A LOCAL TRANSLATION OF UNTYPED λ CALCULUS INTO SIMPLY TYPED λ CALCULUS

by

Rick Statman

Department of Mathematics Carnegie Mellon University Pittsburgh, PA 15213

Research Report 91–134 July, 1991

,

510.6 C28R 91-134 University constant Jamegie Mellon University Pittsburgh, PA 15313-3890

A LOCAL TRANSLATION OF UNTYPED λ CALCULUS INTO SIMPLY TYPED λ CALCULUS

by

RICK STATMAN

JULY 1991

INTRODUCTION:

There are several ideas behind what follows. The first is Dana Scott's idea that untyped λ Calculus = unityped λ Calculus = simple typed λ Calculus with a retract pair $\bullet \in 0 \rightarrow (0 \rightarrow 0), \bullet \in (0 \rightarrow 0) \rightarrow 0$ and $\bullet \circ \bullet = I$. The second idea is that it is perfectly possible to have a type structure where everything is a function without $D = D \rightarrow D$. In addition, the 1st such structure that comes to mind has a wonderful automorphism group (known to us from a representation of the Freyd-Heller group) which permits translation of local properties from the *simple* type structure it contains. Finally, the automorphisms of the type structure and Scott's retracts, defined at higher types, share a functional equation which permits the transfer of local properties of the type structure to the untyped case; namely,

$$\alpha(\mathscr{Z}) \mathscr{Y} = \alpha(\mathscr{Z} (\alpha^{-1} \mathscr{Y})).$$

These ideas will lead us to a method for translating local properties of the simple typed λ calculus such as FD! and the Church-Rosser property. The ideas and results below provide an alternative to Levy's labeled λ -calculus.

2

 $\lambda^{\mathbf{T}}$

The type algebra T is generated from 0, 1, 2, ..., n, ... (the generators) by the operations

satisfying the relations

$$\begin{aligned} \mathbf{d}_0 & (\sigma \longrightarrow \tau) = \sigma \\ \mathbf{d}_1 & (\sigma \longrightarrow \tau) = \tau \\ (\mathbf{d}_0 \sigma) \longrightarrow (\mathbf{d}_1 \sigma) &= \sigma. \end{aligned}$$

 \rightarrow represents the function space construction, d₀ the domain operation, and d₁ the codomain operation. T is obviously the free "surjective pairing" algebra on a countable number of generators.

Each expression of T rewrites to a unique normal from having one of the shapes

$$\begin{array}{ccc}
\sigma \longrightarrow \tau \\
\mathbf{d_i} & \dots & \mathbf{d_i} & \mathbf{m} \\
\mathbf{i_1} & & \mathbf{k}
\end{array}$$

where σ and τ are themselves normal. The depth of an occurrence of a generator m is one of these forms is defined by

$$\begin{array}{l} \operatorname{depth} & (\operatorname{d}_{i_1} \dots \operatorname{d}_{i_k}[\mathrm{m}]) = -\mathrm{k} \\ \\ \operatorname{depth} & (\sigma \; [\mathrm{m}] \longrightarrow \tau) = 1 + \operatorname{depth} \; (\sigma \; [\mathrm{m}]) \\ \\ \\ \operatorname{depth} & (\sigma \longrightarrow \tau \; [\mathrm{m}]) = 1 + \operatorname{depth} \; (\tau \; [\mathrm{m}]) \end{array}$$

Among the members of T are the simple types. These are generated from the generators by \rightarrow alone. S is the algebra of simple types.

Aut (T) is the automorphism group of T. Each member of Aut (T) is completely determined by its action on the generators.

