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Abstract. In this paper it is shown that, under mild continuity and growth hypotheses, if f(x,u,.) is quasiconvex
and if un, ue W"' are such that up — u in L! then

‘{f(x,u(x).»Vu(x)) dx < lim inf jf(x,un(x),Vun(x)) dx .
Q

The proof relies on a blow up argument in connection with a truncation result which allows one to consider
uniformly convergent sequences.
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1. Introduction.

In this paper we prove that if u,, u € WL(Q; RP) are such that u, — u in L1(Q; RP), if
f(x,u,.) is quasiconvex, if f satisfies technical continuity conditions (see Section 2) and f grows at
most linearly in the last argument, with possibly degenerate bounds, then

If(x,u(x),Vu(x)) dx < lim 'mfn oo If(x,un(x),Vu,,(x)) dx.
Q Q

This lower semicontinuity result was obtained by Dal Maso [DM] in the scalar case p = 1; in the
vector-valued case and for f = f(A) convex, by Ball and Murat [BM] and Reshetnyak [R]; when p
> 1 and f = f(x,Vu) quasiconvex the problem was addressed by Fonseca [Fo] and, independently,
by Kinderlehrer [K]. For the case where f = f(x,u,A) and f(x,u,.) is convex, Aviles and Giga
[AG] obtained lower semicontinuity results.

The main new tool involved in this paper is a careful truncation technique which, together
with a blow up argument, enables us to reduce to the case where the sequence u, converges
uniformly. F. Murat has informed us that related truncation arguments are used in the context of
renormalized solutions to partial differential equations (see e. g. [BDGM]).

The study of this problem was motivated by the analysis of variational problems for phase
transitions and the related question of understanding the relaxation of functionals of the type

u- j f(x,u(x),Vu(x)) dx (1.1)
Q

in spaces admitting discontinuous functions u. As an example of that relation consider the family of
singular perturbations

Eew):= | W) dx + €2 [ h2(Vu(x)) dx
Q Q

of the nonconvex energy
E@):= [ W(u(x)) dx,
Q

where W has two potential wells at a and b. Depending on the constraints or boundary conditions
imposed on the admissible functions, often E(.) admits infinitely many minimizers which are
piecewise constant functions of bounded variation, u € {a, b} a. e. in Q. In search for a
reasonable selection criteron one studies the properties of the limits of sequences of minimizers for
the perturbed problems (see [FT1], [G1], [G2], [KS], [Mo], [OS]). The natural notion of
convergence for the functional in this context is ["-convergence as introduced by De Giorgi [DG]

(see [At], [DM], [DD] for more recent expositions).



In the isotropic scalar case, i. . if u : Q = R and h = ILIl, using an idea of Modica and
Mortola, Modica [Mo] showed that the I'(L!) limit of the rescaled energies
1
Je(w) = Eg(u)

is given by
Jow) = &)

where
() =infly { liminf [ f0ua00,Vu00)dx | up € W1 (@5 R), up > uinL1}
Q

is the relaxation in BV(Q ; R) of (1.1) and
f(x, u, A) =2 VW) h(A). (1.2)

Precisely, if u € {a, b} a. e. and if {u = a} has finite perimeter in £ then

inf(u,) {lim inf Je(ug) | ue € WL (5 R), ug > uin L }=F (u).

This result was generalized by [OS] to "anisotropic" functions h with linear growth for which h2
is convex. In this case the integral representation for the relaxation & (.) was obtained by Dal Maso
[DM] who proved that

& ()= J f(x,u(x),Vu(x)) dx + jD(x,u'(x),u"‘(x),v(x)) dHN.1(x) +
Q Z(u)

+ [ Fexum),dcm)x)) dx (1.3)
Q

where Hyn.; denotes the N-1-dimensional Hausdorff measure and the distributional derivative Du
of the function u € BV(Q;[R) admits the decomposition into mutually singular Radon measures

Du = VuLN|Q + (ut- u)VHN 1| Z(u) + C(u).

Here Ly is the N-dimensional Lebesgue measure, Vu denotes the absolutely continuous part of
Du, i. e. the Radon-Nikodym derivative of Du with respect to Ly, Z(u) is the jump set of Du with
normal v defined for Hy . a. e. x € Q and C(u) is the Cantor part of the derivative (for details we

refer the reader to Evans and Gariepy [EG], Federer [Fe], Ziemer [Zi]). In (1.3) f~ represents the

recession function (see Section 2) and D(x,a,b,V) is given by
b

D(xabyv) = [ £(x,5,v) ds.
a



In the isotropic vector valued case, i. e. if u : Q — RP and h = ILIl, Baldo [B] and Fonseca and
Tartar [FT1] obtained once again the same representation for the I'-limit. All the above results
confirm Gurtin's [G1], [G2] conjecture that the "preferred” solution has minimal surface energy.

