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1. Introduction.
In this paper we prove that if un, u 6 W1*1^; CRP) are such that un -» u in Ll(£l; Flp), if

f(x,u,.) is quasiconvex, if f satisfies technical continuity conditions (see Section 2) and f grows at

most linearly in the last argument, with possibly degenerate bounds, then

J f(x,u(x),Vu(x)) dx < Urn infn ̂  J f(x,un(x),Vun(x)) dx.

This lower semicontinuity result was obtained by Dal Maso [DM] in the scalar case p = 1; in the

vector-valued case and for f = f(A) convex, by Ball and Murat [BM] and Reshetnyak [R]; when p

> 1 and f = f(x,Vu) quasiconvex the problem was addressed by Fonseca [Fo] and, independently,

by Kinderlehrer [K]. For the case where f = f(x,u,A) and f(x,u,.) is convex, Aviles and Giga

[AG] obtained lower semicontinuity results.

The main new tool involved in this paper is a careful truncation technique which, together

with a blow up argument, enables us to reduce to the case where the sequence un converges

uniformly. F. Murat has informed us that related truncation arguments are used in the context of

renormalized solutions to partial differential equations (see e. g. [BDGM]).

The study of this problem was motivated by the analysis of variational problems for phase

transitions and the related question of understanding the relaxation of functionals of the type

u -> J f(x,u(x),Vu(x)) dx (1.1)
a

in spaces admitting discontinuous functions u. As an example of that relation consider the family of

singular perturbations

Ee(u) := J W(u(x)) dx + e2 J h2(Vu(x)) dx
ft ft

of the nonconvex energy

E(u) := J W(u(x)) dx,
ft

where W has two potential wells at a and b. Depending on the constraints or boundary conditions

imposed on the admissible functions, often E(.) admits infinitely many minimizers which are

piece wise constant functions of bounded variation, u € {a, b) a. e. in Q. In search for a

reasonable selection criteron one studies the properties of the limits of sequences of minimizers for

the perturbed problems (see [FT1], [Gl], [G2], [KS], [Mo], [OS]). The natural notion of

convergence for the functional in this context is F-convergence as introduced by De Giorgi [DG]

(see [At], [DM], [DD] for more recent expositions).



In the isotropic scalar case, i. e. if u : Q —»[R and h = 11.11, using an idea of Modica and

Mortola, Modica [Mo] showed that the FQJ) limit of the rescaled energies

JE(u):=-Ee(u)
e

is given by
J0(u) = ^ ( u )

where

^ ( u ) := inf{Un) { lim i n f n ^ J f(x,un(x),Vun(x))dx I un € W " ((O ; IR), un -> u in

is the relaxation in BV(fl; IR) of (1.1) and

h(A). (1.2)

Precisely, if u € {a, b) a. e. and if {u = a} has finite perimeter in Q. then

inf{U£j {liminf J £ (u e ) lu ee W1-1 ((Q ; IR), u £-> u i n L 1 } = 5r(u).

This result was generalized by [OS] to "anisotropic" functions h with linear growth for which h2

is convex. In this case the integral representation for the relaxation ZFQ was obtained by Dal Maso

[DM] who proved that

(u) = J f(x,u(x),Vu(x)) dx + J D(x,u-(x),u+(x),v(x)) dHN.i(x) +

J r(x,u(x),dC(u)(x)) dx (1.3)

where HN_I denotes the N-l-dimensional Hausdorff measure and the distributional derivative Du
of the function u e BV(£2;[R) admits the decomposition into mutually singular Radon measures

Du = Vu LN[Q + (u+- u-)vHN_i[L(u) + C(u).

Here L N is the N-dimensional Lebesgue measure, Vu denotes the absolutely continuous part of

Du, i. e. the Radon-Nikodym derivative of Du with respect to LN, Z(U) is the jump set of Du with

normal v defined for HN-I a. e. x € Q and C(u) is the Cantor part of the derivative (for details we

refer the reader to Evans and Gariepy [EG], Federer [Fe], Ziemer [Zi]). In (1.3) f° represents the

recession function (see Section 2) and D(x,a,b,v) is given by
b

D(x,a,b,v) = J r(x,s,v) ds.



In the isotropic vector valued case, i. e. if u : Cl -> DRP and h = 11.11, Baldo [B] and Fonseca and

Tartar [FT1] obtained once again the same representation for the T-limit. All the above results

confirm Gurtiris [Gl], [G2] conjecture that the "preferred" solution has minimal surface energy.

