
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



How many servers are best in a dual-priority FCFS
system?

Takayuki Osogamil Adam Wierman 2

Mor Harchol-Balter 3 Alan Scheller-Wolf 4

November 2003
CMU-CS-03-201<9

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Carnegie Mellon University, Computer Science Department. Email: osogami@cs.cmu.edu.
2Carnegie Mellon University, Computer Science Department. Email: acw@cs.cmu.edu.
3Carnegie Mellon University, Computer Science Department. Email: harchol@cs.cmu.edu.
4Carnegie Mellon University, Graduate School of Industrial Administration.. Email: awolf@andrew.cmu.edu.
This work was supported by NSF Grant CCR-0311383, and grant sponsorship from IBM Corporation.



Keywords: Scheduling, queueing, multiserver, priority, pre-
emptive, FCFS, response time, M/GI/fc, dimensionality reduction,
busy period, phase type.



Abstract

We ask the question, "for minimizing mean response time, which is preferable: one fast server of speed 1, or A; slow servers each of
speed I/A:?" Our setting is the M/Gl/k system with two priority classes of customers, high priority and low priority, where G is a
phase-type distribution. We find that multiple slow servers are often preferable — and we demonstrate exactly how many servers are
preferable as a function of load and G. In addition, we find that the optimal number of servers with respect to the high priority jobs may
be very different from that preferred by low priority jobs, and we characterize these preferences. We also evaluate the optimal number
of servers with respect to overall mean response time, averaged over high and low priority jobs. Lastly, we ascertain the effect of the
variability of high priority jobs on low priority jobs.

This paper is the first to analyze an M/Gl/k system with two priority classes and a general phase-type distribution. Prior analyses of
the M/Gl/k with two priority classes either require that G be exponential, or are approximations that work well when G is exponential,
but are less reliable for more variable G. Our analytical method is very different from the prior literature: it combines the technique
of dimensionality reduction (see [9]) with Neuts' technique for determining busy periods in multiserver systems [22]. Our analysis is
approximate, but can be made as accurate as desired, and is verified via simulation.



 



1 Introduction

In a world filled with competing retailers, online stores and service
providers are forced to worry about response times experienced by
customers.1 In an effort to maximize profit, it is becoming com-
monplace to prioritize online service in favor of customers who
are "big spenders" (either currently or in recent history), providing
shorter response times for those customers at the expense of low-
priority customers. Not only is prioritization of customers common
at web servers where the motivation is keeping the big spenders
happy [17], it is also common at supercomputing centers where
certain customers pay for better service and at airlines where cus-
tomers can pay for first class service. A job may also be given
high priority even when not associated with the purchase of a high-
cost item, simply because the job is important in keeping the sys-
tem functioning property, such as certain operating system function
calls or security procedures. In these examples, customers within
the same class are often served in first-come-first-serve (FCFS) or-
der for fairness.

For such systems with dual priorities (high-priority jobs and low-
priority jobs), it is important to understand the mean response time
experienced by each class of jobs, as well as the overall mean re-
sponse time averaged over both priority classes. Further compli-
cating analysis, today's systems often involve multiple servers in a
server farm configuration, as it is cheaper to purchase k machines
each of speed \/k than to purchase one fast machine of speed 1.
While the response time for a single server M/GI/1 with dual pri-
orities is well-understood, the mean response time of a fc-server
M/GI/fc system with dual priorities is not known; only approxi-
mations exist for all but the case of exponentially-distributed ser-
vice times for both priority classes. (These are summarized in Sec-
tion 2).

The first contribution of this paper is thus an analysis of the
M/Gl/k with dual preemptive-resume priorities, where each prior-
ity class has job sizes (job service requirements) following a gen-
eral phase-type (PH) distribution (see Figure 1), and jobs within the
same class are served in FCFS order. Observe that the set of PH
distributions is very general and is provably dense in the set of all
non-negative distributions [10]. In this general setting, we derive
the mean response time for each priority class as well as the overall
mean response time averaged over both classes. Our analysis com-
bines two techniques. The first is the method of Dimensionality
Reduction (see [9]), which allows us to reduce a 2-dimensionally-
infinite Markov chain tracking the number of jobs of each priority
class to a 1-dimensionally-infinite Markov chain. The second tech-
nique, introduced by Neuts in [22], allows the computation of the
complex busy periods used within the Dimensionality Reduction
method. While our method is inherently approximate, in that we
match a finite number of moments of busy periods, it can be made
as accurate as desired. Our validation against simulation shows
that our analysis is always within 1% accuracy using just three mo-
ments.

Our results for the M/GI/fc with dual priorities show that the re-

Figure 1: A PH distribution is the distribution of the absorption
time in a finite state continuous time Markov chain. The figure
shows a 4-phase PH distribution, with n = 4 states, where the ith
state has exponentially-distributed sojourn time with rate /xz. With
probability pOi we start in the ith state, and the next state is state
j with probability pf j . Each state has some probability of leading
to absorption. The absorption time is the sum of the times spent in
each of the states.

sponse times of both priority classes are strongly affected by the
number of servers, k (each serving at rate 1/fc), and this effect is
sometimes counter-intuitive. This question of how the number of
servers (with fixed total processing power 1) can affect mean re-
sponse time has never been investigated in the case of a dual-class
system. Even for a single-class system, this issue has only been
looked at only as the number of servers goes to infinity, or for par-
ticular classes of job size distributions (see Section 2).

The second contribution of this paper is thus to provide a bet-
ter understanding of response times under multiserver priority sys-
tems. In particular, we ask the following three high-level questions
in the context of an M/GI/fc dual-priority queue with preemptive-
resume:

1. Are multiple cheap slow servers ever better than a single ex-
pensive fast server?

2. Does the answer to "how many servers are optimal" differ for
the different priority classes? Also, does the overall optimal
number of servers in a dual-priority system differ from the
case where the classes are indistinguishable — that is when
all jobs have been aggregated into a single priority class?

3. How does the number of servers affect the overall mean re-
sponse time, as well as that of low and high priority jobs?

We find that the answers to these questions depend on the relative
sizes and relative proportions (loads) of the classes, as well as the
variability2 of high priority jobs. In particular, in answer to the
first question, we find that many cheap slow servers can in fact be
better than a single expensive fast server: as the variability of the
high priority jobs is increased and/or the overall load is increased,
the number of servers preferred greatly increases. In fact, we find

1 Here response time refers to the total time from when a client issues a transac-
tion/purchase until the purchase is complete - this includes delay and service time.

2Throughout the paper the variability of a random variable X will be expressed
in terms of C2 = E[X2]/E[X]2 - 1. The system load, p, will be defined as
XE[X]/k, where A is the arrival rate, X represents job size, and k is the number of
servers.



the response times experienced under many slow servers compared
to that under a single fast server often differ substantially.

In answer to the second question, the number of servers pre-
ferred by low priority versus high priority jobs can vary widely.
For example, when high priority jobs are much smaller than low
priority jobs, low priority jobs prefer far fewer servers than do high
priority jobs. By contrast, when low priority jobs are smaller than
high priority jobs, the low priority jobs prefer far more servers than
the high priority jobs. We also find that the overall optimal num-
ber of servers in the dual priority case, averaged over both classes,
can differ substantially from the optimal number of servers in the
single class aggregate case.

In answer to the third question, increasing the number of servers
(while fixing the service capacity) can be beneficial up to a point,
providing significant improvement in overall mean response time.
However, beyond a point, increasing the number of servers is
severely detrimental to the overall system performance. Thus,
when viewed as a function of the number of servers in the system,
the overall mean response time curve forms a "U-shape" where the
bottom of the "U" corresponds to the optimal number of servers.