In the anisotropic, vector-valued case and with u subject to the constraint curl u = 0, recent
work by Kohn and Miiller [KM] seems to indicate that the Modica and Mortola inequality

w2 [ fxu),Vux) dx
Q

with f given by (1.2) is no longer optimal. However, it is clear that

u— j f(x,u(x),Vu(x)) dx
Q

still provides a lower bound for the rescaled energies Jg(.). In particular, the I'-limit must be
bigger than or equal to & (u). The issue thus arises, to find an integral representation for & (u) in

the vector-valued case.
Fonseca and Rybka [FR] proved that, when f(x, u, .) is convex and if u takes only the
values a and b across a plane with normal v then

Fgw= [ fxux),0dx+ [K(x,abyv)dHya(x),
Q Z(u)

where

K(x,8,b,v) := inf{ QJ F(x,E(y),VEY) dy 1 & € &)
and

& ={Ee WLYQ:RP) E(y) =bif yv =1/2, E(y) = a if y.v = -1/2, and & is periodic in the
remaining Vi,...,VN.1 directions with period 1},

where {vi,...,VN-1,V = VN} forms an orthonormal basis of RN and Qu is the cube {y € RN | ly.vil

12,1 = 1,...,N}. The characterization of the surface energy density K was inspired by the work of
Fonseca and Tartar [FT2].

Indepcndently, Ambrosio and Pallara [AP] showed that & (.) admits an integral
representation with the same structure as in (1.3), and this result together with the work of Fonseca
and Rybka [FR] provides a complete characterization of & (u), namely

Fw= [ fxue).Vue)dx +  [Kxuwutx).v) dinax) +
Q Z(u)

+ I £~ (x,u(x),dC(u)(x)) dx. (1.4)
Q



To identify the first and the third term on the right hand side of (1.4) [AP] make use of the lower
semicontinuity results of Aviles and Giga [AG] whose proofs rely on sophisticated tools from
geometric measure theory. Also, f has to satisfy linear growth condition from below, i. e.

cllAll - C <fi(x,u,A) < C(1 + 1All) (1.5)

for some ¢, C > 0, preventing a situation as in (1.2). In addition, we remark that the convexity
hypothesis on f(x,u,.) may be too restrictive. Indeed, as shown by Acerbi and Fusco [AF],
Dacorogna [D] and Morrey [Mr] the W11 - weak lower semicontinuous envelope of the functional
(1.1) is the integral of the quasiconvexification of the energy density f(x,u,.), and so we expect
quasiconvexity as a natural constitutive assumption rather than convexity. This concern is genuine
as there are examples of quasiconvex functions with linear growth that are not convex (see Sverdk
[S] and Zhang [Z]).

In this work we consider quasiconvex integrands and we relax (1.5) to include degenerate
lower bounds. Under these conditions we provide an analytical proof of the lower semicontinuity
of (1.1) in L1 thus obtaining the first term in the relaxation & (u). Our method seems to be

appropriate to proving the lower semicontinuity of the third term in (1.4) corresponding to the
Cantor part of the measure Du and one might thus conjecture that the representation of & (u) given

by (1.4) is still valid for quasiconvex integrands with possibly degenerate lower bounds.

2. Lower semicontinuity in L!for quasiconvex integrands.
Let p, N > 1 and let MP™N denote the vector space of all pxN real matrices.

Definition 2.1([Mr]).
A function f : MP®N - R is said to be quasiconvex if

1
fA) S easD) J f(A+Vo(x)) dx

for all A e MPN for every domain D c RN and forall g € WO'”(D; RP).

Remark 2.2. If If(A)l £ C(1 + lAll) one shows easily by approximation that the inequality
holds for all ¢ € Wy''(D; RP).

Let Q cRN be an open, bounded domain and let
f : QxRPxMP™N — [0, +o0).



We consider the following hypotheses on f:
(H1) f is continuous ;

(H2) f(x,u,.) is quasiconvex ;
(H3) there exists a nonnegative, bounded, continuous function g : QxRP — [0, +e), c, C>0

such that
cg(x, WAl - C < f(x, u, A) < Cg(x, u) (1 + llAll)
for all (x, u, A) € QxRPxMP;

(H4) for all (xg, ug) € QxRP and for all € > 0 there exists & > 0 such that Ix - xgl + lu - upl < 3
implies that

f(xo, u, A) - f(xp, ug, A) 2 -€ (1 + llAll)
and

If(xg, u, A) - f(x, u, A)l <€ (1 + l1All).

Theorem 2.3.
If the assumptions (H1) -(H4) hold and if u,, u e W1.1(Q; RP) are such that u, = u in

LY(Q; RP) then
[ fx,u00,Vu)) dx < lim inf [ £(x,un(x),Vun(x)) dx. @.1)
Q Q

Remarks 2.4. (i) If (H2) is replaced by convexity and if the growth condition (H3)
holds, then the hypothesis (H4); presents no restriction. This fact will be examined in Section 4.