In the anisotropic, vector-valued case and with u subject to the constraint curl u = 0, recent

work by Kohn and Miiller [KM] seems to indicate that the Modica and Mortola inequality

JE(u)> J f(x,u(x),Vu(x)) dx

with f given by (1.2) is no longer optimal. However, it is clear that

f(x,u(x),Vu(x)) dx

still provides a lower bound for the rescaled energies J£(.). In particular, the P-limit must be
bigger than or equal to ^(u). The issue thus arises, to find an integral representation for ^(u) in

the vector-valued case.

Fonseca and Rybka [FR] proved that, when f(x, u, .) is convex and if u takes only the
values a and b across a plane with normal v then

f(x,u(x),0) dx + J K(x,a,b,v) dHN_!(x),= J
where

K(x,a,b,v) := inf{ f f~(x£(y),V£(y)) dy I $ e S4}

and

S& = {\ € W u(Qv;IRp)l £(y) = b if y.v = 1/2, £(y) = a if y.v = -1/2, and £ is periodic in the

remaining VI,...,VN-I directions with period 1},

where {VI,...,VN-I,V = VN) forms an orthonormal basis of [RN and Qv is the cube {y e ERN I ly.vjl

1/2, i = 1,-..,N}. The characterization of the surface energy density K was inspired by the work of

Fonseca and Tartar [FT2].

Independently, Ambrosio and Pallara [AP] showed that 5^(0 admits an integral

representation with the same structure as in (1.3), and this result together with the work of Fonseca
and Rybka [FR] provides a complete characterization of ̂ (u), namely

f(x,u(x),Vu(x)) dx + jK(x,u-(x),u+(x),v(x)) dHN_i(x) +
L(u)

+ J r(x,u(x),dC(u)(x)) dx. (1.4)

p

= J



To identify the first and the third term on the right hand side of (1.4) [AP] make use of the lower

semicontinuity results of Aviles and Giga [AG] whose proofs rely on sophisticated tools from

geometric measure theory. Also, f has to satisfy linear growth condition from below, i. e.

cllAII - C < f(x,u,A) < C(l + HAH) (1.5)

for some c, C > 0, preventing a situation as in (1.2). In addition, we remark that the convexity

hypothesis on f(x,u,.) may be too restrictive. Indeed, as shown by Acerbi and Fusco [AF],

Dacorogna [D] and Morrey [Mr] the W1*1 - weak lower semicontinuous envelope of the functional

(1.1) is the integral of the quasiconvexification of the energy density f(x,u,.), and so we expect

quasiconvexity as a natural constitutive assumption rather than convexity. This concern is genuine

as there are examples of quasiconvex functions with linear growth that are not convex (see Sverak

[S] and Zhang [Z]).

In this work we consider quasiconvex integrands and we relax (1.5) to include degenerate
lower bounds. Under these conditions we provide an analytical proof of the lower semicontinuity
of (1.1) in L1 thus obtaining the first term in the relaxation ^(u) . Our method seems to be

appropriate to proving the lower semicontinuity of the third term in (1.4) corresponding to the
Cantor part of the measure Du and one might thus conjecture that the representation of ^(u) given

by (1.4) is still valid for quasiconvex integrands with possibly degenerate lower bounds.

2. Lower semicontinuity in L1 for quasiconvex integrands.
Let p, N > 1 and let MpxN denote the vector space of all pxN real matrices.

Definition 2.1([Mr]).
A function f: MpxN —> [R is said to be quasiconvex if

for all A e MpxN, for every domain D c IRN and for all (p e W^CD; W).

Remark 2.2. If lf(A)l < C(l + NAN) one shows easily by approximation that the inequality
holds for all <p e WO

U(D; DRP).

Let Q c (RN be an open, bounded domain and let

f: fix[RpxMpxN -> [0, +00).



We consider the following hypotheses on f:

(HI) f is continuous ;

(H2) f(x,u,.) is quasiconvex ;
(H3) there exists a nonnegative, bounded, continuous function g : QxCRp —» [0, +°°), c, C > 0

such that

cg(x, u)IIAII - C < f(x, u, A) < Cg(x, u) (1 + IIAII)
for all (x, u, A) e QxIRPxMP**;

(H4) for all (xo, uo) € QxlRp and for all e > 0 there exists 8 > 0 such that Ix - XQI + lu - uol < 6

implies that

f(x0, u, A) - f(xo, uo, A) > -e (1 + IIAII)

and
lf(xo, u, A) - f(x, u, A)l < e (1 + IIAII).

Theorem 2.3.
If the assumptions (HI) -(H4) hold and if um u e W^^Q; IRP) are such that un —> u in

Lx(ft; [Rp) then

J f(x,u(x),Vu(x)) dx < lim inf J f(x,un(x),Vun(x)) dx. (2.1)

Remarks 2.4. (i) If (H2) is replaced by convexity and if the growth condition (H3)

holds, then the hypothesis (H4)i presents no restriction. This fact will be examined in Section 4.