 $\lambda^{\mathbf{T}}$ is the λ calculus with Church types from **T**. This is well defined since $\sigma_0 \rightarrow \tau_0 = \sigma_1 \rightarrow \tau_1 \Rightarrow \sigma_0 = \sigma_1 \wedge \tau_0 = \tau_1$. $\lambda^{\mathbf{T}}$ has two variants $\lambda^{\mathbf{T}}_{\beta}$ and $\lambda^{\mathbf{T}}_{\beta\eta}$. Aut (**T**) acts on $\lambda^{\mathbf{T}}$ as follows. Given $\gamma \in \text{Aut}(\mathbf{T})$

$$\begin{split} \gamma(\mathbf{x}^{\sigma}) &= \mathbf{x}^{\gamma(\sigma)} \\ \gamma(\mathscr{F} \mathscr{Y}) &= \gamma(\mathscr{F}) \ \gamma(\mathscr{Y}) \\ \gamma(\lambda \mathbf{x} \mathscr{F}) &= \lambda \gamma(\mathbf{x}) \ \gamma(\mathscr{F}) \end{split}$$

Clearly $\mathscr{S} \xrightarrow{\Delta}_{\beta(\eta)} \mathscr{Y} \Leftrightarrow \gamma(\mathscr{S}) \xrightarrow{\gamma(\Delta)}_{\beta(\eta)} \gamma(\mathscr{Y})$ so Aut (T) acts on $\lambda_{\beta(\eta)}^{\mathbf{T}}$. Note that $\gamma \in \text{Aut}(\mathbf{T})$ satisfies the functional equation

$$\gamma(\mathscr{Z}) \mathscr{Y} = \gamma(\mathscr{Z} (\gamma^{-1} \mathscr{Y}))$$

which expresses that γ is "self conjugate."

We shall now define an extension of $\lambda^{\mathbf{T}}$, $\lambda\Gamma^{\mathbf{T}}$. $\lambda\Gamma^{\mathbf{T}}$ has new constants $\Gamma_{\sigma}^{\gamma(\sigma)} \in \sigma \longrightarrow \gamma(\sigma)$ for each $\sigma \in \mathbf{T}$ and $\gamma \in \text{Aut}(\mathbf{T})$

with rewrites

$$\Gamma_{\sigma}^{\gamma(\sigma)} \ge y \longrightarrow \Gamma_{d_{1}\sigma}^{d_{1}\gamma(\sigma)} (x(\Gamma_{d_{0}\sigma(\sigma)}^{d_{0}\sigma}y)) \quad \beta \text{ form}$$

$$\Gamma_{\sigma}^{\gamma(\sigma)} \longrightarrow \lambda xy \Gamma_{d_{1}\sigma}^{d_{1}\gamma(\sigma)} (x(\Gamma_{d_{0}\sigma(\sigma)}^{d_{0}\sigma}y)) \quad \beta\eta \text{ form}$$

The action of Aut (T) extends to $\lambda \Gamma^{T}$ by conjugation

$$\gamma_1 \left(\Gamma_{\sigma}^{\gamma_0(\sigma)} \right) = \Gamma_{\gamma_1}^{\gamma_1 \circ \gamma_0 \circ \gamma_1^{-1}} \left(\gamma_1(\sigma) \right)$$

and to $\lambda \Gamma^{\mathbf{T}}_{\beta(\eta)}$; as before,

$$\mathscr{F} \xrightarrow{\Delta} \mathscr{Y} \iff \gamma(\mathscr{F}) \xrightarrow{\gamma(\Delta)} \gamma(\mathscr{Y})$$

 $\mathscr{S} \in \lambda \Gamma^{\mathbf{T}}$ is said to be well put together (w.p.t.) if each occurrence of Γ in \mathscr{S} is in function position. Clearly w.p.t. is closed under $-\beta\Gamma$. Define []: w.p.t. $\rightarrow \mathbf{N}$ by

$$[\mathbf{x}] = 1$$
$$[\mathscr{S} \ \mathscr{Y}] = [\mathscr{S}]^2 + [\mathscr{Y}] \quad \mathscr{S} \neq \Gamma$$
$$= 1 + [\mathscr{Y}] \quad \mathscr{S} \equiv \Gamma$$
$$[\lambda \mathbf{x} \mathscr{S}] = [\mathscr{S}]$$

PROPOSITION 1: Let \mathscr{S} be well put together then every $-\frac{\Gamma}{\Gamma}$ >> reduction sequence beginning with \mathscr{S} terminates in a unique $-\frac{\Gamma}{\Gamma}$ >> normal form.