Detailed explanations of these results and many others are given
in Section 6. It is our hope that system designers will be able to
use the results in this paper both as a predictive and design tool,
to predict performance in dual-priority server farms and also to de-
sign server farms with improved response times, sometimes at a
substantially reduced cost.

2 Prior work

The ubiquity of multi-server (M/GI/fc) systems has given rise to
much research on their performance. Included in this research are
a number of papers on dual priority systems, where high priority
jobs have preference over low priority jobs. In such research the
question of interest is typically deriving the mean response time for
each priority class. Throughout the discussion below, that question
will be central.

2.1 Dual priority analysis in an M/GVk

Almost all the papers written on dual priority M/GI/fc systems are
restricted to exponential service times (Section 2.1.1). The few pa-
pers which deal with non-exponential service time are either coarse
approximations or only handle limited settings (Section 2.1.2). Our 2.1.2 General service times
paper differs from all of the prior work in that we can solve dual-
priority systems for an M/GI/fc to an arbitrary level of accuracy,
where G is any phase-type (PH) distribution.

Nearly all analysis of dual priority multiserver systems involves
the use of a Markov chain. Unfortunately, even with two priority
classes, the state space of such a chain grows infinitely in two di-
mensions, one dimension for each priority class. In order to over-
come this, researchers have simplified the chain in various ways.
Kao and Narayanan truncate the chain by either limiting the num-
ber of high priority jobs [11], or the number of low priority jobs
[12]. Nishida aggregates states, yielding an often rough approxi-
mation [24]. Kapadia, Kazmi and Mitchell explicitly model a fi-
nite queue system [14]. Unfortunately, aggregation or truncation is
unable, in general, to capture the system performance as the traffic
intensity grows large.

Matrix analytic methods also are unable to handle two-
dimensionally infinite systems. In order to overcome this, Miller
[18] and Ngo and Lee [23] partition the state space into blocks and
then "super-blocks," according to the number of high priority cus-
tomers in queue. This partitioning is quite complex and is unlikely
to be generalizable to non-exponential job sizes. In addition, [18]
experiences numerical instability issues when p > 0.8.

A third stream of research capitalizes on the exponential job
sizes by explicitly writing out the system balance equations and
then finding roots via generating functions. These techniques in
general yield complicated mathematical expressions (susceptible to
numerical instabilities at higher loads). King and Mitrani use this
technique, yielding exact values for a two-class system and some
very rough approximations for larger numbers of classes [19]. For
larger systems (eight servers) they begin to experience numerical
stability problems - their solution yields some negative probabili-
ties. Gail, Hantler, and Taylor [7, 8] follow a similar approach and
also report stability problems. Feng, Kowada, and Adachi [6] gen-
eralize priority service to more general switching thresholds. Kao
and Wilson look at the non-preemptive case by using the power
series method, with refinements to help ensure convergence [13].
They then compare the performance of this algorithm to three ma-
trix analytic algorithms. The power series method takes much less
time than its matrix analytical counterparts, but does at times show
numerical problems - significant deviations from the correct value
established independently.

Finally there are papers that consider the special case where the
multiple priority classes all having the same mean. These include
Davis [5], and Buzen and Bondi [2].

2.1.1 Exponential service times

Techniques for analyzing the M/M/fc dual priority system can be
organized into four types on which we elaborate below: (i) approx-
imations via aggregation or truncation; (ii) matrix analytic meth-
ods; (iii) generating function methods; (iv) special cases where the
priority classes have the same mean. Unless otherwise mentioned,
preemptive-resume priorities should be assumed.

In a follow-up to their 1983 paper, Bondi and Buzen extend their
technique to general service distributions and multiple classes [1],
by starting with the M/GI/fc/FCFS queue and multiplying its delay
by a scaling factor based on a single server. As no exact results
exist, they compare their approximations against simulation. In
order to understand how our results compare with those in [1], we
will plot our results against their approximations directly in Section
5, and show that our techniques yield much more accurate results.

The only work dealing with non-exponential service times in
a more precise setting is a pair of papers, not yet published, by
Sleptchenko [27] and Sleptchenko et. al. [28]. Both papers con-



sider a two-priority, multiserver system where within each prior-
ity there may be a number of different classes, each with its own
different exponential job size distribution. This is equivalent to as-
suming a hyperexponentialjob size distribution for each of the two
priority classes. The problem is solved by writing the system bal-
ance equations and solving them iteratively. Unfortunately, their
technique does not generalize to distributions other than the hyper-
exponential [27, 28].

2.2 How many servers are best in an M/GI/k?

The question of how many servers are best has never been ad-
dressed in the context of a dual priority system. For single-priority
systems, however, the question of how many servers are best has a
long history in the literature. In describing the results below, and
throughout the paper, we will assume that the performance metric
of interest is mean response time rather than mean queueing time,
since it's obvious that to minimize mean queueing time one wants
an infinite number of servers [3,4]. The results below all deal with
only a single priority class.

As early as 1958 Morse observed that for an M/M/k system the
optimal number of servers is one [21]. This was formalized by
Stidham [29], who showed that under a general arrival process,
and service times that are exponential, Erlang, or deterministic, a
single server minimizes the expected number in system.

Mandelbaum and Reiman [16] prove that one server is best in
the extreme cases when traffic is very light, regardless of job size
variability. So, not only is variability important, but so too is traf-
fic intensity. This importance of traffic intensity is also noted by
Scheller-Wolf [26], where he shows that under so-called power-law
service times, moments of response time are functions of both the
number of servers and the traffic intensity. Very recently, Molinero-
Fernandez et. al. [20] consider the question of how many servers
are best in an M/GI/fc single priority system with a heavy-tailed
service distribution. They approximate the service times with a
bimodal distribution, obtaining an often good closed form approx-
imation for the M/Gl/ky under heavy-tailed G.

Since even for a single priority class, the question of the optimal
number of servers does not appear to have been fully resolved, in
this paper we will first characterize the optimal number of servers
for the case of a single priority class (Section 3) and then determine
the optimal number of servers for the case of two priority classes
(remainder of paper), in both cases under general PH job size dis-
tributions.

3 Single priority class: How many servers
are best?

In this section, we consider the simplified problem of just one pri-
ority class, determining the number of servers that minimize the
mean response time. Although no exact analysis exists for the
M/GI/fc/FCFS queue, the M/PH/fc/FCFS queue is easily analyz-
able via matrix analytic methods [15], as its Markov chain has a
state space infinite in only one dimension. Figure 2 shows a picture

Figure 2: Figure illustrating that the M/PH/fc/FCFS queue (single
class - i.e., all jobs are high priority) is easy to analyze, (a) shows a
2-phase PH distribution with Coxian representation, (b) shows the
Markov chain that is used to compute the mean response time for an
M/GI/2 queue, where G has the representation shown in (a). The
state represents the number of jobs in the system and the current
phase of each job in service. The Markov chain is tractable because
it is only infinite in one dimension.

of the Markov chain that we use for analyzing the M/PH/2/FCFS
queue.

Our results on the optimal number of servers are expressed as a
function of the variability of the job size distribution, and the server
load. While other factors, e.g., the exact form of the distribution
might affect our results, we posit that load and variability will be
the most relevant factors.