(ii) Lower semicontinuity for functions of the type (1.2) follows from Theorem 2.3. Indeed, if

f(x,u,A) = 2VW(5) h(A),

where h is a nonnegative quasiconvex function and

cllAII-C<h(A)<C(l + IIAII),

then we set

WM (U) := min{M, W(u)} and fM(u, A) := 2 VWM(U) h(A).

It is clear that fM satisfies (H1)-(H4) and so, if un, u € W1-1^; IRP) are such that un -^ u in V(Q;

then

J fM(u(x),Vu(x)) dx < Um inf J fM(un(x),Vun(x)) dx

< lim inf J f(un(x),Vun(x)) dx.

Letting M —» +<» and using the Monotone Convergence Theorem we conclude (2.1).



(iii) As we showed in (ii) the boundedness of g presents no restriction for the examples that we

have in mind. This assumption becomes crucial for proving in Proposition 2.6 that the un may be

considered to be smooth functions, which in turn allows one to apply in (2.14)2 the change of

variables formula (2.3) for Lipschitz functions.

It is possible to remove in (H3) the boundedness constraint imposed on g by using a

suitable generalization of the change of variables formula (2.3) for W1*1 functions. For for the sake

of clarity, however, we focus attention on the case where g is bounded.

The main idea of the proof is to use a blow-up argument to localize (2.1) (see (2.5) and

step 2 in the proof of Theorem 2.3) and a careful truncation technique for vector-valued functions

which allows one to replace L1 convergence by uniform convergence (see Lemmas 2.8 and step 3

in the proof of Theorem 2.3). Firstly we recall some auxiliary results.

Proposition 2.5.
If f: MpxN —> [R is quasiconvex and if lf(A)l < C(l + HAH) for some constant C > 0 and for

all A € MpxN then there exists a constant C = C(C, N) such that

lf(A)-f(B)l<CIIA-BH

for all A, B € MpxN.

Proof, We refer the reader to Dacorogna [D, Chapter 4, Lemma 2.2] or Evans [E]

Proposition 2.6, (i) If Theorem 2.3 holds true for Q being a ball it holds true for all

open, bounded sets Q.

(ii) Let Q be a ball. If (HI) and (H3) hold and if if un, u € W^OD; IRP) are such that un -> u in

; IRP) then there exist un € CQ([RN; Ft1") such that llun - u\\L\a) -> 0 and

lim infn J f(x,un(x),Vun(x)) dx = lim infn ̂ +oo J f(x,un(x),Vun(x)) dx.

Proof. The proof follows essentially the argument by Acerbi and Fusco [AF] and for

completeness it is included in Section 3.

Proposition 2J.
Let f: MpxN -> Ft be a function satisfying (HI), (H2) and

0<f(A)<C(l



for some C > 0. If Ao e MP*N and if un e W U (G ; IRP) are such that un -» 0 in D(Q; fftp) and

{HVunllLi} is bounded then

meas(Q) f(Ao) < lim inf J f(A0+Vun(x)) dx.
a

Proof. See Section 3.

We will also use the following results. If u e W1*1^; IRP) then for a. e. xo e Q.

1 i \ J lu<x>" u < x °) ' Vu<xo)(x - xO)lN/(N1)dx }<*-W = 0, (2.2)
e ei\ J
e e B(xo,e)

and if w e W1>ao([RN; IR) and g e LJ([RN; IR) then the change of variables formula (or coarea

formula) holds, namely +oo

J g(x) IVw(x)l dx = f ( f g(x) dHN.!(x) ) dt. (2.3)
IRN J w-i(t)

-OO

For details see Calderon and Zygmund [CZ], Evans and Gariepy [EG] and Ziemer [ZJ. An easy

consequence of (2.3) is the following estimate on level sets of W1*00 functions.

Lemma 2.8.

Let v € Wlc£([RN; Ftp), let 0 < a < p < L and let Co > 0 be such that

J IIVv(x)ll dx < Co.