PROOF: First we calculate $[\Gamma \mathscr{S} \mathscr{Y}] = ([\mathscr{S}] + 1)^2 + [\mathscr{Y}] = [\mathscr{S}]^2 + 2[\mathscr{S}] + [\mathscr{Y}] + 1 > [\mathscr{S}]^2 + [\mathscr{Y}] + 2 = [\Gamma (\mathscr{K} (\Gamma \mathscr{Y}))]$. Thus any Γ reduction beginning with \mathscr{S} terminates in at most $[\mathscr{S}]$ steps. To complete the proof observe that $-\Gamma$ > satisfies the diamond property.

It is easily seen by induction on $-\frac{1}{\Gamma}$ >> that if

5

$$\begin{array}{c} \mathcal{W} \quad \stackrel{\Delta}{\longrightarrow} \\ \Gamma \stackrel{\mathcal{W}}{\underset{\mathcal{Y}}{\downarrow}} \quad \stackrel{\beta}{\longrightarrow} \quad \mathcal{X} \end{array}$$

then there exists a unique residual of Δ in \mathcal{Y} , Δ' , and a \mathcal{Z} s.t.

$$\begin{array}{c} x \\ y \\ \hline \\ \beta \end{array} \xrightarrow{\Delta' \Gamma} \begin{array}{c} y \\ \hline \\ \beta \end{array}$$

A reduction sequence

$$\mathscr{X}_0 \xrightarrow{\Gamma} >> \mathscr{Y}_0 \xrightarrow{\beta} \mathscr{X}_1 \xrightarrow{\Gamma} >> \dots \xrightarrow{\beta} \mathscr{X}_n \xrightarrow{\Gamma} >> \mathscr{Y}_n$$

is said to be Γ complete if each \mathcal{Y}_i is $-\Gamma$ >> normal.

PROPOSITION 2: Suppose \mathscr{S} is well put together and $\mathscr{S} \xrightarrow{\beta\Gamma} >> \mathscr{Y}$ then there is a Γ complete reduction to the $\xrightarrow{\Gamma} >>$ normal of \mathscr{Y} from \mathscr{S} .

PROOF: By induction on the length of the reduction $\mathscr{Z} \xrightarrow{\beta \Gamma} >> \mathscr{Y}$. We distinguish two cases.

CASE 1: $\mathscr{Z} \xrightarrow{-} > \mathscr{Z} \xrightarrow{-} \mathscr{Y}$. Immediate by induction hypothesis and proposition 1.

CASE 2: $\mathscr{X} \xrightarrow{\ \beta \Gamma} >> \mathscr{Z} \xrightarrow{\ \Delta \ \beta} \mathscr{Y}$. By induction hypothesis there is a Γ complete reduction from \mathscr{X} to the Γ normal form of \mathscr{Z} , say \mathscr{W} . Now \mathscr{W} has a unique residual Δ' of Δ and

Thus the desired reduction is $\mathscr{Z} \xrightarrow[]{\text{complete}} \mathscr{W} \xrightarrow{\Delta'} \mathscr{U} \xrightarrow{\Gamma} >> \text{ normal form}$

 $\lambda^{\mathbf{S}}$ is very familiar in both its β and $\beta\eta$ variants. We shall be particularly interested in two sorts of extensions of $\lambda^{\mathbf{S}}$.