(ii)) Lower semicontinuity for functions of the type (1.2) follows from Theorem 2.3. Indeed, if
f(x, u, A) =2 VW() h(A),

where h is a nonnegative quasiconvex function and
cllAll - C<h(A) < C (1 +lIAll),
then we set
Wu (u) :=min{M, W(u)} and fm(u, A) :=2 VWpm(u) h(A).

It is clear that f) satisfies (H1)-(H4) and so, if u,, u € W1.1(Q; [RP) are such that u, — uin L1(Q;
[RP) then

[ ), Vu)) dx < lim inf [ fu(un(x),Vua(x)) dx
Q Q

< lim inf lf(un(x),Vun(x)) dx.

Letting M — +o0 and using the Monotone Convergence Theorem we conclude (2.1).



(iii) As we showed in (ii) the boundedness of g presents no restriction for the examples that we
have in mind. This assumption becomes crucial for proving in Proposition 2.6 that the u, may be
considered to be smooth functions, which in turn allows one to apply in (2.14); the change of
variables formula (2.3) for Lipschitz functions.

It is possible to remove in (H3) the boundedness constraint imposed on g by using a
suitable generalization of the change of variables formula (2.3) for W1:! functions. For for the sake
of clarity, however, we focus attention on the case where g is bounded.

The main idea of the proof is to use a blow-up argument to localize (2.1) (see (2.5) and
step 2 in the proof of Theorem 2.3) and a careful truncation technique for vector-valued functions
which allows one to replace L1 convergence by uniform convergence (see Lemmas 2.8 and step 3
in the proof of Theorem 2.3). Firstly we recall some auxiliary results.

Proposition 2.5.
Iff: MPN 5 Ris quasiconvex and if If(A)l < C(1 + lIAll) for some constant C > 0 and for

all A € MP™N then there exists a constant C' = C'(C, N) such that
If(A) - f(B)I <C'llA - Bl
forall A, Be MPN,

Proof. We refer the reader to Dacorogna [D, Chapter 4, Lemma 2.2] or Evans [E]

Proposition 2.6. (i) If Theorem 2.3 holds true for Q being a ball it holds true for all

open, bounded sets €.
(ii) Let Q be a ball. If (H1) and (H3) hold and if if u,, u € W1.1(Q; RP) are such that u, = uin

L1(Q; [RP) then there exist Uy € Co (RN; RP) such that liu, - ull 1) — 0 and

n

liminf z[f(x,?x,,(x),vﬁn(x)) dx = lim inf, ___ f[ £0x,un(x),Vun(x)) dx.
Proof. The proof follows essentially the argument by Acerbi and Fusco [AF] and for
completeness it is included in Section 3.

Proposition 2.7.
Let f: MPN 5 R be a function satisfying (H1), (H2) and

0 <f(A) <C(1 + lIAll)



for some C > 0. If Ag € MPN and if up € W'(Q; RP) are such that u, — 0 in L1(Q; RP) and
{IVugli; 1} is bounded then

meas(Q) f(Ag) < lim inf llf(A0+Vun(x)) dx.

Proof. See Section 3.

We will also use the following results. If ue W1.1(Q; RP) then fora.e. xpe Q

im, o2 {3 [ - utxo) - Vaxo)x - x™N/®Dax JNDN _ o (29
N
€ € B(x0$€)
and if w € WL>=(RN; R) and g € L!(RN; R) then the change of variables formula (or coarea

formula) holds, namely
+oco

jNg(x) IVw(x)l dx = f (g0 dHya(0) dt. (2.3)

R LA U

For details see Calderon and Zygmund [CZ], Evans and Gariepy [EG] and Ziemer [Z]. An easy
consequence of (2.3) is the following estimate on level sets of W1 functions.

Lemma 2.8.
1,00
Letv e W, . (RN; RP), let 0 < < B <L and let C > O be such that

[ 1oyl ax < co.
{visL)nB(0,1)

Then

tHy.g({x € BO, 1) | v(x)l =}) € —S0

ess inf )
In(B/o)

te(a, B)

Proof. Let B := B(0, 1) and consider a cut-off function ¢ € C';(IRN; R) such that ¢ =1 in

B(0, 1) and its support is contained in B(0, 2). Applying the co-area formula (2.3) to
w(x) := @(x)lv(x)l and g(x) := X0, L](lv(x)l) Xp(x)
we have
L

JHN_l({x e Bllivix)I=t})dt= J I DIv(x)l Il dx
¢ {ivisL}NB(0,1)

< Juvvenax < co
{vi<L)nB(0,1)



and so, if
ess infte(a, B) tHna({xe Bllvy(x)I=t})=a

then
B B
Coz [Hyilxe Blvael=maz [ % at
=a1n(E).
o
Thus

| Co
fie o gy tHN Bllvy(x)l=t}) < -
€ss Infe (a, B) Na({x e va(x) h In(B/ox)

Proof of Theorem 2.3. In the sequel and using Proposition 2.6 we assume Q is a ball
and thatu, € C:(RN; [RP). In addition, suppose without loss of generality that

liminf “[f(x,un(x),Vun(x)) dx =lim__ !2 £0x,un(x), Vua(x)) dx < +oo.

