request to a replica whose ID is numerically closest to its own. A bit mask
can be combined with this scheme to indicate the level of replication instead of using a full set of 0(log N)
replicas.

Locality for Key Partitions. So far, we have ignored a possible skewed distribution of hashed keys.
In some peer-to-peer applications such as the Content Discovery System [7], some keys can be very popular
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Figure 5: Illustration of Replication Patterns

and partitions will be used to distribute entries mapping to the same key to different storage nodes through
rehashing. Location can thus be used as a factor to decide the specific locations for holding the partition
set. As an example, all music files that have an attribute value pair of {composer = Mozar t} will be
hashed to the same key and therefore will initially be stored in the same node. When partitioning happens,
all entries originating from a leaf region will be assigned to a partition node within the same region. The
query is directed to the local partition as well, for access locality, since there is almost no need to return
all the matching entries for a popular key. Entries hashed to one popular key are thus partitioned across
different domains obeying registration and access locality.

5 Prefix Encoding Algorithms

Prefix encoding algorithms [10,14, 23] assign codewords, which are sequences of bits, to symbols such that
no codeword is a prefix of another; codewords are assigned in a way that the most frequent symbols are
given shorter code lengths for information compression. Instead of assigning prefixes to symbols, we assign
prefixes to regions. The equivalence of the frequency of a symbol is the relative node density/capacity in
a region; nodes belonging to the same region count as the same symbol and share the same prefix. Thus,
the more nodes a region has, the shorter its prefix is. This matched exactly to our observation in Section2,
where prefix lengths were exactly -log(pi) when probability distribution j^s is dyadic, i.e., integral powers
of 2, with pi denoting the relative region node density. We prove that segments assigned to regions are
disjoint along the numeric ring.

Because of the ordering constraints of regions along the numeric ring as stated in Section2, Huffman
codes [10] do not directly apply. We can however use the code lengths generated via Huffman to determine
the segment lengths for each region and assign prefixes contiguously to regions according to their predeter-
mined order while fulfilling their desirable segment lengths; if no available short prefix exists for a region, we
split the region to subregions and encode subregions with as many longer contiguous prefixes as necessary.
Huffman codes are optimal in their efficiency of code lengths. Prefixes assigned to segments corresponding
to different regions at the same level of the hierarchy via Huffman have the following properties.

PROPERTY 1 Each region occupies a segment of size 2"~/l with 2n being the size of the entire numeric
ring, and k being the length of the prefix assigned to the region. The shorter the prefix length assigned, the
larger the segment size is. This satisfies our desire to allocate a larger segment for a region with higher node
capacity.

PROPERTY 2 Segments corresponding to codewords are disjoint along the numeric ring.
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PROOF 1 A property of prefix coding. D

PROPERTY 3 The sum of the segment sizes occupied by all the regions is 2f\ size of the entire numeric
ring.

PROOF 2 Define a complete binary code tree [6] as a finite order tree in which each intermediate node
has 2 nodes of the next higher order stemming from it. A complete code tree is one in which the Kraft
inequality [6] is satisfied with equality. Since a Huffman code tree is a complete code tree, we have]T 2~~li =
1 applying Kraft inequality, where k is codeword length for 1 < i < n and n is the size of the set of input
symbols.

The set of input symbols to Huffman encoding are relative region node capacities and the set of code-
word lengths ks are the lengths of prefixes assigned to regions. The sum of the segment lengths£) 2n~li is
therefore 2n, which is the size of the entire numeric ring. •

PROPERTY 4 For a dyadic node capacity distribution, segment size of each region is exactly u * 2n , where
Pi is the relative node capacity for region i andY, pi = 1

PROOF 3 Segment size for region i is 2n~u = 2n+loste) = Pi * 2n. •

From Property 4, we can see segment size of a region is proportional to its relative node capacity
for a dyadic distribution, therefore achieving a balanced node distribution along the numeric ring when
such algorithms are recursively applied within each region to assign prefixes to its subregions. However, if
relative node capacities are not dyadic, the numeric space is not perfectly load balanced: certain segments
are longer, and certain segments are shorter than their fair share, especially for a skewed distribution. A
simplistic approach is to approximate each input probability with a sequence of dyadic numbers through
binary expansions, that Huffman code can do well with, with the possibility that a sequence of longer
prefixes will be assigned to a region instead of a single short prefix. Designing algorithms and heuristics to
bound the code imbalance factor induced by Huffman is an ongoing work.