{lvl<L}nB(0,l)

Then
ess inft€(a> p) t HN.i({x € B(0,1) I lv(x)l = t}) < ^

Proof. Let B := B(0,1) and consider a cut-off function <p e Co(lRN; DR) such that (p = 1 in

B(0,1) and its support is contained in B(0,2). Applying the co-area formula (2.3) to
w(x) := <p(x)lv(x)l and g(x) := %[aL]Ov(x)l) XB(x)

we have

f H N . i ( {x € B I lv(x)l = t}) dt = J II Dlv(x)l II dx

< J IIVv(x)ll dx < Co
{lvl<L)nB((U)



and so, if
ess infte(a> P) t HN_!({x e B I lvn(x)l = t}) = a

then
P P

C o > J H N . ! ( { X € B I l v n ( x ) l = t } ) d t > J j d t

a
Thus

essinf t€(a,P) tHN_i({xe B I lvn(x)l = t}) <
lnflya)

Proof of Theorem 23. In the sequel and using Proposition 2.6 we assume Q is a ball

and that un e CQ ([RN; [RP). In addition, suppose without loss of generality that

lim inf j f(x,un(x),Vun(x)) dx = lim | f(x,un(x),Vun(x)) dx < +<».
ft ft

Step 1 .(localization) We first reduce the problem to verifying the pointwise inequality (2.5) below.

As f is nonnegative there exists a subsequence such that

fC>unC)>Vun(.)) —» |n weakly * in the sense of measures,

where \i is a nonnegative finite measure. Using Radon-Nikodym Theorem, we can write |i as a

sum of two mutually singular nonnegative measures

where LN denotes the Lebesgue measure in [RN and for a. e. xo e Q

We claim that

^a(xo) ^ f(xo, u(xo), Vu(x0)) for a. e. x0 e Q. (2.5)

Then, considering an increasing sequence of smooth cut-off functions q>k, with 0 < <pk < 1 and

c|>k(x) = 1 in Q, we obtain



J f(x,un(x),Vun(x)) dx > lim infn ̂ +oo J <pk(x) f(x,un(x),Vun(x)) dx

= J <Pk(x) d^(x) > J (pk(x)^a(x) dx

> J<pk(x)f(x,u(x),Vu(x))dx.

Letting k -» +«>, the result follows now from the Monotone Convergence Theorem. The rest of

this section is dedicated to proving claim (2.5).

Step 2.(blow-up) We use a blow-up argument in connection with (2.2) to derive a lower bound for

H,a(xo). Let xo be a Lebesgue point for u, Vu and such that (2.2) and (2.4) hold and consider the

affine functions
uo(x) := u(xo) + Vu(xo) x and wo(x) := Vu(xo) x.

We abbreviate B := B(0, 1), and we consider a subdomain B ' c c B . We claim that there exist
sequences rn -> 0+ and wn € W 1 ' 0 0 ^; IRP) such that wn -» w0 in L*(B; W) and

lim f(xo+rnx,u(xo)+rnwn(x),Vwn(x)) dx.j
B

(2.6)
Let <p € Co(B) be a cut-off function such that 0 < <p < 1 and <p(x) = 1 if x € B'. By (2.4) we have

= lim
eNmeas(B)

> lim sup, »e^° eNmeas(B) J e
B(xO,e)

[ 9 (
J

dji(x)

f(x,un(x),Vun(x)) dx

B(xo,e)

= limsup£_>olim.n_Koo ŝ B̂  J <p(x)f(xo+ex,un(xo+ex),Vun(xo+ex)) dx

lim

where

supn _+^ m e a s / B ) J f(xo+ex,u(xo)+ewn>e(x),Vwnf(x)) dx
B *

(2.7)

un(xo+ex) - U(XQ)

10



n

= - [un(x0+£x) - uo(ex)] + wo(x).
e

By (2.2) and Holder's inequality

limn _ ^ llw^e - wol^1^) = l in^^ ~ J lu(xo+ex) - uo(ex)l dx

— J lu(x) - u(x0) - Vu(xo)(x - xo)ldx
E + B(xo,e)

=0.

Now (2.6) is obtained by a standard diagonalization argument. Indeed choose a sequence rk -» 0

and choose nk such that

and

m c a s ( B ) If(xo+rkx,u(xo)+rkwnk?rk(x),VwnkJk(x)) dx <

1/k + Urn supn _ ^ e m e a s ( B ) J f(xo+rkx,u(xo)+rkwnJk(x),VwnJk(x)) dx.

Letting
wk : = wn k J k

(2.6) follows from (2.7) (one may choose a further subsequence to ensure that the limit on the

right hand side of (2.6) exists).

Step 3.(truncation) We show that the sequence wn constructed in Step 2 can be replaced by a

uniformly convergent sequence. More precisely, we claim that if g(xo, u(xo)) > 0 then there exists

a sequence wn e w/^Ft1*; Ftp) such that llwnllU3' < Const., wn -> w0 in L°°(B; IRP) and

lim n m e a s ^ B ) J f(xo+rnx,u(xo)+rnwn(x),Vwn(x)) dx. (2.8)im n meaŝ B) J

Let 0 < s < t < 1 and let (pSjt be a cut-off function such that 0 < (ps,t ^ 1, cpSft(x) = 1 if x < s, (psft(

= 0 if t > t, llcf).' t IL < C(t - s)-1. Set

<t(x) : = (Ps,t(lwn(x)-w0(x)l)

and

w^t(x) := wo(x) + q>s,t(lwn(x) - wo(x)l) (wn(x) - wo(x)).