Step 1.(localization) We first reduce the problem to verifying the pointwise inequality (2.5) below.
As f is nonnegative there exists a subsequence such that

f(.,un(.),Vun(.)) > p weakly * in the sense of measures,

where | is a nonnegative finite measure. Using Radon-Nikodym Theorem, we can write L as a

sum of two mutually singular nonnegative measures

H = Ha(xX)LN + Hs

where Ly denotes the Lebesgue measure in RNand fora. e. xo € Q

pBeoe) _,

2.4
€0 Ln(B(x0,£)) @9

Ha(xp) = lim
We claim that
Ha(x0) 2 f(xo, u(xo), Vu(xp)) fora.e.xpe Q. (2.5)

Then, considering an increasing sequence of smooth cut-off functions @y, with 0 < ¢x < 1 and
supx @x(x) = 1 in Q, we obtain



n

im j f(x,un(x),Vun(x)) dx > lim inf _ I ox(x) f(x,un(x),Vun(x)) dx
Foy Q
= o dim 2 [ oumpax) dx
Q Q

> [ ou) f(x,ux),Vu)) dx.
Q

Letting k — +oo, the result follows now from the Monotone Convergence Theorem. The rest of
this section is dedicated to proving claim (2.5).

Step 2.(blow-up) We use a blow-up argument in connection with (2.2) to derive a lower bound for
Ha(x0). Let xg be a Lebesgue point for u, Vu and such that (2.2) and (2.4) hold and consider the

affine functions

uo(x) := u(xp) + Vu(xp) x and wo(x) := Vu(xg) x.
We abbreviate B := B(0, 1), and we consider a subdomain B' c c B. We claim that there exist
sequences I, — 0+ and wy € WL=(RN; RP) such that w, — wg in L1(B; [RP) and

mcals(B) BI' f(x0+rnx ,U(XO)"'ran(x),VWn(X)) dx.

Ha(xo) 2lim__

(2.6)
Let ¢ € Co(B) be a cut-off function such that 0 < ¢ <1 and ¢(x) = 1 if x € B'. By (2.4) we have
. 1
= lim — w(B(x¢,€
Ha(x0) = lim Ly s BB (R0)
x -

1
€0 N meas(B) f o €
B(x0.£)

2 lim sup xo) dp(x)

iy . 1 X - Xp
=lim sup,__,lim__, Nrcas(B) mcasE) fw(-—e ) f(x,up(x),Vug(x)) dx
B(x0,¢)

. . 1
=lim sup, _,, Lim_ meas(B) J Q(x) f(xp+€x,un(xo+€x), Vup(xo+€x)) dx

2 lim sup,_, lim sup

n —+e meas(B) B[ f(xo+€x,u(x0)+EWn e(x), Vwy e(x)) dx

(2.7)
where
Un(xp+€X) - u(xp)

Wne(X) =

10



[un(xo+€x) - ug(ex)] + wo(x).

[ I

By (2.2) and Hoélder's inequality

o 1
tim, o lim, _,,_IWa,e - woll }gg) = lim, = Jlu(xo+8x)-uo(ex)l dx

1

=lim
-0 8N+l

[ lu() - utxo) - Vuixo)(x - xo)ldx
B(x0,8)

=0.
Now (2.6) is obtained by a standard diagonalization argument. Indeed choose a sequence ry — 0

and choose ny such that

and
1
meas(B) f(xo+1ix,u(X0)+1kWny 1, (X), VW, 1, (x)) dx <
. 1
Vk+limsup meas(B) J f(x0+TkX,u(X)+Tx Wy 1, (X),V Wy 7, (X)) dx.
Letting

Wk = w“k"k
(2.6) follows from (2.7) (one may choose a further subsequence to ensure that the limit on the
right hand side of (2.6) exists).
Step 3.(truncation) We show that the sequence wy constructed in Step 2 can be replaced by a
uniformly convergent sequence. More precisely, we claim that if g(xo, u(xp)) > 0 then there exists
a sequence v?n € Wll‘;:([RN; [RP) such that II\‘;,,IILI B < Const., \;/n — wp in L™(B; [RP) and

Ha(Xp) 2 lim 5 m i 'f(x0+r,,x,u(x0)+rn§n(x),V\;n(x)) dx. (2.8)

Let 0 <s<t<1and let ¢5; be a cut-off function such that 0 < @s; < 1, @5 (1) = 1 if T< 5, Q5 1(T)
=0ift2t g ll. <C(t- s)-1. Set

7, (X) 1= Qs e(Iwn(x) - wo(x)l)

and
W (%) 1= Wo(x) + Qs ((IWn(x) - Wo(x)I) (Wn(x) - wo(x)).