Figure 3 (a) shows the optimal number of servers as a function
of the load and the variability of the job size. Observe that under
high job size variability and/or high load, the optimal number of
servers is more than 1; we prefer k slow servers to 1 fast server.
For example, at load p = 0.4 and C2 = E[X2]/E[X]2 - 1 = 20,
we see that 3 servers are best. Observe that computations are only
done for up to 6 servers — the level curves shown will continue into
the upper right portion of the plot if larger systems are considered.

Figure 3(b) shows that for any particular job size variability,
C2 > 1, having a larger number of slower servers may reduce the
mean response time up to a point, after which further increasing the
number of servers increases the mean response time. To understand
why, note that by increasing the number of servers (while main-
taining fixed total capacity), we are allowing short jobs to avoid
queueing behind long jobs — specifically, an arriving short job is
more likely to find a server free. Thus increasing the number of
servers mitigates variability, hence improving performance. If the
number of servers is too great however, servers are more likely to
be idle, under-utilizing the system resources.



b

4

3

2

'-,

\

' \

— C2=1
— C2=4
- - ^=16

C2=64

. . . - - - • II H " " "

4 6
Number of Servers

(a) (b)

Figure 3: The case of a single priority class, (a) The optimal num-
ber of servers as a function of the load, p, and the variability of
the job size distribution, C2 . (b) Mean response time, E[T], as a
function of the number of servers at various job size variabilities
(C2 = 1,4,16,64).

4 The M/GI/k with dual priorities

In this section, we describe our analysis of the mean response time
in M/PH/fc/FCFS queues having two priority classes (high priority
and low priority), where high priority jobs have preemptive-resume
priority over low priority jobs. Since the mean response time of the
high priority jobs can be analyzed as an M/PH/fc/FCFS queue with
a single priority as in the previous section, we concentrate here on
the mean response time of the low priority jobs.

As mentioned in Section 2 the Markov chain for our system
grows infinitely in two dimensions, which makes analysis via stan-
dard techniques intractable. In the case where the high priority job
sizes are exponentially-distributed, the 2D-infinite Markov chain
can be reduced to a ID-infinite chain by applying the Dimension-
ality Reduction technique in [9]. Unfortunately, we will see that
when high priority jobs have general PH job sizes, the technique in
[9] alone does not suffice. We therefore need to augment the Di-
mensionality Reduction technique with the method of Neuts [22]
for the calculation of lengths of various kinds of busy periods in
M/PH/fc queues. The combination of these two techniques enables
us to, for the first time, analyze the M/PH/fc queue with dual prior-
ity classes.

4.1 Exponential job sizes

We first consider the simplest case of two servers and two priority
classes, where both high and low priority jobs have exponentially-
distributed sizes with rate /z# and /JLL respectively. Figure 4 (top)
illustrates a Markov chain of this system, whose states track the
number of high priority and low priority jobs, and hence grows
infinitely in two dimensions. Observe that high priority jobs simply
see an M/M/2 queue, and thus their mean response times can be
computed using the analysis described in Section 3. However, low
priority jobs sometimes have access to an M/M/2, M/M/l, or no
server at all depending on the number of high priority jobs. Thus
their mean response time is more complicated.

Figure 4 (bottom) illustrates the reduction of the 2D-infinite
Markov chain to a ID-infinite Markov chain via the Dimensionality

Figure 4: Markov chain for system with 2 servers and 2 priority
classes where all jobs have exponential sizes. The top chain is in-
finite in two dimensions. Via the Dimensionality Reduction tech-
nique, we derive the bottom chain, which uses busy period transi-
tions, and is therefore only infinite in one dimension.

Reduction technique. The ID-infinite chain tracks the number of
low priority jobs exactly. For the high priority jobs, the ID-infinite
chain only differentiates between zero, one, and two-or-more high
priority jobs. As soon as there are two-or-more high priority jobs,
the system switches into a mode where only high priority jobs are
serviced until the number of high priority jobs drops to one. The
length of time spent in this mode is exactly a single-server M/M/l
busy period where the service rate is 2/zjy. We denote the length of
this busy period by the transition labeled B2AIH . We use a PH dis-
tribution to match the first 3 moments of the distribution of B2liH ?
The limiting probabilities of the bottom Markov chain in Figure 4
can be analyzed using the matrix analytic method. Given the limit-
ing probabilities, it is easy to obtain the mean number of low prior-
ity jobs, which in turn yields their mean response time from Little's
law.

Figure 5 shows the generalization to a 3-server system. We have
added one row to the Markov chain shown in Figure 4, and we now
differentiate between 0, 1, 2, or 3-or-more high priority jobs. This
can be easily extended to the case of k > 3 servers.

Our method is far simpler and more computationally efficient

3 Matching three moments of busy period distributions is often suffi cient to guar-
antee accurate modeling of many queueing systems with respect to mean perfor-
mance [25].



Figure 5: This Markov chain illustrates the case of 2 priority classes
and 3 servers.

than methods shown in the prior published literature for analyz-
ing the mean response time in an M/M/k queue with dual priorities
(exponential job sizes). Furthermore our method allows general PH
job sizes and is highly accurate; see validation Section 5. By con-
trast, the prior literature on the M/M/k priority queue (exponential
job sizes) has sometimes resulted in numerically unstable compu-
tations [7, 8] or complicated partitions of the state space [18, 23].

4.2 Phase type job sizes

At first it appears that the Markov chain shown in Figures 4 and 5
should easily generalize to the case of PH service times. However
for PH high priority jobs, we can no longer view the busy period,
which starts when the number of high priority jobs goes from k — 1
to k and ends when the it drops back to k — 1, as simply an M/M/l
busy period with service rate kjin • For example, in the case where
the number of servers is two (k = 2) and the high priority jobs are
represented by 2-phase PH distribution (as in Figure 2(a)), there
are four different types of busy periods, depending on the phases
of the two jobs starting the busy period and the phase of the job
left at the end of the busy period. These busy periods are either (i)
started with two jobs both in phase 1 and ended with a job in phase
1, (ii) started with two jobs both in phase 1 and ended with a job in
phase 2, (iii) started with one job in phase 1 and another in phase
2 and ended with a job in phase 1, or (iv) started with one job in
phase 1 and another in phase 2 and ended with a job in phase 2.
(Note that a busy period can never start with two jobs both in phase
2.)

To analyze the mean response time of low priority jobs, we aug-
ment the dimensionality reduction technique with Neuts' algorithm
[22] for analyzing busy periods. We first show how a ID infinite
Markov chain can be established via Dimensionality Reduction,
assuming that we know the durations and probabilities of these dif-
ferent types of busy periods, and then show how these busy period
quantities can be established via Neuts' work.

As is the case of exponential job sizes, the ID-infinite Markov
chain for PH job sizes tracks the exact number of low priority jobs
but only differentiates between 0, 1, and 2-or-more high priority
jobs for the case of two servers (k = 2). Figure 6 shows the level
of the Markov chain, where the number of low priority jobs isi. In
state (£L,0H), no high priority jobs are in system; in state (z

Figure 6: One level of the Markov chain for a system with 2 servers
and 2 classes where high priority jobs have PH service times shown
in Figure 2(a).

one high priority job in phase u is in system for u = 1,2; in state
(iL,2+H,u, v), at least two high priority jobs are in system (we are
in a high priority busy period), and the two jobs that started the busy
period were in phases u and v, respectively, for u = 1,2 and v =
1,2. The four types of busy periods are labeled as B\9 B2, £3, and
BA\ the durations of these busy periods are approximated by PH
distributions matched to the first three moments of the distribution.
Finally, P(u,v),w denotes the probability that a busy period started
by two jobs in phases u and v respectively ends with a single job in
phase w for u = 1,2, v = 1,2, and w = 1,2. Note that the ending
phase of the busy period can be determined probabilistically at that
moment when the second high priority job arrives which starts the
busy period. The length distribution is then modeled conditionally
on this ending phase.