The first sort of extension is definitional extension. These have additional constants F of various types and rewrites of the form

 $\begin{array}{ll} \mathrm{F} \ \mathrm{x}_1 \ \ldots \ \mathrm{x}_t & \longrightarrow & \mathcal{S} & \beta \ \mathrm{form} \\ \mathrm{F} & \longrightarrow & \lambda \mathrm{x}_1 \ \ldots \ \mathrm{x}_t \ \mathcal{S} & \beta \eta \ \mathrm{form} \end{array}$

where \mathscr{S} can contain constants previously defined in a well founded way.

The second sort of extension is extension of the type structure by products.

We shall assume that the reader is familiar with the properties of these objects.

A subgroup $G \subseteq Aut(T)$ is said to be admissible if for each finite $\mathscr{F} \subseteq T$ there exists $\gamma \in G$ such that $\sigma \in \mathscr{F} \Longrightarrow \gamma(\sigma) \in S$. Obviously, Aut (T) is itself admissible.

Consider now the definitional extension $\lambda \Gamma^{\mathbf{S}}$ obtained from $\lambda^{\mathbf{S}}$ by adding constants $\Gamma_{\sigma}^{\tau} \in \sigma \longrightarrow \tau$ for all σ and τ and rewrites

$$\Gamma_{\sigma_1}^{\sigma_2 \longrightarrow \tau_2} \xrightarrow{\tau_2} xy \longrightarrow \Gamma_{\tau_1}^{\tau_2} (x(\Gamma_{\sigma_2}^{\sigma_1} y)) \qquad \beta \text{ form}$$

$$\Gamma^{\sigma_2 \longrightarrow \tau_2}_{\sigma_1 \longrightarrow \tau_1} \longrightarrow \lambda_{xy} \Gamma^{\tau_2}_{\tau_1} (x(\Gamma^{\sigma_1}_{\sigma_2} y)) \qquad \beta\eta \text{ form}$$

Note that there are no rewrites for Γ_n^{τ} and Γ_{σ}^{n} .

THEOREM 1: Any reduction diagram which can be completed in $\lambda \Gamma_{\beta(\eta)}^{S}$ can be completed in $\lambda \Gamma_{\beta(\eta)}^{T}$.

PROOF: Given the $\lambda \Gamma_{\beta(\eta)}^{\mathbf{T}}$ reduction diagram \mathscr{D} let \mathscr{F} be all the members of \mathbf{T} appearing in \mathscr{D} . Since Aut (**T**) is admissible there exists γ s.t. $\sigma \in \mathscr{F} \Longrightarrow \gamma(\sigma)$. Let \mathscr{D}' be the completion of $\gamma(\mathscr{D})$ in $\lambda \Gamma_{\beta(\eta)}^{\mathbf{S}}$ Then the desired completion is $\gamma^{-1}(\mathscr{D}')$. Here we shall calculate 2 examples.

Church-Rosser:

pass to

which can be completed by the Church-Rosser theorem. This "translates" to the completed diagram.

STANDARDIZATION:

Given
$$\mathscr{S} \longrightarrow \mathscr{Y}$$
 in $\lambda \Gamma^{\mathbf{T}}_{\beta(\eta)}$ we obtain $\gamma(\mathscr{S}) \longrightarrow \gamma(\mathscr{Y})$ in $\lambda \Gamma^{\mathbf{S}}_{\beta(\eta)}$. By the

standardization theorem we have $\gamma(\mathscr{X}) \xrightarrow{\text{std.}} \gamma(\mathscr{Y})$ so translating yields $\mathscr{X} \xrightarrow{\text{std.}} \gamma(\mathscr{Y})$, in $\lambda \Gamma^{\mathbf{T}}_{\beta(\eta)}$.