Clearly

11



liwg, - woll, <t. (2.9)
Define
hn(x’ S, A) = f(x0+rnx’u(x0)+rn8: A)

and let L = llwoll =) + 1. By (H3) and as g(xo, u(xo)) > 0, g continuous, there exists ng such that
foralln2ng,Isl<L

C (Al + 1) 2 hy(x, s, A) 2 cllAll - C (2.10)
for some ¢, C > 0. Also
f ha(x, W5, (x), VWi, (x)) dx = | ha(x,Wa(x),Vwn(x)) dx +
B B'N{lwy(x)-wo(x)I<s }

+ f hn(x,w:_t(x),Vw:t(x)) dx +

B'n{s<lwy(x)-wo(x)I<t)}

+ | ha(x,wox),Vwo(x)) dx,  (2.11)

B'n{lw,(x)-wo(x)I>t}
and by (2.10) we have
-C < hy(x, wo(x), Vwo(x)) £C
which implies that

I hn(x,wo(x),Vwo(x)) dx £ C meas{x € B | lwyp(x) - wo(x)| > t}. (2.12)

B'N{lw,(x)-wo(x)i>t}
On the other hand, if s < lwy(x) - wo(x)l <t then
Vw (%) = Vu(xo) + @5, (Iwn(x) - wox)I) (Vwn(x) - Vu(xo)) +

+ (Wn(X) - wo(x))®¢'s,i(Iwn(x) - wo(x)I)Viwg(x) - wo(x)!
thus, by (2.10), we have

J’ ha(x, W} (x),VW} (x)) dx <

B'n{s<lwy(x)-wo(x)I<t)

<C [ (1 + 1V wax) - Vulxo)ll) dx

{s<lwy(x)-wo(x)I<t)

12



1

"’Ct T s J fwn(x) - wo(x)I | Viwg(x) - wo(x)! | dx. (2.13)
B'N{s<lwy(x)-we(x)I<t}

We remark that for almost all t we have

lim__, [+ 1Vwa) - Vuxo)l dx = 0 (2.14);

T {s<iwg(x)-wo(x)ist)

and by the change of variables formula (2.3)

lim [ 1wa(x) - ot Viwa(x) - wo()l 1dx <
st- t - §
B'n{s<lwp(x)-wo(x)i<t}
<tHN.1{x € B'llwg(x) - wo(x)l =t]}. (2.14),
Due to (2.10),
[ IVIwa() - o)l I dx < [ avwaeoll + ©) dx
B'N{lwp(x)-wo(x)I<1}) B'N {lwg(x)-wo(x)I<1})

< C | [ha(x,wa(x),Vwa(x)) + 1] dx < Const.
'

since the latter sequence is convergent. Hence, by Lemma 2.8 there exists t;, € [llwy, - wolllf{2 , llwy

- wollll)/3 ]Jsuch that (2.14) holds (with t = t;) and

Const

tn Hn.1{x € B' I lwp(X) - wo(X)I =t} < /s

Inllwy, - wOIIU

According to (2.14) choose 0 < sy, < t, such that

[+ Wwa(x) - Vu(xo)) dx = O(1/n),
{sp<iwp(x)-we(x)I<t, )

[ 1wa(x) - wo()I IV Iwa(x) - o)l ll dx <

b= S0 B s, cwa () wolIty)

<tp HNa{x € Qlwy(x) - wo(X)l =t} + O(1/n)
and set

Wa(x) : = W, | (X).

By (2.9)
Ny, - Woll. < t, — 0
and by (2.6), (2.11)-(2.14) we conclude that

13



atx0) 2 lim s [ fxoHam u(so Hawa(), T wa () d

. 1
2 lim inf, ——=~ | ha(x,wp(x),Vwy(x)) dx
" meas(B) B‘r\(lwn(x)-wo(:)lSs} " "

2 lim infy e | thn(x, Wa(x), Viwa(x) dx

-O(1/n) - c s C meas{x € B | lwp(x) - wo(x)I > t,} }

Inllwy, - WOIIL,

.. 1 ~ ~
= lim inf, meas(B) j ha(x, wp(x), Vwi(x)) dx,
g
since ty 2 llwy, - woll'1Z and thus
meas{x € B | lwy(x) - wo(X)I > t,} Sfl— lwp, - wollLl < llwy - wolﬂxfz - 0.
n

Finally the bound on I|V\;',,IIL1(B') follows from (2.10).
Step 4.(Proof of claim (2.5)). We want to show that

Ha(xo)  f(xg, u(xg), Vu(xg)) fora.e.xpe .