Clearly

n



llw*t-w0IL<t. (2.9)

Define

hn(x, s, A) := f(xo+rnx,u(xo)+rns, A)

and let L = HWOIIL00 )̂ + 1. By (H3) and as g(xo, U(XQ)) > 0, g continuous, there exists no such that

for all n > no, Isl < L

C (HAH + 1) > hn(x, s, A) > cllAII - C (2.10)

for some c, C > 0. Also

f hn(xfwJt(x),VwJt(x)) dx = J hn(x,wn(x),Vwn(x)) dx +
J ' ' Bfn{!wn(x)-wo(x)l<s}

B

+ f hn(x,w;>t(x),VwJt(x)) dx +

B'n{s<lwn(x)-w0(x)l<t}

+ } hn(x,w0(x),Vw0(x)) dx, (2.11)
B#n{lwn(x)-wo(x)l>t)

and by (2.10) we have

-C < hn(x, wo(x), Vwo(x)) < C

which implies that

J hn(x,w0(x),Vw0(x)) dx <, C meas{x e B I lwn(x) - wo(x)l > t}. (2.12)
B'n{lwn(x)-wo(x)l>tJ

On the other hand, if s < lwn(x) - wo(x)l < t then

VwJt(x) = Vu(xo) + (ps,t(lwn(x) - wo(x)l) (Vwn(x) - Vu(x0)) +

+ (wn(x) - wo(x))®(p's,t(lwn(x) - wo(x)l)Vlwn(x) - wo(x)l

thus, by (2.10), we have

J hn(x,wJt(x),VwJt(x)) dx <
B'n{s<lwn(x)-wo(x)l<t}

< C J (1 + llVwn(x) - Vu(xo)M) dx
{s<lwn(x)-w0(x)l<t}

12



+ C^-fi J lwn(x) - wo(x)l I Vlwn(x) - wo(x)l I dx. (2.13)
B'n {s<lwn(x)-wo(x)l<t J

We remark that for almost all t we have

^ s ^ t J ^ + l lVwn0O - Vu(xo)H) dx = 0 (2.14)!
{s<lwn(x)-wo(x)l<t}

and by the change of variables formula (2.3)

rrt J l w n ( x ) - WO(X)I I V l w n ( x ) - WO(X)I I dx <
B'n{s<lwn(x)-wo(x)l<t)

{xe B'llwn(x)-w0(x)l = t}. (2.14)2

Due to (2.10),

J IVIwn(x) - wo(x)l I dx < J (IIVwn(x)ll + C) dx
B'n {lwn(x)-w0(x)l<l} B'n {lwn(x)-w0(x)l<l}

< C f [hn(x,wn(x),Vwn(x)) + 1] dx < Const.
B 1

since the latter sequence is convergent Hence, by Lemma 2.8 there exists tn € [llwn - woly , llwn

^ft that (2.14) holds (with t = t j and

tn HN.!{x € B11 lwn(x) - wo(x)l = tn)
lnllwn -

According to (2.14) choose 0 < sn < tn such that

lVwn(x) - VU(XQ)I) dx =

j lwn(x) - wo(x)l IIVlwn(x) - wo(x)l II dx <
B'n{sn<lwn(x)-wo(x)l<tn}

< tn HN.i{x e Q\ lwn(x) - wo(x)l = tn}

and set

wn(x): = w^ ̂ (x).

By (2.9)
Hwn - WolL ̂  tn -> 0

and by (2.6), (2.11)-(2.14) we conclude that

13



s f B \ J f(xo+rnx,u(xo)+rnwn(x),Vwn(x)) dxn meas(B) J

lim infn m ^ J hn(x,wn(x),Vwn(x)) dx
m e a s W B'n{lwn(x)-wo(x)l<s}

1 f ~ ~
lim infn m e a s ( B ) { I hn(x, wn(x), Vwn(x)) dx

1 f

s ( B ) { I

- O(l/n) - _, lt. - C meas{x € B I lwn(x) - wo(x)l > tn) }
lnllwn -

1 f *~ ~~
= lim infn m e a s ( B ) J h n (x , w n ( x ) , V w n ( x ) ) dx,

B1

since tn ^ llwn - wol^i and thus

meas{x e B I lwn(x) - wo(x)l > tn} < ~ llwn - wollLl < llwn - wolft2 -> 0.

