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INTRODUCTION:

There are several ideas behind what follows. The first is Dana Scott’s idea that untyped
A Calculus = unityped A Calculus = simple typed A Calculus with a retract pair ¢ € 0 —
(0—0),¥€(0—0)—0 and # 0¥ =1. The second idea is that it is perfectly possible to
have a type structure where everything is a function without D = D — D. In addition, the 1st
such structure that comes to mind has a wonderful automorphism group (known to us from a
representation of the Freyd—Heller group) which permits translation of local properties from
the simple type structure it contains. Finally, the automorphisms of the type structure and
Scott’s retracts, defined at higher types, share a functional equation which permits the transfer

of local properties of the type structure to the untyped case; namely,

o) ¥ = o % (a7 2)).

These ideas will lead us to a method for translating local properties of the simple typed
A calculus such as FD! and the Church—Rosser property. The ideas and results below provide

an alternative to Levy’s labeled A—calculus.
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)‘T
The type algebra T is generated from 0, 1,2, ..., n, ... (the generators) by the
operations
—:TxT—T
d0 :T—T
d1 :T—T
satisfying the relations
dy(e—1)=0¢
d(e—n)=r

(dye) — (d; 0) =0

— represents the function space construction, d0 the domain operation, and d1 the

codomain operation. T is obviously the free "surjective pairing" algebra on a countable

number of generators.

Each expression of T rewrites to a unique normal from having one of the shapes

where ¢ and 7 are themselves normal. The depth of an occurrence of a generator m in one of

these forms is defined by

depth (d; ...d, [m]) =k
1k

depth (¢ [m] — 7) =1 + depth (¢ [m])
depth (¢ — 7 [m]) = 1 + depth (7 [m])



Among the members of T are the simple types. These are generated from the
generators by — alone. S is the algebra of simple types.

Aut (T) is the automorphism group of T. Each member of Aut (T) is completely
determined by its action on the generators.

AT is the A calculus with Church types from T. This is well defined since TG Tp =
0T =g =0, ATy =1y )\T has two variants )\:IB“ and )‘%‘n’

Aut (T) actson AT a5 follows. Given 7 € Aut (T)

1) =x10)
"EF %) =1Z) (¥
1(A x &) = M(x) (L)

Clearly % —&, % __.
early (n)}/ & 1(%) 5) 1¥)

so Aut (T) actson A%‘( 7) Note that 7 € Aut (T) satisfies the functional equation

2%) ¥ =1F (L )

which expresses that 7 is "self conjugate."
We shall now define an extension of ,\T, AP ArT has new constants I‘Z(”) € o — 1(0)
foreach ¢ € T and 7€ Aut (T)

with rewrites
1(0) —_
Fa Xy I‘ 1 (x( I‘d 7(0) y)) fform

d o
()(x(r" y)) Bnform.

I‘Z(”) — Axy T
dyo dy1(o)



T

The action of Aut (T) extends to AI'" by conjugation

-1
" (PZO( )) 310(0300 7 (11(0))
and to )\I‘T ; as before,
B(n)
(a)
F A 3 Z——-’
sor? © " g Y

F € ATT is said to be well put together (w.p.t.) if each occurrence of I' in & isin

function position. Clearly w.p.t. is closed under 7 Define []: w.p.t. — N by

x]=1
FH=[8P+[¥] F#1

= 14[y] &=T
(%] = [ %]

PROPOSITION 1: Let & be well put together then every —p—>> reduction sequence

beginning with % terminates in a unique —T1>> normal form.

PROOF: First we calculate [T .5 #] = (%] + 1)% + [#] =[5 + 2L#] + [A] + 1> [#]° +
[#1+2=["(# (T ¥))] Thusany T reduction beginning with % terminates in at most
[Z] steps. To complete the proof observe that ——> satisfies the diamond property.

It is easily seen by induction on —yp—>> that if



A
—> %
p

WX

then there exists a unique residual of A in ¥, 4’,anda Z s.t.

53

A’ T §

_——’z
4 g

A reduction sequence
ZoT>> ST - T
is said to be ' complete if each 4 18 —1—>> normal.

PROPOSITION 2: Suppose & is well put together and % —BP—>> Y then thereisa T
complete reduction to the —T1>> normal of ¥ from %.