Let xg be a Lebesgue point for u, Vu and such that (2.2) and (2.4) hold. If g(xo, u(xp)) = O then

(2.5) is satisfied trivially as f is a nonnegative function. If g(xg, u(xg)) > 0 consider a subdomain
B' cc B and let € > 0. By (2.8) and (H4) we have

ax0) 2 Tim » s J (X0 X, U(X0}HTnWn(X), VWa(x)) dX

>lim 5 Eea—i@— { ! f(x0,u(x0),Vwn(x)) dx - € ! (1 + IVwa(x)ll) dx } .
By Proposition 2.7 and taking into account that { VQH} is a sequence bounded in L1 we deduce
that
1
Mak0) 2 eems | £(xo, u(x0),Vu(x0)) dx - €C.

B .
Letting € — 0, we conclude (2.5) given the arbitrariness of B'.
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3. Proofs of auxiliary results.
In this section we prove Propositions 2.6 and 2.7. We first recall

Proposition 2.6. (i) If Theorem 2.3 holds true for Q being a ball it holds true for all

open, bounded sets 2.
(ii) Let Q be a ball. If (H1) and (H3) hold and if if u,, u € W1.1(Q; RP) are such that u, — u in

L1(Q; RP) then there exists TJ,, e Cy (RN; RP) such that llu, - ull gy — 0 and

liminf ’[ (X (%), Viin(x)) dx = lim inf, f[f(x,u,,(x),V un (X)) dx.

Proof. (i) As in Acerbi and Fusco [AF], we show that it suffices to prove Theorem 2.3 in
the case where Q is a ball. Indeed, if the result was true whenever the domain is a ball, for an
arbitrary open set 2 and using Vitali's Covering Theorem we can write

Q=u(a+¢B@O,1))VE
where meas(E) = 0 and {a; + €; B(0, 1)} is a family of mutually disjoint balls. Fixing a positive
integer k we have

liminf, [ f(x,un(x),Vun(x)) dx 2
Q

k
zz liminf, [ £(x,un(x),Vua(x)) dx

a.;+eiB(0, 1)
i=1
k

2 2 [ f0x,u00),Vu(x)) dx.
. a,+&B(0,1)

i=1

Letting k — +o0 and using the Monotone Convergence Theorem we conclude that

[ fxu00, Vo) dx < lim inf [ £(x,un(x), Vun(x)) dx.
Q Q

(ii) As in Acerbi and Fusco [AF], we remark that we can extend u, € WI'I(Q; RP) to u;e
WL(RN; RP). Moreover, as C'(’;([RN; [RP) is dense in WL I(RN; [RP) there exist sequences Vo x €

Co (RN; RP) such that
Vak = . in WE(RN; RP). (3.1)

15



as k — +eo. Moreover, we may assume that v, x and Vv, i converge to u, and Vu,, respectively,

almost everywhere. We claim that
limg [ FOVax(0),VVak() dx = [ £(x,un(x),Vun(x)) dx. (3.2)
Q Q

Indeed, by (H3)
0 <f(x, u, A) < C(1 + IlAll)

and thus by applying Fatou's Lemma to x — f(x, vpx(x),Vvpx(x)) and C(1 + IV vy 1 (OI) - f(x,

vnx(x),Vvpi(x)) and by observing that
‘{(1 + IV ()l dx — g(l +1IVu,(x)ll) dx

one has (3.2). Finally, using (3.1) and (3.2) for all n choose k; such that
Vo, - UnllL! < 1/n

and
| ff(x,vn‘kn(x),an,kn(x)) dx - If(x,un(x),Vun(x)) dx | < 1/n.
Q Q

It is clear that, setting

~

Up 1= Vnkg,

one has
"un - u"Ll(Q) - 0

and
lim, r!’f(x,‘ﬁn(x),V'ﬁn(x)) dx = lim, Jf(x,un(x),Vun(x)) dx.
Q

We next prove Theorem 2.3 in the special case where f = f(A) and u is an affine function.
The proof presented here was obtained in Fonseca [Fo] (see Theorem 4.6 and Remark 4.16) and
we are now aware of the fact that Marcellini's [Ma] proof for the case of weak convergence in
WI™ m > 1, is essentially the same. Yet another proof has been given by Kinderlehrer [K] who
uses a subdivision of €2 in small domains in connection with the Vitali covering argument.