Before introducing Property 5, we use an example to illustrate the code splitting algorithms given
above. If the sequence of relative node capacities of regions are 0.25,0.15,0.2,0.15,0.25, with that order
required along the numeric ring, Huffman code lengths are 2,3,2,3,2. After assigning 00, 010 to 0.25 and
0.15, in that order, there is no two-bits prefix immediately following 010 for 0.2. The best one can do is
to assign 011 and 100 to 0.2. The two code words are contiguous along the ring, but do not sharing the
same parent in a code tree. This process is the same as splitting one physical region into two sub-regions
and assign one longer prefix to each of the sub-regions. For completeness, the entire code for the input
distribution that obeys the specific ordering are: 00,010,011 + 100,101,11. The split of codeword for 0.2
is caused by the non-adjacency of two least likely probabilities, 0.15 and 0.15, imposed by the input ordering
of node capacity distributions. The set of new prefix lengths are 2,3,3,3, 3,2, specifically one node of Td

order is splitted to two 3rd order nodes on the code tree, each of which is assigned to two different regions
or sub-regions.

PROPERTY 5 The new code tree corresponds to the above construct is still a binary code tree.

PROOF 4 This new tree is isomorphic to the original Huffman code tree, ignoring the specific bit each
branch is assigned, with one or more leaves each splitting into two children. The new tree is still a complete
binary code tree, since each leaf that is turning into an intermediate node has two children stemming from
it. a
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Figure 6: Prefix Length of Shannon Codes

All properties above therefore still apply to the new codes.
Shannon codes [23] have lengths k — flog l/p»"|, which is bounded by: log l/pi <k< log l/pi + 1

as shown in Figure 6.

PROPERTY 6 The segment length s-i for a region prefix allocated through Shannon code is between its half
and full share of the numeric ring.

PROOF 5 Given s?; = 2n~li and log l/pi <k< log l/pi + 1, we have pi * 2n~l < Si < pi * 2 n . •

Gaps exist between the segments assigned to regions and we will have to grow a region's segment that
is shorter than its fair share to occupy gaps via assignment of extra prefixes. Each region therefore not
only occupies its assigned segment, but also some surrounding segments; this approximately balance load
which we will prove in future work. Finally, instead of encoding prefixes at each level separately, arithmetic
encoding [14] can assign prefixes that blend region, sub-region and domain codewords. Although this
might be a theoretically optimal approach with respect to load balancing, it is non-trivial to decentralize and
difficult to aggregate the small codes into meaningful shorter prefixes representing high level regions.

6 Related Work

Rather than having each node probe the network for proximity information independently [17, 18, 20, 25],
we abstract distance in a systematic and scalable way to build a structured ID space. Our protocol can be
as simple as Chord [24] while achieving low expansion routes. CAN [18, 19] explored topology-aware
ID assignment by clustering nodes that are physically close to the same virtual coordinate space. A skewed
node distribution in the physical networks will result in a skewed node distribution in the logical space. CAN
focused more on reducing routing latency than building an entirely structured ID space so that applications
can explicitly control data locality. They did not address the load balancing issue either. Current replica
placement algorithms [4, 21] rely on randomness to spread replicas across geographical areas while we
provide much more control.
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Finally, SkipNet [9] organized data by lexicographic ordering of string names to achieve content lo-
cality within an administrative domain. Our content locality is more general and applies to different metric
spaces such as geographical and topological. Another property that SkipNet addresses is path locality, which
refers to the ability to guarantee that traffic between two overlay nodes within the same organization is routed
within that organization only. This property is easily guaranteed in our system, since when an AS domain
corresponds to a leaf region, traffic between nodes within the leaf region will stay within that AS domain. In
fact, traffic between overlay nodes that share any common prefix will stay within the region corresponding
to that prefix.

7 Summary

In this paper, we propose abstracting a physical space into a structured ID space where the logical topology
is congruent to the physical topology. We propose prefix assignment schemes that guarantee load balancing
of the shared routing substrate. We discuss the improvement in routing locality and the feasibility of con-
structing a routing hierarchy to further reduce routing overhead. Specifically, we localize communications
due to dynamic node behavior, without sacrificing robustness. We show that a structured ID space provides
applications the ability to control locality and deterministically place replicas, while forming a better com-
munication pattern. Finally, we discuss source coding algorithms for prefix assignment in our system. In
future work, we will design detailed algorithms for the construction of location-based ID space and hierar-
chical routing. We will provide detailed analysis regarding how applications can control content locality via
a structured ID space. Lastly, feasibility and load balancing property of different prefix encoding algorithms
will be quantified.
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