PROOF: By induction on the length of the reduction % —m——>> ¥- We distinguish two

cases.

CASE 1: & T>> Z —p—> #. Immediate by induction hypothesis and proposition 1.

CASE 2: & 7[.—>> z —%—-> #. By induction hypothesis thereis a ' complete reduction

from % tothe I' normal form of Z,say #. Now # has a unique residual A’ of A and



Thus the desired reduction is & > ¥ A,> /A4 —>> normal form
complete
S

AY is very familiar in both its § and fn variants. We shall be particularly interested
in two sorts of extensions of AS .
The first sort of extension is definitional extension. These have additional constants F

of various types and rewrites of the form

Fx .. X, —> % fform
F————> /\xl - Xy % fnform

where Z can contain constants previously defined in a well founded way.

The second sort of extension is extension of the type structure by products.

We shall assume that the reader is familiar with the properties of these objects.

A subgroup G C Aut (T) is said to be admissible if for each finite & ¢ T there exists
7€ G suchthat ¢ € F = 7 (¢) € S. Obviously, Aut (T) is itself admissible.

S

Consider now the definitional extension AI'* obtained from AS by adding constants

I‘; € o — 7 forall ¢ and 7 and rewrites

0o — T, T, v
02 _ T2 Xy — I‘,’_2 (X(Pal y)) pBform
1 1 1 2
To— T T, o
2 2 2 1
I‘a1 —r — Xy I‘,’_1 (=( 1‘02 y)) fnform

Note that there are no rewrites for I‘; and I‘;l.

THEOREM 1: Any reduction diagram which can be completed in AT ﬂ(fl) can be completed in

T
AL B(ny



PROOF: Given the )‘F'g(n) reduction diagram % let & be all the members of T appearing
in @. Since Aut (T) is admissible there exists 7 s.t. 0 € F = 7(0). Let P’ be the
completion of 7(P) in AT 2(17) Then the desired completion is 7_1 (@’). Here we shall
calculate 2 examples.

Church—Rosser:

Given /&’ in AT T
¢ 5 in AL S
pass to &/7( )\Q 8n)
Wy (%)

which can be completed by the Church—Rosser theorem. This "translates" to the completed

diagram.
. S
Z AT
4 \ AT B(n)
& 4
J Uz
4, &
7 (¥)
STANDARDIZATION:

Given & —>> # in ,\r'g(n) we obtain 7(.5) ——>> 7(#) in AT g(n)' By the



standardization theorem we have 7(.%) S>> 1(#) so translating yields & x>> #, in

T
A8 ()

UNTYPED A CALCULUS:

We shall now interpret the untyped A calculus in APT. Let & be well put together.
Then |%| is the result of erasing all types and occurrences of I' in .Z. For untyped %
define & T by

ENT=1725T 47T where T em
yTE Zand nis new

=)t =15 _, (A 7T where

T

Z €em+0 and nis new

T

Note that &~ is well defined and well put together and |.%| T_ s

THEOREM 2: Any reduction diagram which can be completed in )\I‘%‘ can be completed in
A i
REMARK: The theorem fails for 7.

PROOF: The proof is like the proof of theorem 1 except for the use of T complete reductions.
We calculate two examples. FD!:
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Given the untyped %, we have in /\I‘%‘ by FD!

[/ \L -2 toriceld Zevn
a//%%ﬂ{"c*"fs o7 g
3

Translating this back to A 8 gives

(/.g;
é@fzm%ﬁ 7 v4
4!

since | ¥| =%

STANDARDIZATION:

We shall take a much longer route than is necessary in order to show the usefulness of T
complete reductions. First, observe that propositions 1 and 2 hold for AT 2 although the
notions of I' normal are different.

The T complete reduction

Ay A

-

n
Fo—T>>H " F T > I

is said to be prestandard if whenever i < j we have a j is not residual of a redex to the left of

A..
1
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PROPOSITION 3: In AT ;’ if & ——>> ¥ then there exists a prestandard T complete
reduction to the —T1>> normal form of ¥ from .%.

PROOF: For .% € AT 5 define | Z| = v size of the AI' reduction graph of % + length of
%. We prove induction on || thatif & —r—>> # and ¥ is —p—>> normal then

thereis a I' complete prestandard reduction from % to #.