Proposition 2.7.
Let f : MPN - [R be a function satisfying (H1), (H2) and

0 <f(A) <C( + llAll)

16



for some C > 0. If Ag e MPN and if up € W(Q; RP) are such that u, — 0 in L1(Q; RP) and
{IVuyli; 1} is bounded then

meas(Q) f(Ag) < lim inf ?[ f(Ag+Vun(x)) dx.

Proof. The proof is taken from [Fo]. Related ideas appear in [DG] and [Ma]. We may
assume without loss of generality that

liminf [f(Ag+Vua(0) dx = lim [ f(Ao+Vun(x)) dx) < +ee.
Q Q

Due to the growth condition, {lIVuyll} is bounded in L! and so there exists a subsequence and a
finite measure W in € such that

IVupll = p weakly *,
i. e. for every ¢ € Cp(2)

[om) IVu,eldx - [ p(x) dpx). (3.3)
Q Q

Consider an increasing sequence of subdomains €y such that Q c ¢ Q and Q =U Q. Let o* be
a smooth cut-off function such that 0 < gk <1, ¢k =1 in Q, @k =0in Q\ Qy,;. Setting

u: 1= @kuy € Wg'l(Q; RP),

as f is quasiconvex we have
f(Ag) meas(Q) < f f(Ao+Vuk(x)) dx
Q

= [f(Ag)dx+ j f(Ag+Vur () dx+ [ f(Ag+Vun(x)) dx

Q\Q,,
o Q1 \2 e
which implies that
f(Ao) meas(Qus) < j f(Ac+Vuk(0) dx+ [ f(Ag+Vun(x)) dx.
Qy
Q0 \Qy

As f is nonnnegative, we deduce that

[ f(A0+Vuq(x) dx - f(Ag) meas(Qus1) = - f f(Ag+Vuk(x)) dx. (3.4)

Q

Qi \

17



On the other hand,
f f(Ag+Vui(x)) dx < C f (1 + Ao+ Vurm)ll) dx

Q,.1\2, Q.1 \Q
<Cmeas(Qu\) +C [ IVu ()il dx +

Qpe1\Qy

+C {{iun(x)l IV Qk(x)Il dx
Qkﬂ .
< C meas(@\%) + C [ (a1 (®) - Pr1 (X)) VU () dx
Q

+C a0l VI dx.

Q1 \2y

As up = 0in L1(Q), by (3.3) and (3.4) we obtain
lim, _[f(Ao+Vun(x)) dx - f(Ag) meas(Qx41) = - C meas(Qy+1\2%) -
Q

-C J (Prs1(X) - Px-1(x)) dpL(x).

Finally, summing the above inequality for k = 2, ..., 1, we have

G- Dlimy [ (A0+Vun(0) dx - fA0) 3 meas(@ue) 2
o k=

2-C 2 {meas(Qi+1\y) + I(‘Pkﬂ(x) - Pr-1(x)) du(x)}.
Q
k=2
Divinding by (i - 1) we find _
timy [ (A0+Vup(0) dx - (A g T meas(@un) 2
f'o) =

>-C TI—T {meas(€;41) - meas(Qy) +

+ ‘! (@is1(x) + Qi(X) - P2(x) - ¢1(x)) du(x))

>-C Tll' {meas(Q) + 4 n(Q)).

Letting i — +oo we conclude that
limg | f(Ag+Vu(x)) dx - f(Ag) meas(Q) 2 0.
Q
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4. Lower semicontinuity for convex integrands.
Suppose that f : QxRPXMP™N — [0, +<o) satisfies the hypotheses:
(H1) f is continuous ;
(H2") f(x,u,.) is convex ;
(H3) there exists a nonnegative, bounded, continuous function g : Qx[RP — [0, +e0),c, C> 0

such that
cg(x, wllAll - C < f(x, u, A) < Cg(x, u) (1 + llAll)
for all (x,u, A) € QxRPxMP;
(H4) for all xg € QxRP and for all € > 0 there exists & > 0 such that Ix - xgl < 8 implies that
if(xg, u, A) - f(x, u, A)l <€ (1 + lIAll).
We obtain the following corollary of Theorem 2.3.

Corollary 4.1.
If the assumptions (H1), (H2'), (H3) and (H4') hold and if u,, u € W1.1(Q; RP) are such
that u, — u in L1(Q; [RP) then

J f(x,u(x),Vu(x)) dx < lim inf If(x,un(x),Vun(x)) dx.
Q Q

Clearly, in order to apply Theorem 2.3 it suffices to prove that for convex integrands with
linear growth (H4') reduces to (H4).

Proposition 4.2,
If f satisfies (H1), (H2') and (H3) then for all (xg, ug) € Qx[RP and for all € > 0 there

exists & > 0 such that
lu - ugl < & implies that f(xg, u, A) - f(xg, ug, A) = -€ (1 + llAll).

We introduce the recession function f~ given by

f(x, u, tA) - f(x, u, 0)
” .