The remaining question is how to analyze the probabilities
P(u,v),w an<3 the first three moments of the duration of busy pe-
riods, B\, B2, B$, and B4. Observe that the Markov chain for
high priority jobs (Figure 2(b)) is a QBD process, and the duration
of different types of busy periods corresponds to the first passage
time to state (\H,w) from state (2H,u,v) for different values of % v,
and w. Likewise, probability P(u,v),w corresponds to the probabil-
ity that state (lH,w) is the first state reached in level 1 given that
we start from state (2H,u,t>) for u = 1,2, v = 1,2, and w = 1,2.
Neuts' algorithm establishes just these quantities, we defer the de-
scription to Appendix 8.

5 Validation and Comparison with Prior
Work

The purpose of this section is twofold: (i) we validate our analysis
against simulation, and (ii) we compare the results of our analysis
to known approximation for the M/Gl/k dual-priority queue. In
addressing the above, we also begin our investigation of the factors



Validation Validation Comparison: Mean response time

&1-5

our analysis |
• simulation

°"50 0.2 0.4 0.6 0.8
o

(a) High Priority (b) Low Priority (a) E[XH] = 1,

1.2

1

0.6

0.4

0.2

our analysis
- • - Buzenapprox.
• simulation

y*
• * ' ' ' 'k=8

,.-r i • " p i r "

= 10 (b)

10 «!S "
] = 1,E[XL] 10

Figure 7: Validation of our analysis against simulation: two class
M/PH/fc system where pL = pH and E[XL] = E[XH] = 1.
The high priority jobs have a 2-phase PH job size distribution with
C2 = 9, shown in Figure 2(a), and the low priority jobs have expo-
nential service times.

Figure 8: Comparison of our analysis with simulation and the
Buzen-Bondi approximation for M/Gl/k with dual priority. Only
response times for low priority jobs are shown, (a) shows case
when high priority jobs have a smaller mean job size than low pri-
ority jobs, (b) shows case when high priority jobs have a larger
mean job size than low priority jobs. In these plots p = 0.6.

that affect the mean response time of high and low priority jobs.
In order to validate our algorithm, we compare our calculations

with simulated results under a wide variety of loads and service
distributions. Our simulations were calculated by running over
100,000 events over 30 iterations and averaging the results.

A subset of these validations are shown in Figure 7, for the case
of 2 servers and 8 servers. As shown, our analysis matches sim-
ulation perfectly for both the high priority and low priority jobs.
Because our analysis uses the matrix analytic method, the compu-
tational cost of the algorithm is well understood in terms of the size
of the repeating matrices, which here is k(bk + l)/2 for a k server
system. In practice this corresponds to a computation time of less
than 0.1 seconds to calculate the mean response time of a system
where E[XH] = E[XL] = 1 and pH = PL = 0.25 with k = 4.

It is interesting to compare the results of our analysis with the
Buzen-Bondi approximation [1], which is the only published prior
work to investigate the 2 class system under general job size dis-
tributions. Bondi and Buzen use the following very elegant and
intuitive framework to approximate the performance of a priority
system, where E[W]M/GI/k/Prio is the overall expected waiting
time (response time minus service time) under the M/GI/fc queue
with priority classes.

Frw]M/G/k/Prio _ fi\Txr]M/G/l/Prio
E\W\ \FCFS

)

In our comparison, we use the exact results for E[W] M/°/k/FCFS

(see Section 3); thus, the mean response time for the high priority
jobs will be exact. However, when looking at low priority jobs,
we still see the significant improvement of our algorithm over the
Buzen-Bondi approximation.

Figure 8 show the mean response time for low priority jobs pre-
dicted by our analysis, the Buzen-Bondi approximation, and sim-
ulation. Figure 8 (a) shows the case where high priority jobs have
a smaller mean size than low priority jobs; and Figure 8 (b) shows

the converse. Our analysis does significantly better than the Buzen-
Bondi approximation, particularly when high priority jobs have a
smaller mean size. As we increase the variability of the high prior-
ity job sizes, the error of the Buzen-Bondi approximation increases,
while our analysis matches with simulation for all cases.

The consequence of the mispredictions made by the Buzen-
Bondi approximation may be important. The error in predicting the
response time can lead to a misleading conclusion on the optimal
number of servers (a question we will investigate in detail in Sec-
tion 6). Figure 9 shows the optimal number of servers given by our
analysis as compared with that predicted by the Buzen-Bondi ap-
proximation. The Buzen-Bondi approximation is not only incorrect
at higher loads and/or C2 values, but also qualitatively misleading.
As load increases, so should the optimal number of servers; an ef-
fect not true in the Buzen-Bondi approximation (Figure 9(b)).

In addition to validating our analysis, Figures 7 and 8 also illus-
trate some important factors affecting mean response time of high
and low priority jobs: the system load, the variability of high prior-
ity customers, and the number of servers. Observe for example that
for the job size distributions in Figure 8 (a) 2 servers are preferable,
while in (b) 8 servers are preferable. The effects of these factors are
interrelated and will be investigated in detail in the next section.

6 How many servers are best?

In the introduction to this paper we set out to answer three ques-
tions. We have already answered the first of these: "Are multiple
cheap slow servers ever better than a single expensive fast server?"
in the case of single priority class (Section 3) and in the case of
dual-priority classes (Section 5). The superiority of multiple cheap
servers only becomes apparent when job size variability is high.
Thus having an analytical method which allows for general PH job



Validation Comparison: Opt number of servers

E[XH] = 1, E[XL] = 10

35

30

25

^ 2 0

15

10

5

\

\

\

\

1 best

\ \4X
\ 3best \

2 best ^ V ^

(a) Our analysis (b) Buzen-Bondi

Figure 9: Comparison of our results with that of Buzen-Bondi
with respect to the question of "how many servers are best?" Case
shown assumes the high priority jobs have a smaller mean job size.
The load made up by high priority jobs equals that comprised by
low priority jobs. Column (a) shows the results from our analysis.
Column (b) shows the results from the Buzen-Bondi approxima-
tion.

sizes was required in order for us to address this question under
dual-priority classes. The reason why multiple slow servers are
preferable under high variability job sizes, is that they offer short
jobs a chance to avoid queueing behind long jobs, which in turn
lowers mean response time.

Having established that multiple servers is often desirable, there
are two questions remaining:

• Does the answer to "how many servers are optimal" differ for
the different priority classes? Also, does the overall optimal
number of servers in a dual-priority system differ from the
case where the classes are indistinguishable — that is when
all jobs have been aggregated into a single priority class?

• How does the number of servers effect the overall mean re-
sponse time, as well as that of low and high priority jobs?

We find that the answers to these questions depend on the rela-
tive sizes and relative proportions (loads) of the classes, as well as
the variability of high priority jobs. We briefly summarize some
of our findings. The number of servers preferred by low priority
versus high priority jobs can vary widely. We perform a sensitivity
analysis characterizing exactly where they disagree. Moreover, the
number of servers preferred in the dual priority case when aver-
aged over both classes typically differs substantially from the num-
ber preferred for the single class aggregate case. (This difference
is not observed when the mean job sizes of high and low priority
jobs are the same, but is observed elsewhere.) Furthermore, the ab-
solute effect on mean response time can be dramatic (ranging from
a factor of 2 to 6) as the number of servers is varied. Furthermore,

for any highly variable job size distribution, there exists an "opti-
mal" number of servers, where using fewer or more servers results
in substantially worse performance.