Finally the bound on IIVwnll̂ OB1) follows from (2.10).

Step 4 XProof of claim (25)). We want to show that

M,a(xo) > f(xo, u(xo), Vu(xo)) for a. e. xo € Q.

Let xo be a Lebesgue point for u, Vu and such that (2.2) and (2.4) hold. If g(xo, u(xo)) = 0 then

(2.5) is satisfied trivially as f is a nonnegative function. If g(xo, u(xo)) > 0 consider a subdomain

B! c c B and let e > 0. By (2.8) and (H4) we have

lim „ meag^B^ I f(xo+rnx,u(xo)+rnwn(x),Vwn(x)) dx
i r

> lim n m e a g ( B ) { J f(xo,u(xo),Vwn(x)) dx - e J (1 + IIVwn(x)ll) dx } .

By Proposition 2.7 and taking into account that {Vwn} is a sequence bounded in L1 we deduce

that

Ha(xo) ̂  m c a s ( B ) J f(xo, u(xo),Vu(xo)) dx - eC.

Letting e —> 0, we conclude (2.5) given the arbitrariness of B\
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3. Proofs of auxiliary results.
In this section we prove Propositions 2.6 and 2.7. We first recall

Proposition 2.6. (i) If Theorem 2.3 holds true for Q, being a ball it holds true for all

open, bounded sets £2.
(ii) Let Q be a ball. If (HI) and (H3) hold and if if un, u € WU(Q; [RP) are such that un -» u in

then there exists un e C£([RN; IR*) such that llun - UIIL^QJ -> 0 and

11111 «rfn _H~ I f(x,un(x),Vun(x)) dx = lim infn ̂ ^ J f(x,un(x),Vun(x)) dx.I
&

Proof, (i) As in Acerbi and Fusco [AF], we show that it suffices to prove Theorem 2.3 in

the case where Q is a ball. Indeed, if the result was true whenever the domain is a ball, for an

arbitrary open set Q. and using Vitali's Covering Theorem we can write

ft = u (a i + eiB(O, l ) ) u E

where meas(E) = 0 and {ai + £j B(0, 1)} is a family of mutually disjoint balls. Fixing a positive

integer k we have

lim infn J f(x,un(x),Vun(x» dx >

k

> \ lim infn J f(x,un(x),Vun(x)) dx
AU ai+eiB(O,l)
i = 1

k

* f(x,u(x),Vu(x)) dx.

i = 1

Letting k -»+<*> and using the Monotone Convergence Theorem we conclude that

J f(x,u(x),Vu(x)) dx < lim inf / f(x,un(x),Vun(x)) dx.

(ii) As in Acerbi and Fusco [AF], we remark that we can extend un e WU (Q; [Rp) to u*e

WU(IRN; IRP). Moreover, as CQ(IRN; IRP) is dense in W1'1^11; W) there exist sequences Vn>k e

CQ(IRN; W) such that

•* u* in WU([RN; W). (3.1)

15



as k -> +<*>. Moreover, we may assume that v,^ and Vv,^ converge to un and Vun, respectively,

almost everywhere. We claim that

limk J f(x,Vn,k(x),Vvntk(x)) dx = J f(x,un(x),Vun(x)) dx. (3.2)

Indeed, by (H3)

0<f(x ,u ,A)<C( l + IIAII)

and thus by applying Fatou's Lemma to x -» f(x, vnj[(x),Vvlltk(x)) and C(l + IIVvn,k(x)ll) - f(x,

Vn,k(x),Vvnj£(x)) and by observing that

I (1 + llVvnfk(x)ll) dx -> J (1 + HVun(x)ll) dx

one has (3.2). Finally, using (3.1) and (3.2) for all n choose kn such that

I IVkn-uA^ l /n

and

I J f(x,vn,kn(x),Vvn,kn(x)) dx - J f(x,un(x),Vun(x)) dx I < 1/n.

It is clear that, setting
u n := vnfkn,

one has

llun -ull^cw-^O

and

limn j f(x,un(x),Vun(x)) dx = limn J f(x,un(x),Vun(x)) dx.

We next prove Theorem 2.3 in the special case where f = f(A) and u is an affine function.

The proof presented here was obtained in Fonseca [Fo] (see Theorem 4.6 and Remark 4.16) and

we are now aware of the fact that Marcellinifs [Ma] proof for the case of weak convergence in

W1>m, m > 1, is essentially the same. Yet another proof has been given by Kinderlehrer [K] who

uses a subdivision of Q, in small domains in connection with the Vitali covering argument.