°(x, u, A) = Sup, .5

Note that, for fixed (x, u, A) € QxRPxMPXN and g given by g(t) := f(x, u, tA) - f(x,u, 0), gis a

convex function with g(0) =0 and so
t — g(t)/t is increasing. 4.1
Therefore

f°(x, u, A) =sup, _, g()/t
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= 1imL't“’—‘& as t — oo, (4.1),

If (H1) and (H3) hold and if f(x, u, .) is convex then f~(x, u, .) is convex (and hence continuous),
homogeneous of degree one and (see e. g. Fonseca and Rybka [FR], Lemma 2.3)

0 <f7(x, u, A) < Cg(x, u) Al
for all (x, u, A) € QxRPxMPN,

The proof of this result is based on the following auxiliary lemmas, where for notational
convenience we omit the dependence of f on the variable x.

Lemma 4.3.
If (H2') and (H3) hold then for all u € [RP

. f(u, rA
lim, . SUPa =y I— (urr ) - f=(u, A) I =

Proof. Step 1. Fix u € [RP, assume that f(u, 0) = 0 and that Lemma 4.3 fails. Then there
exist € > 0, r, = +o0, A;; = A with llApll = 1 = lIAll such that, by (4.1),

(u, A LI ST oy a1 s

for all n. Using the convexity of f at rnA we have

£(u, Ap) >———f(u TnAn)

> f(u, 1,A)

i +Lp.(Ap-A)+¢

where, by (H3) and Proposition 2.5, {L,} is a bounded sequence of matrices. Letting n — +oo
and due to the continuity of f7(u, .) we obtain a contradiction, namely

", A) 2f7(u, A) + €.

Step 2. In the general case, we set g(u, A) :=f(u, A) - f(u, 0). It is clear that the argument in Step 1
applies to g and that f~(u, A) = g™(u, A) and so

. 9 A C
0 = lim; 4o SUPJIAI=1 |_g_(_uTr_) -g7(u, A)
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. f(u, rA
= lim; _y+o SUPjAN=1 | (urr )-f°°(ll, A)l

Lemma 4.4.
If (H1), (H2') and (H3) hold, for all ug € [RP and for all € > 0 there exists & > 0 such that

lu - ugl < & implies that f~(u, A) - £(up, A) 2 -¢
for all matrices A € MPN such that Al = 1.

Proof. Step 1. Assume that f(u, 0) = 0 and fix ug € R? and € > 0. By (4.1) and by

Lemma 4.3 we may choose rp > 2 such that

f(ug, 10A) <

0 < f"(up, A) - To

€2

for every A with llAll = 1. On the other hand, as f is continuous there exists & > 0 (depending only
on € and rp) such that

lu-ugl < implies sup ,_f(u, 10A) - f(up, r0A)l < €.
By (4.1) we have

f(u, rgA)
°(u, A) 2 rT—

f(ug, roA
> (oroo )-elro

2f"(uo, A) -€/2-€/ro
21 (up, A) -&.
Step 2. As in the proof of the previous lemma, we set g(u, A) := f(u, A) - f(u, 0) and we apply

Step 1. The result follows from the fact that ~(u, A) = g™(u, A).
[ |

Proof of Proposition 4.2. Step . Assume that f(u, 0) = 0 and fix up € RP, &£ > 0. By
(4.1), Lemma 4.3 and by continuity choose rg > 2, 8 > 0 such that
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0 < f(ug, A) - “L"r’o-r-"—& <€

for every A with llAll = 1, and
lu - ugl < & implies sup ,,, < ; f(u, T0A) - f(ug, reA)! <E&.
Thus, if lu - ug | < & and if llAll £ rp we have
f(u, A) 2 f(ug, A) - €
2 f(ug, A) - €(1 +[|Al]) 4.2)

and by (4.1)if A =1B, IIBll = 1, r > 1p then

f(u, A) _f(u, 1B) S f(u, roB)
ar = r = 1o

f(ug, 1oB)
2 10 &fro

2f"(up, B) - €2 - €/rp
21"(ug, B) -
Finally, as f~(u, .) is homogeneous of degree one, by (4.1) we deduce that
f(u, A) 2 (ug, A) - [All

2 f(ug, A) - e llAll
which, together with (4.2) yields the result.
Step 2. In the general case we apply Step 1 to the function g(u, A) := f(u, A) - f(u, 0) in order to
find & > O such that
IE(u, 0) - f(uo, Ol <€/2 and g(u, A) 2 g(uo, A) - (1 + Al

whenever lu - ug! < 6. Hence

f(u, A) > f(u, 0) + f(ug, A) - f(ug , 0) - §(1 +1IAl)

> f(ug, A) - £/2 - %(1 +1IAl)
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2 f(ug, A)- &(1 + lAll).
[ |
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