6.1 Experimental setup for results graphs

We split up our evaluation into 3 cases, depending on the relative
sizes of high and low priority jobs:

E[XJJ] — h E[XL] — 1 The mean size of high priority jobs
equals that of low priority jobs.

E[XH] = 1> E[XL] — 10 The mean size of high priority jobs is
smaller than that of low priority jobs.

E[XH] = 19E[XL] = 1/10 The mean size of high priority jobs is
larger than that of low priority jobs.

Throughout our evaluations, we will consider a range of variabil-
ity in the high priority job sizes, typically shown on the y-axis, and
a range of load typically shown on the x-axis. The variability of
the low priority job sizes is held constant (C2 = 1). Observe that
variability in the low priority jobs is less interesting since the low
priority jobs only affect each other under preemptive resume, and
we've already studied the single class M/GI/k/FCFS queue. Lastly
we also vary the proportion of the load made up by high priority
and low priority jobs.

Some technicalities of the setup follow. In all the results shown,
the high priority job sizes follow a 2-phase PH distribution with
Coxian representation (Figure 2(a)), allowing any variability C2 >
1.5. The mean job size for high priority jobs is held fixed at 1.
When varying the proportion of load in each priority class, we vary
the arrival rates of the classes only. In order to compare our results
for the dual priority system to the same system having a single ag-
gregate class, we combine the two-phase PH high priority job size
distribution and the exponential low priority job size distribution
to obtain the overall job size distribution aggregated across both
classes.

6.2 Results

Figures 10, 11, and 12 illustrate our results for the three size cases
above: E[XH] = 1, E[XL] = 1; E[XH] = 1, E[XL) = 10; and
E[XH] = 1,E[XL] = 1/10 respectively. For each figure column
(a) shows the case where the load made up by high and low priority
jobs is equal, and column (b) shows the case where pn < PL- We
also discuss, but omit showing, the case where pn > PL- For each
figure we consider both the case of dual priority classes and the
case of a single aggregate class.

Figure 10: Equal mean sizes

Looking at the topmost plot in Figure 10 column (a), we see that
the high priority jobs do not always prefer one server. In fact in the
case of higher variability and/or load, they may prefer five or more
servers. This is to be expected based on our results in Section 3.



E[XH] = 1, E[XL] = 1

2 Priority Classes

35

30

25

I? 20
15

10

5

High

V
\\\

\
1 best

Priority

\ \ Y
\ \ 4 best \

\ 3 best \ '

2 best Nv >s»

High Priority

0.2 0.4 0.6 0.8
P

Low Priority

0 0.2 0.4 0.6 0.8 1
p

Low Priority

0.2 0.4 0.6 0.8
P

Overall Mean

0.4 0.6 0.8
P

0 0.2

Overall Mean

(a) pH = PL (b) 2pH

1 Aggregate Class

0.6
P

= PL

35

30

25

^ 2 0

15

10

5

\ \ \ \ \ 6 o r m o r e

\ \ \ v\
\ \ \4 \ \
\ \ \ \ \
\ \ \ \V

\ 2 best \ ^ \ ^ ^ ^

1 b e s t ^ ^ _ ^ ^ ^ ^ ^

(a) PH = PL (b) 2pH = PL

Figure 10: How many servers are best (with respect to mean re-
sponse time) when the two priority classes have the same mean job
size? Column (a) shows the case where the load made up by high
priority jobs equals that of low priority jobs. Column (b) shows the
case where the load made up by high priority jobs is half that of
low priority jobs.

Surprisingly however, the number of servers preferred by low
priority jobs (shown in the second plot in column (a)) is much
greater than that preferred by high priority jobs. Although only
up to six servers are considered in these plots, we will see in later
plots (Figure 13(b)) that the difference in the number of servers pre-
ferred by low and high priority jobs can be more than 10 servers.
Low priority jobs prefer more servers because low priority jobs are
preempted by high priority jobs and thus their mean response time
improves with more servers, which allows them to escape from the
dominance of high priority jobs.

The preferred number of servers with respect to the overall mean
response time (averaged over low and high priority jobs) is shown
in the third plot in column (a), where we see that the number of
servers preferred by the overall mean, as expected, is a hybrid of
that preferred by low and high priority jobs. Note though that this
hybrid is more weighted toward the preference of low priority jobs
because adding extra servers only hurts high priority jobs a small
amount; whereas adding extra servers helps low priority jobs enor-
mously. Interestingly, the number of servers preferred with respect
to the overall mean is nearly identical to that shown for a single ag-
gregate class of high and low priority jobs, shown in the 4th (bot-
tommost) plot in column (a). To understand why, observe that all
jobs in this case have the same mean and thus prioritizing in favor
of some of them over others does not affect the mean response time
greatly. Even though the classes have different variabilities, that is
a smaller-order effect.

Moving to column (b) of the same figure, we see that the same
trends are evident when the high priority jobs make up a smaller
fraction of the load. However, the specific numbers are quite dif-
ferent. For example, starting with the topmost plot in column (b),
we see that the number of servers preferred by high priority jobs
is much fewer. An explanation of this is that the high priority jobs
only interfere with each other and they are fewer in number in col-
umn (b) than in column (a); thus they want fewer, faster servers.

Less obvious is the fact that the number of servers preferred by
low priority jobs in column (b) is also fewer than that in column
(a). This follows from the same reasoning; the low priority jobs are
most strongly affected by preemptions from high priority jobs, and
with fewer high priority jobs, there are fewer interruptions and thus
fewer servers are needed to avoid queueing behind high priority
jobs.

Since both the high and low priority jobs in column (b) prefer
fewer servers than in column (a), it makes sense that their overall
mean (shown in the third plot of column (b)) also indicates that
fewer servers are desired. This third plot also matches the 4th plot
in column (b) consisting of a single-class aggregation of high and
low priority jobs, for the same reason explained above - that jobs
have the same mean.

Not shown in Figure 10 is the case where high priority jobs
comprise more of the load. In this case, both classes prefer more
servers and, therefore, the mean of the two classes also prefers
more servers. The reason for this is the converse of the above sit-
uation - there are more high priority jobs, therefore they see more
interference and want more servers. Further, the low priority jobs
are preempted more frequently by high priority jobs and therefore



also want more servers to alleviate the effect. Again the single ag-
gregate class looks very similar to the two priority class overall
mean.

Figure 11: High priority class has smaller mean

Moving to Figure 11, we continue to hold the mean high priority
job size at 1 and increase the low priority job size to 10. We con-
sider this case to be the "smart" case in that the high priority jobs
have a smaller mean size than the low priority jobs. Here, giving
high priority jobs preference schedules the system more efficiently.

Notice that the preferred number of servers for the high priority
jobs is identical to that in Figure 10 because the high priority job
size distribution is unchanged. However, the number of servers
preferred by low priority jobs is now very different: they almost
always prefer only one server. This follows from the fact that there
are very few low priority jobs; so there is unlikely to be more than
one low priority job in the system at a time. Thus, low priority jobs
prefer a single fast server.

The overall preferred number of servers, averaged over the two
priority classes, is again a hybrid of the preferences of the two
classes, but this time is biased towards the preferences of the high
priority jobs because they are in the majority, implying a preference
for fewer servers than the corresponding graph in Figure 10. Recall
that adding servers is a way to help small jobs avoid queuing be-
hind larger jobs. Since we are in the "smart" case, where small jobs
have priority already, we do not need the effect of multiple servers.
Thus, "smart" priority classes can be viewed as a substitute for
adding more servers.