Proposition 2.7.
Let f: MpxN -> IR be a function satisfying (HI), (H2) and

16



for some C > 0. If Ao e MP** and if un e W U ( Q ; IRP) are such that un -» 0 in Ll(Q; [Rp) and

{IIVunllLi} is bounded then

meas(Q) f(Ao) < lim inf J f(A0+Vun(x)) dx.

Proof. The proof is taken from [Fo]. Related ideas appear in [DG] and [Ma]. We may

assume without loss of generality that

lim inf J f(A0+Vun(x)) dx = lim J f(A0+Vun(x)) dx) < +00.
Q a

Due to the growth condition, {IIVunll} is bounded in L1 and so there exists a subsequence and a

finite measure p, in Q such that

HVunll -» |i weakly *,

i. e. for every (p e Co(Q)

|cp(x)IIVun(x)lldx -> J(p(x)d^i(x). (3.3)

Consider an increasing sequence of subdomains S\ such that Cl* c c Q and Q = u £2*- Let cf̂  be

a smooth cut-off function such that 0<<pk<l,cpk = l inQk, 9 k = 0 i n f i \ fik+i- Setting

as f is quasiconvex we have

f(A0) meas(Q) < f f(A0+Vujj(x)) dx

a
= J f(Ao) dx+ f f(A0+VuJ(x)) dx+ J f(Ao+Vun(x)) dx

which implies that

f(A0) meas(Qk+i) < f f(A0+Vu£(x)) dx+ J f(Ao+Vun(x)) dx.

As f is nonnnegative, we deduce that

J f(A0+Vun(x)) dx - f(A0) measCQk+i) ^ - f f(A0+VuJ(x» dx. (3.4)

17



On the other hand,

f f(A0+Vu*(x)) dx < C f (1 + IIA0+Vu*(x)ll) dx

C J IIVun(x)lldx

+ C J lun(x)l IIV<pk(x)ll dx

£ C meas(Qk+1\Qk) + C J (<pk+i(x) - <Pk-i(x)) IIVun(x)ll dx

+ C J lun(x)l IIV<(>k(x)ll dx.

As un - » 0 in LKQ), by (3.3) and (3.4) we obtain

limn | f(Ao+Vun(x)) dx - f(A0) meas(Qk+i)

Finally, summing the above inequality for k = 2,..., i, we have

J

imn ff(Ao+Vun(x))dx-f(Ao) £meas(Qk+i)
a k = 2

> -C \ ^ {meas(Qk+l\"k) + J (<Pk+i(x) - (pk-i(x)) d^(x)}

k = 2

Divinding by (i -1) we find

limn J^Ao+Vu^x^dx-^Ao)-^- I meas(ak+i)

> - C T—-r- {meas(Qi+i) - meas(Q2) +

+ J(9i+i(x) + 9iW ' <P2(x) -

£ - C T-j-j- {meas(Q) + 4 \i(Q)).

Letting i —> -H» we conclude that

limn J f(A0+Vun(x)) dx - f(A0) meas(Q) ^ 0.
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4. Lower semicontinuity for convex integrands.
Suppose that f: £2x[RpxMpxN -> [0, +<*>) satisfies the hypotheses:

(HI) f is continuous ;

(H2f) f(x,u,.) is convex ;
(H3) there exists a nonnegative, bounded, continuous function g : QxIRp —» [0, +«>), c, C > 0

such that

cg(x, u)IIAII - C < f(x, u, A) < Cg(x, u) (1 + HAH)

for all (x, u, A) € QxB^xM^;

(H4') for all xo € ftx[Rp and for all e > 0 there exists 6 > 0 such that Ix - xol < 8 implies that

lf(xo, u, A) - f(x, u, A)l < e (1 + HAH).

We obtain the following corollary of Theorem 2.3.

Corollary 4.1.
If the assumptions (HI), (H2'), (H3) and (H4!) hold and if un, u € WU(Q; [Rp) are such

that un -> u in U(Q; [Rp) then

J f(x,u(x),Vu(x)) dx < lim inf J f(x,un(x),Vun(x)) dx.
a Q

Clearly, in order to apply Theorem 2.3 it suffices to prove that for convex integrands with

linear growth (H4f) reduces to (H4).

Proposition 4.2.
If f satisfies (HI), (H2f) and (H3) then for all (x0, u0) e Qx[Rp and for all e > 0 there

exists 8 > 0 such that

lu - uol < 8 implies that f(xo, u, A) - f(xo, u0, A) > -e (1 + HAH).