CASE 1: % is not —T1>> normal. Let Z be the —T1>> normal form of Z. Then
|Z] > |Z]| and Z T>> ¥ by proposition 2. Now apply the induction hypothesis.

CASE 2: % isin —T1>> normal form. If % is in head normal form

Axl . X x$1 .Zs

Iz,

t
AX

1%
the proposition follows immediately from the induction hypothesis. If % has a head redex

Axpoxp (AxZ,) & ... F we distinguish two cases.

v

'

CASEi: & ——>> ¥ without contracting a residual of aA. Then the proposition follows

immediately from the induction hypothesis applied to Ax.% 0 and the 2, i=1..s.
CASE ii: Some residual of A is contracted. Let
g8 sz ..x. |21 /x| B\ %, ... F
T = 1 oo t. 0 2 cee s.

By permutability of head contractions % —gr—>> ¥. Since |&| > |Z], by induction
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hypothesis there is a T complete prestandard reduction from Z to ¥ say £. The desired

reduction is % ——%—> R.

COROLLARY: In )\I‘g if & is well put together and & ——>> # then there exists a

prestandard T' complete reduction from % to the —p—>> normal form of %.

PROOF: Like the proof of theorem 1.
Standardization is now obtained for the untyped case by observing that if £ is T

complete prestandard then |£| is standard.
SUBGROUPS OF AUT (T).

A subgroup G C Aut (T) is said to be well orbited if whenever d, ... dik n belongs to
1

the G orbit of n we have k = 0.

Given the subgroup G, /\I‘g is defined like /\I‘T except that we require 7 € G.

THEOREM 3: Suppose that G is admissible and well orbited. Then for any untyped term

% the following are equivalent.

(1) 3gexy &=y
@ 3xex  F=|g

PROOF: Trivially (2) = (1). Suppose (1) since G is admissible we can assume that each
member of T appearingin ¥ actually belongs to S. Moreover, we can assume that we are
given 7p 0 € S 71 Tp € G such that 7j o, € S and whenever I‘Z(a) appearsin ¥ ois

ag; and 7isa 7 We shall construct an h € Hom (T) such that ho; =h (7j 0;). The
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desired & is then obtained from the given one by applying h and then deleting T.

To construct h we proceed as follows.

First, we expand S by adding a unary operation g 7 for each 7€ G. Let & be a finite
set of equations between expressions in the expanded language of S. We define certain rewrite

rules applicable to &, its equations, and the expressions in its equations as follows.

g, (0 — 1) — )  — ("
g7néa — nég7_la if ¢ isnot a
generator
0G0 Tg=01 T — 0G=0pTg=T1
& — [”|n]é’ ifnzoeé

and ¢ —/—>>n, g, 1

Where ¢ = 7 denotes ambiguously ¢ = 7 and 7 = ¢. The last rewrite is called a pivot on
n = ¢. Clearly if no pivot is applied the rewriting & terminates.
Now suppose G is well orbited and we are given 0y 0, € S and 71 Ty € G such
that 7, 7; € S. Let & =thesetof g 7. %= (aj). Note that each E € & is true of Sand G
i

and rewrites preserve truth. Now in the course of rewriting &, for any pivot on n = 7, we
have n ¢ ¢, for otherwise rewriting ¢ and applying d; and d, we would obtain dil... dik

n = 9(n) for some 7€ G and k > 0. Thus each pivot eliminates a generator from & and

rewriting & terminates.

Now when rewriting & terminates the equations in & have the form n=n or
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n:= g7n. Let

ny =0y

nké "k

be the pivots made on & in order of occurrence. If m € A then either no pivot is made on m
or the pivot made on m is at least the i + 15!, Now define an h € Hom (T) by h(m)=m
if no pivot is made on m h (n,) = h (s;) where each 8, in ¢ is interpreted as the identity.
Now apply h to each equation in & and each pivot, interpreting each g y as the identity.

The resulting equations are all true. Moreover this interpretation is preserved under rewrite

reversal. Thus we have
h o, =h(y f o)
for 1<i,j<n and h is as desired.

Admissible, well orbited subgroups of Aut (T) are easy to construct. For example, one

can easily be constructed from the infinite (rootless) homogeneous binary tree.
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