Comparing the overall preferred number of servers for the case
of dual priorities with that preferred under a single aggregate class,
we see that this time there is a significant difference in preferences.
The single aggregate class prefers many more servers. This again is
a consequence of the fact that "smart" prioritization is a substitute
for increasing the number of servers.

Column (b) of Figure 11 illustrates the same graphs for the case
where the high priority jobs comprise less of the total load. The
trends are the same as in column (a); however the preferred number
of servers is significantly smaller in all figures. This follows from
the same argument as that given for column (b) of Figure 10. In
the case (not shown) where high priority jobs make up a greater
proportion of the total load, the number of servers preferred is, as
before, always higher than in column (a).

Figure 12: High priority class has larger mean

In Figure 12 column (a), we once again hold the mean high priority
job size fixed at 1 and now assume the low priority job sizes have a
mean size of 1/10. This case differs from the prior figure because
now we are giving priority to the large job sizes: this is the opposite
of "smart" prioritization. Consequently, many more servers will be
needed in this case.

Once again, looking the topmost plot in column (a), we see that
the preferred number of servers for high priority jobs is unaffected,
since the high priority mean job size distribution has not changed.
The low priority jobs, shown in the second plot of column (a), have

E[XH] = 1, E[XL] = 10

35

30

25

I f 20

15

10

5

(

35

30

25

^ 2 0

15

10

5

C

40

35

30

25

15

10

5

C

2 Priority Classes

High Priority

\ \ Yjbest \

\ \ 3 best \ >

\ 2 best >. X^

1 best ^>***>^-^*^_

35

30

25

NOX20

15

10

5

) 0.2 0.4 0.6 0.8 1
p

Low Priority

1 best

) 0.2 0.4 0.6 0.8
P

Overall Mean

\ \ v\
\ \ 3 best \

\ 2 best N. ^

Ibest ^"*^**^^^_^^

0.2 0.4 0.6 0.8 1
P

35

30

25

^ 2 0

15

10

5

(

35

30

25

^ 2 0

15

10

5

(

High Priority

\ \ 3 best

\ 2 best ^ <
\ >v •

1 best ^ S s * * ^ l ^ ^

D 0.2 0.4 0.6 0.8 1
p

Low Priority

1 best

) 0.2 0.4 0.6 0.8 1
P

Overall Mean

\ X
\ 2best \

1 best ^*S s»»N S i >^^

) 0.2 0.4 0.6 0.8 1
P

(a) PH = PL (b) 2pH

1 Aggregate Class

= pL

35

30

25

^ 2 0

15

10

5

\

\

\

\
1 best \

\ V \ \ rn° re

\ Y\\ :
\3 \W
\ \ \

(b) PH = PL (a) 2pH = pL

Figure 11: How many servers are best (with respect to mean re-
sponse time) when the high priority jobs have a smaller mean job
size? Column (a) shows the case where the load made up by high
priority jobs equals that of low priority jobs. Column (b) shows the
case where the load made up by high priority jobs is half that of
low priority jobs.



cbI20

E[XH] = 1, E[XL] = 1/10

2 Priority Classes

High Priority High Priority

\
\
\
\\
\
\

1 best

D 0.2

\ \ \ 5

\ V»best \

\ 3 best \ \

\ \ ^

2 best \ ^ ^ >w

V ^ v

^ ^ - * - ^ -

4 U

35

30

25

^ 2 0

15

10

5

\

\

\
\

\
\

\
V

1 best

\

\ 3 best

\

2 best \ ^
\ ^

30

25

^ 2 0

15

10

5

Low Priority

\ \ \ \ \
\ \ \\6ofmore

| \ \ \ b e s t

\ V\5\\3\\\

Low Priority

0.2 0.4 0.6 0.8 1
P

Overall Mean

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
P P

(a) pH = PL ' (b) 2pn = PL

1 Aggregate Class

35

30

25

^ 2 0

15

10

5

\ \ \ Uormore

\ \ Ul ""'\ V\\
. \ 3 \ \ \

\ 2best \ \ \ \

(a) pH = PL

0.2 0.4 0.6 0.8

(b) 2PH = pL

Figure 12: How many servers are best (with respect to mean re-
sponse time) when the high priority class has a larger mean job
size? Column (a) shows the case where the load made up by high
priority jobs equals that of low priority jobs. Column (b) shows the
case where the load made up by high priority jobs is half that of
low priority jobs.

vastly different preferences from the prior case considered. Here
the low priority jobs prefer a very large number of servers; whereas
in Figure 11 they almost always preferred one server. Because the
low priority jobs are very small compared to the high priority jobs,
they want more servers in order to avoid being blocked, and forced
to queue behind the large, high priority jobs.

The preferred number of servers for the overall mean response
time in the dual-priority system, shown in the third plot of column
(a), is again a hybrid of the preferences of the low and high priority
jobs, but this time is strongly biased towards the low priority jobs
because there are more of them. Notice therefore, that the number
of servers preferred is much greater in this case. Comparing this
with the single class aggregate, we see that the single class prefers
slightly fewer servers than the dual class overall mean. This is due
to the fact that the prioritization towards large jobs in the dual class
system is not "smart."

Column (b) of Figure 12 illustrates the same graphs for the case
where the high priority jobs comprise less of the total load. The
trends are the same as in Column (a); however the preferred number
of servers is significantly smaller in all figures. This follows from
the same argument as that given for column (b) of Figure 10. In
the case (not shown) where high priority jobs make up a greater
proportion of the total load, more servers are preferable.

Figure 13: Time as a function of the number of servers

In all the prior results figures, we were concerned with determin-
ing the optimal number of servers as a function of system load
and the variability of high priority jobs. Although we sometimes
found k servers to be better than 1 server, we never looked at the
actual mean response time as a function of the number of servers.
In Figure 13 we do so, ranging the number of servers from 1 to
10. The key points made by this figure are that: (i) the mean re-
sponse time of both priority classes is very sensitive to the number
of servers and (ii) increasing the number of servers may reduce
mean response time up to a point; however making the number
of servers too large increases mean response time - thus forming
a "U-shape." This figure also reinforces the prior message that the
greater the variability of the high priority jobs, the greater the num-
ber of servers needed to mitigate this variability.

Structurally, Figure 13 is divided into two columns: column (a)
considers the job size distribution shown in Figure 11 and column
(b) considers the distribution shown in Figure 12. In the previous
figures, we have already discussed at length the differences in the
number of servers preferred by each class. This same information
can be read off of Figure 13 by observing that each of the plots in
the figure have a "U-shape" and the bottom of the "U" indicates the
optimal number of servers.

Figure 13 however makes the following additional points. First,
we see that, under high variability, the difference in the overall
mean response time between the case of 1 server and the optimal
number of servers is easily a factor of 2 in column (a) and, even
more, close to a factor of 6 in column (b). Thus, variability does
play a crucial role, imperfectly explored in prior research. Second,
we see that, whereas in column (a) the optimal number of servers

10



PH = PL = 0.3

2 Priority Classes

High Priority High Priority

(a

Overall Mean

Number of Servers

Overall Mean

•H] = 1, E[XL] = 10 (b) E[XH] = 1,

1 Aggregate Class

_ j_
~ 10

__c£=1

- 3r
C>16

2 4 6 8 10 0
Number of Servers

1.b

1

0.5

\

'ZZ:z

-- 5 = 1 6

<^M

*] = 1, E[XL) = 10 (b) E[XH] = 1,

"0

(a)

Figure 13: Mean response time as a function of the number of
servers, which range from 1 to 10. Column (a) shows the case
where low priority jobs have a larger mean job size than high pri-
ority jobs. Column (b) shows the case where low priority jobs have
a smaller mean job size than high priority jobs. The system load in
these plots is p = 0.6.

is quickly reached, in column (b) the optimal number of servers is
in some cases greater than 10, not even appearing on the plot.