We introduce the recession function f°° given by

f~(x, u, A) := s u P t > o f ( x , u , t A ) - f ( x , u , O )

Note that, for fixed (x, u, A) e OxlRpxMpxN and g given by g(t) := f(x, u, tA) - f(x, u, 0), g is a

convex function with g(0) = 0 and so

t —» g(t)/t is increasing. (4.1)i

Therefore

f°(x,u, A) = sup t>og(t)/t
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r f(x, u, tA) eA iN= hm v . — - as t -> +00. (4.1 )2
1

If (HI) and (H3) hold and if f(x, u,.) is convex then f°(x, u,.) is convex (and hence continuous),

homogeneous of degree one and (see e. g. Fonseca and Rybka [FR], Lemma 2.3)

0<f~(x,u,A)<Cg(x,u)HAII

for all (x, u, A) e Qx[RpxMpxN.

The proof of this result is based on the following auxiliary lemmas, where for notational

convenience we omit the dependence of f on the variable x.

Lemma 4.3.
If (H2') and (H3) hold then for all u e [Rp

limr ^ ^ sup|IAI| = j 1 U>
r
r - f~(u, A) I = 0.

Proof. Step 1. Fix u € [Rp, assume that f(u, 0) = 0 and that Lemma 4.3 fails. Then there

exist e > 0, rn -» +«>, An —> A with IIAnll = 1 = HAH such that, by (4.1),

f"(u, An) - f(u* TnArd = 1 f ( u > f n A n ) -T(u, An)
rn rn

for all n. Using the convexity of f at rnA we have

H u , An) >
 f ( \ r n A n ) -HE

Ml

where, by (H3) and Proposition 2.5, {Ln} is a bounded sequence of matrices. Letting n -» +00

and due to the continuity of f°°(u,.) we obtain a contradiction, namely

f°(u, A) > f~(u, A) + e.

Step 2. In the general case, we set g(u, A) := f(u, A) - f(u, 0). It is clear that the argument in Step 1

applies to g and that f°°(u, A) = g°°(u, A) and so

0 = limr _ ^ sup,,Aii = 11 g ( U ; r A ) - g°°(u, A) I
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= limr _ ^ . sup,,Aii = i \Mf^- - f~(u, A) I.

Lemma 4.4.
If (HI), (H2f) and (H3) hold, for all uo e IRP and for all e > 0 there exists 8 > 0 such that

lu - uol < 8 implies that f°°(u, A) - f~(uo, A) > -e

for all matrices A € MP*1* such that HAH = 1.

Proof. Step 1. Assume that f(u, 0) = 0 and fix uo € Kp and e > 0. By (4.1) and by

Lemma 4.3 we may choose ro > 2 such that

o < f ( u o , A ) - f ( u o ;o
r o A )

 < e / 2

for every A with IIAll = 1. On the other hand, as f is continuous there exists 8 > 0 (depending only

on e and ro) such that

lu - uol < 8 implies sup IJA,, = x lf(u, roA) - f(uo, roA)l < e.

By (4.1) we have

r(u> A) ;> J

>r(uo,A)-e/2-e/ro

Step 2. As in the proof of the previous lemma, we set g(u, A) := f(u, A) - f(u, 0) and we apply

Step 1. The result follows from the fact that f°(u, A) = g°°(u, A).

Proof of Proposition 4.2. Step 1. Assume that f(u, 0) = 0 and fix uo e (Rp, e > 0. By

(4.1), Lemma 4.3 and by continuity choose ro > 2,8 > 0 such that
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O<r(uo ,A)- f ( u o;o
r o A )<e^

for every A with IIAII = 1, and

lu - UQI < 6 implies sup nA|, <• j lf(u, roA) - f(uo, roA)l < e.

Thus, if lu - uo I < 8 and if IIAII < ro we have

f(u, A) £ f(uo, A) - e

£f(uo,A)-E(l+||A||) (4.2)

and by (4.1) if A = rB, IIBII = 1, r > r0 then

f(u,A) f ^ r B ) ^ f(u,r0B)
IIAII ~ r - ro

>r(uo,B)-£

Finally, as f°(u,.) is homogeneous of degree one, by (4.1) we deduce that

f(u,A)>r(uo,A)-e| |A||

£ f(uo, A) - e IIAII

which, together with (4.2) yields the result.

Step 2. In the general case we apply Step 1 to the function g(u, A) := f(u, A) - f(u, 0) in order to

find 8 > 0 such that

lf(u, 0) - f(uo, 0)1 < e/2 and g(u, A) > g(uo, A) - 5(1 + IIAII)

whenever lu - uol < 8. Hence

f(u, A) £ f(u, 0) + f(uo, A) - f(uo, 0) -1(1 + IIAII)

> f(uo, A) - e/2 - |(1+IIAII)
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>f(uo,A)- e(l
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