7 Conclusion

We have presented the first accurate analysis of the M/GI/k queue
with dual priorities, which allows for arbitrary phase-type service
time distribution. The accuracy of our results is always within
1%. Our method is conceptually simple: we transform a 2D-
infinite Markov chain into a ID-infinite Markov chain and then use
Neuts' method to compute the various types of busy period dura-
tions needed in the ID-infinite chain. Furthermore, our method is
fast - requiring less than .1 seconds per data point.

The speed of our method, combined with the fact that the method
can handle general service times, allows us to address many ques-
tions in the area of multiserver queues that have not been address-
able in prior work. In particular we are able to study the huge
impact of server design (one fast server versus k slow servers) on
mean response time, as well as the relationship between server de-
sign and job size variability. We find that when job size variability
is high, many cheap slow servers are preferable to one expensive
fast server, and the performance difference may be a factor of 2 -
6 in mean response time.

While our results apply to a single priority class as well, we feel
that the results are most powerful and most interesting for the case
of dual priority classes. Dual priority classes are a fact of life -
some customers or jobs are simply more important, or have paid for
better service agreements. Unfortunately, the design of multiserver
systems in the case of dual priorities is quite complex. As we've
seen, aggregating the dual classes into a single priority class does
not allow us to predict the best system configuration (number of
servers, given fixed total capacity) for minimizing mean response
time. In fact, we've seen that the preferred configuration is depen-
dent on the relative size of jobs in the high priority class versus that
of the the low priority class, in addition to variability and load, and
can vary wildly.

Another complexity in dual priority systems is that the preferred
number of servers turns out to be quite different when the goal is
minimizing mean response time of just the high priority jobs, or
minimizing the mean response time of just the low priority jobs.
As we've seen, depending on the workload, the number of servers
preferred by low priority jobs may be an order of magnitude higher,
or lower, than that preferred by high priority jobs. An interesting
consequence of this fact with respect to designing systems, is that
we can mitigate the penalty to low priority jobs (particularly the
penalty caused by high variability of high priority job sizes), by
choosing a server configuration which is more favorable to low pri-
ority jobs. We have seen that this can often substantially improve
the mean performance of low priority jobs without being detrimen-
tal to high priority jobs.

A natural extension of the work in this paper is towards more
than two priority classes. The simplicity of our analytical method
makes it quite generalizable, and we believe that it can be applied
to more priority classes as well. This is the subject of our current
research.

11



References

[1] A. Bondi and J. Buzen. The response times of priority classes
under preemptive resume in M/G/m queues. In ACM Sigmet-
rics, pages 195-201, August 1984.

[2] J. Buzen and A. Bondi. The response times of priority classes
under preemptive resume in M/M/m queues. Operations Re-
search, 31:456-465,1983.

[3] J. Calabrese. Optimal workload allocation in open queue-
ing networks in multiserver queues. Management Science,
38:1792-1802,1992.

[4] X. Chao and C. Scott. Several results on the design of queue-
ing systems. Operations Research, 48:965-970, 2000.

[5] R. Davis. Waiting-time distribution of a multi-server, priority
queueing system. Operations Research, 14:133-136,1966.

[6] W. Feng, M. Kawada, and K. Adachi. Analysis of a multi-
server queue with two priority classes and (M,N)-threshold
service schedule ii: preemptive priority. Asia-Pacific Journal
of Operations Research, 18:101-124,2001.

[7] H. Gail, S. Hantler, and B. Taylor. Analysis of a non-
preemptive priority multiserver queue. Advances in Applied
Probability, 20^852-879,1988.

[8] H. Gail, S. Hantler, and B. Taylor. On a preemptive marko-
vian queues with multiple servers and two priority classes.
Mathematics of Operations Research, 17:365-391,1992.

[9] M. Harchol-Balter, C. Li, T. Osogami, A. Scheller-Wolf, and
M. Squillante. Task assignment with cycle stealing under cen-
tral queue. In International Conference on Distributed Com-
puting Systems, pages 628-637, 2003.

[10] Johnson and Taaffe. The denseness of phase distributions,
1988-Manuscript.

[11] E. Kao and K. Narayanan. Computing steady-state probabil-
ities of a nonpreemptive priority multiserver queue. Journal
on Computing, 2:211-218,1990.

[12] E. Kao and K. Narayanan. Modeling a multiprocessor system
with preemptive priorities. Management Science, 2:185-97,
1991.

[13] E. Kao and S. Wilson. Analysis of nonpreemptive priority
queues with multiple servers and two priority classes. Euro-
pean Journal of Operational Research, 118:181-193,1999.

[14] A. Kapadia, M. Kazumi, and A. Mitchell. Analysis of a fi-
nite capacity nonpreemptive priority queue. Computers and
Operations Research, 11:337-343,1984.

[15] G. Latouche and V. Ramaswami. Introduction to Matrix Ana-
lytic Methods in Stochastic Modeling. ASA-SIAM, Philadel-
phia, 1999.

[16] A. Mandelbaum and M. Reiman. On pooling in queueing
networks. Management Science, 44:971-981,1998.

[17] D. McWherter, B. Schroeder, N. Ailamaki, and M. Harchol-
Balter. Priority mechanisms for OLTP and transactional web
applications. In International Conference on Data Engineer-
ing, 2004 (to appear).

[18] D. Miller. Steady-state algorithmic analysis of M/M/c two-
priority queues with heterogeneous servers. In R. L. Disney
and T. J. Ott, editors, Applied probability - Computer science.

The Interface, volume II, pages 207-222. Birkhauser, 1992.
[19] I. Mitrani and P. King. Multiprocessor systems with preemp-

tive priorities. Performance Evaluation, 1:118-125,1981.
[20] P. Molinero-Fernandez, K. Psounis, and B. Prabhakar. Sys-

tems with multiple servers under heavy-tailed workloads,
2003 - Manuscript.

[21] P. Morse. Queues, Inventories, and Maintenance. John Wiley
and Sons, 1958.

[22] M. Neuts. Moment formulas for the markov renewal branch-
ing process. Advances in Applied Probabilities, 8:690-711,
1978.

[23] B. Ngo and H. Lee. Analysis of a pre-emptive priority M/M/c
model with two types of customers and restriction. Electron-
ics Letters, 26:1190-1192,1990.

[24] T. Nishida. Approximate analysis for heterogeneous multi-
processor systems with priority jobs. Performance Evalua-
tion, 15:77-88,1992.

[25] T. Osogami and M. Harchol-Balter. A closed-form solution
for mapping general distributions to minimal PH distribu-
tions. In Performance TOOLS, pages 200-217, 2003.

[26] A. Scheller-Wolf. Necessary and sufficient conditions for de-
lay moments in FIFO multiserver queues with an application
comparing s slow servers with one fast one. Operations Re-
search, 51:748-758,2003.

[27] A. Sleptchenko. Multi-class, multi-server queues with non-
preemptive priorities. Technical Report 2003-016, EURAN-
DOM, Eindhoven University of Technology, 2003.

[28] A. Sleptchenko, A. van Harten, and M. van der Heijden.
An exact solution for the state probabilities of the multi-
class, multi-server queue with preemptive priorities, 2003 -
Manuscript.

[29] S. Stidham. On the optimality of single-server queueing sys-
tems. Operations Research, 18:708-732,1970.

8 Moments of busy periods in QBD pro-
cesses

Neuts' algorithm [22] is an efficient algorithm that calculates the
moments of various types of busy periods in very .general pro-
cesses, i.e. M/G/l type semi-Markov processes. Because of its
generality, however, the description of the algorithm in [22] is so-
phisticated, and thus non-trivial to understand or implement. Since
Neuts' algorithm can be applied to the performance analysis of
many computer and communication systems, it is a shame that it
has not been used more frequently in the literature.

The purpose of this section is therefore to make Neuts' algo-
rithm more accessible by re-describing his algorithm restricted to
the first three moments of particular types of busy periods in QBD
processes. We omit all proofs, which are provided in detail in [22],
instead we focus on intuition and interpretation. We include every-
thing needed to apply Neuts' algorithm within our solution frame-
work, so that readers who wish to apply our methodology can do
so.

In our paper, we consider a QBD process with state space E =

12



{(i,j)\i > 0,1 < j < ra}, which has generator matrix Q:

B Ao 0 •••

A2 Ai Ao :

0 A2 Ax '-.
Q =

where B and ̂ a r e r n x m matrices. Figure 14 shows a particular
QBD process with m = 2.

B

M

Ai

A2

( -(A + a) a

(SO

(b)

Figure 14: An example of a QBD process: (a) states and transition
rates, and (b) submatrices of the generator matrix.

We define level i as denoting the set of states of the form (i, j)
for j = 1,..., ra. Our goal can be roughly stated as deriving the
passage time required to get from state (1, j) to level 0 conditioned
on the particular state first reached in level 0. More precisely, we
seek the first three moments of the distribution of the time required
to get from state (l,j) to state (0, k), given that state (0, k) is the
first state reached in level 0. In the rest of this section, we describe
how Neuts' algorithm can be applied to derive these quantities.

8.1 Notation

We define the transition probability matrix, P{x), as

p(x) ao(x) 0 . . . \

a2(x) a\{x) ao(x)

0 oi2(x) OL\(X)
P(x) =

\

where the (s, t) element, P8t(x), is the probability that the sojourn
time at state s is < x and the first transition out of state s is to state
t. Observe that f3(x) and cti{x) are each ra x m submatrices for
i = 0,l ,2.

Next, we define the r-th moment of submatrices on (x) as
a( r ) = fQ°° xrdai(x) for i = 0,1,2 and r = 1,2,3, where an
integral of a matrix M is a matrix of the integrals of the elements
inM.

Example

Consider the QBD process shown in Figure 14. Let 71 = \+fii +a
and 72 = A -f- fi2 + ft. Then, ai(xys and their moments af' for

r = 1,2,3 look as follows:

/ i_ e -7 i* o \
Od(x) = [ Q 1_e-l2X)

t \ ( l - e " 7 l X 0 \

a2(x) =
_ e - 7 i * 0

0 1 - e-72X

and

a

(r) _

Finally, let G(x) be an m x m matrix whose (,;, k) element,
) , is the probability that the time to visit level 0 is at most x

and the first state visited in level 0 is (0, &) given that we started
at (1, j). Also, let G$ be the r-th moment of Gjk(x); namely,
G^ = /0°° xrdG{x) for r = 1,2,3.

Matrix G = limx_HX) G(x) is a fundamental matrix used in the
matrix analytic method, and many algorithms to calculate G have
been proposed [15]. The most straightforward (but slow) algorithm
is to iterate

(1)

until it converges. Notice that Gjk{x) is not a proper distribution
function and Gjk = limx_).oo G{x), which is the probability that
the first state in level 0 is state (0, k) given that we start at state
(1, j), can be less than 1. Therefore, Gj1^ is not a proper moment
rather a conditional moment: "the r-th moment of the distribution
of the first passage time to level 0 given that the first state in level
0 is state (0, k) and given that we start at state (1, j)" multiplied by
"the probability that the first state reached in level 0 is state (0, k)
given that we start at state (l,j)."

8.2 Moments of busy periods

The quantities that we need in our methodology are (a) the proba-
bility that the first state reached in level 0 is state (0, k) given that
we start at state (l,j) and (b) the r-th moment of the distribution
of the first passage time to level 0 given that the first state in level
0 is state (0, k) and given that we start at state (1, j). Quantity (a)

is given by Gjk, and quantity (b) is given by -g^-. Therefore, our

goal is to derive matrices, G and G^ for r = 1,2,3.
Matrix G is obtained by an iterative substitution of (1). Once G

is obtained, matrix G^ is obtained by iterating

(2)

13



Similarly, matrix G^ is obtained by iterating 8.3 Generalization allowed

+a o (G ( 2 )G-

and matrix G^ is obtained by iterating

r»(3) __ ^(3)

•GGW) (3)

+3a<1}(G<2>G

(4)

We now give intuition behind expressions (2), (3), and (4). The
right hand side of (2) can be divided into three parts: [0] a^ , [1]
a[1]G + axG^l\ and [2] a^GG + o o G ^ G + aoGG*1). For
h = 0,1,2, the (j, k) element of part [h] gives "the first moment
of the distribution of the time to get from state (1, j ) to state (0, k)
given that the first transition out of state (1, j) is to level h and the
first state reached in level 0 is (0, fc)" multiplied by "the probability
that the first transition out of state (1,.;) is to level h and the first
state reached in level 0 is (0, fc)." Part [1] consists of two terms.
The first term, a[ ^G, is the contribution of the time to the first
transition, and the second term, a\G^\ is the contribution of the
time it takes to reach (0, k) after the first transition. Similarly, part
[2] consists of three terms. The first term, QIQGG, is the contri-
bution of the time to the first transition, the second term, a o G ^ G ,
is the contribution of the time it takes to come back from level 2 to
level 1 after the first transition, and the third term, a o G G ^ , is the
contribution of the time it takes to go from level 2 to level 1.

The right hand sides of (3) and (4) can similarly be divided into
three parts: part [0] consists of terms containing oti or oi? *> P ^
[1] consists of terms containing a.\ or cq , part [2] consists of
terms containing a0 or CXQ . The three parts of (3) and (4) can be
interpreted exactly the same way as the three parts of (2) except that
"the first moment" in (2) must be replaced by "the second moment"
and "the third moment" in (3) and (4), respectively. The three terms
in part [1] of (3) can be interpreted as follows. Let TQ be the time
to the first transition and let TG be the time it takes from level 1 to
level 0. Then, the second moment of the distribution of these two
times is

E[(Ta + TG)2\ = E[(Ta)
2] + 2E[Ta}E[TG] + E[(TG)2},

since Ta and TQ are independent. Roughly speaking, a\'G corre-
sponds to E[(Ta)% 2a(

1
1)G(1) corresponds to 2E[Ta]E[TG]9 and

aiG^ corresponds to E[(TG)2}. The other terms can be inter-
preted in the same way.

Finally, we mention some generalizations that Neuts' algorithm al-
lows. (1) We restricted ourselves to the first three moments, but
this can be generalized to any higher moments. (2) We restricted
ourselves to the first passage time from level 1 to level 0, but this
can be generalized to level i from level 0. (3) We restricted to QBD
processes, but this can be generalized to M/G/1 type semi-Markov
processes. (4) We restricted ourselves to the moments of the distri-
bution of the duration of busy periods, but this can be generalized
to the moments of the joint distribution of the duration of a busy
period and the number of transitions during the busy period.

14