UNTYPED λ CALCULUS:

We shall now interpret the untyped λ calculus in $\lambda \Gamma^{\mathbf{T}}$. Let \mathscr{S} be well put together. Then $|\mathscr{S}|$ is the result of erasing all types and occurrences of Γ in \mathscr{S} . For untyped \mathscr{S} define $\mathscr{S}^{\mathbf{T}}$ by

$$\mathbf{x}^{\mathbf{T}} = \Gamma_0^1 \mathbf{x}^0$$

 $(\mathscr{S}\mathscr{Y})^{T} = \Gamma_{m}^{\ \ \ \prime \longrightarrow \ n} \ \mathscr{S}^{T} \ \mathscr{Y}^{T} \ \text{where} \ \ \mathscr{S}^{T} \in m$

 $y^{\mathbf{T}} \in \mathcal{I}$ and n is new

$$(\lambda \mathbf{x} \mathscr{S})^{\mathbf{T}} = \Gamma_{0}^{n} \underset{\longrightarrow}{\longrightarrow} m (\lambda \mathbf{x}^{o} \mathscr{S}^{\mathbf{T}})$$
 where

$$\mathscr{S}^{\mathbf{T}} \in \mathbf{m} \neq 0$$
 and n is new

Note that $\mathscr{S}^{\mathbf{T}}$ is well defined and well put together and $|\mathscr{S}|^{\mathbf{T}} = \mathscr{S}$.

THEOREM 2: Any reduction diagram which can be completed in $\lambda \Gamma_{\beta}^{\mathbf{T}}$ can be completed in λ_{β} .

REMARK: The theorem fails for η .

PROOF: The proof is like the proof of theorem 1 except for the use of Γ complete reductions. We calculate two examples. FD!:

Translating this back to λ_{β} gives

since $|\mathcal{Y}| \equiv \mathscr{K}$

STANDARDIZATION:

We shall take a much longer route than is necessary in order to show the usefulness of Γ complete reductions. First, observe that propositions 1 and 2 hold for $\lambda \Gamma \frac{S}{\beta}$ although the notions of Γ normal are different.

The Γ complete reduction

$$\mathscr{X}_0 \xrightarrow{\Gamma} >> \mathscr{Y}_0 \xrightarrow{\Delta_1} \dots \xrightarrow{\Delta_n} \mathscr{X}_n \xrightarrow{\Gamma} >> \mathscr{Y}_n$$

is said to be prestandard if whenever i < j we have Δ_j is not residual of a redex to the left of ∆_i.

PROPOSITION 3: In $\lambda \Gamma \stackrel{\mathbf{S}}{\beta}$ if $\mathscr{X} \longrightarrow \mathscr{Y}$ then there exists a prestandard Γ complete reduction to the $-\Gamma \gg$ normal form of \mathscr{Y} from \mathscr{X} .

PROOF: For $\mathscr{S} \in \lambda \Gamma^{S}$ define $|\mathscr{S}| = \omega$ size of the $\beta \Gamma$ reduction graph of \mathscr{S} + length of \mathscr{S} . We prove induction on $|\mathscr{S}|$ that if $\mathscr{S} \xrightarrow{\beta \Gamma} >> \mathscr{Y}$ and \mathscr{Y} is $\xrightarrow{\Gamma} >>$ normal then there is a Γ complete prestandard reduction from \mathscr{S} to \mathscr{Y} .

CASE 1: \mathscr{X} is not $-\Gamma$ >> normal. Let \mathscr{X} be the $-\Gamma$ >> normal form of \mathscr{X} . Then $|\mathscr{X}| > |\mathscr{X}|$ and $\mathscr{Z} \xrightarrow{\beta\Gamma} >> \mathscr{Y}$ by proposition 2. Now apply the induction hypothesis.

CASE 2: \mathscr{S} is in $-\Gamma$ >> normal form. If \mathscr{S} is in head normal form

the proposition follows immediately from the induction hypothesis. If \mathscr{X} has a head redex $\lambda x_1 \dots x_t (\lambda x \mathscr{X}_0) \mathscr{X}_1 \dots \mathscr{X}_s$ we distinguish two cases.

CASE i: $\mathscr{S} \longrightarrow \mathscr{Y}$ without contracting a residual of Δ . Then the proposition follows immediately from the induction hypothesis applied to $\lambda x \mathscr{S}_0$ and the $\mathscr{S}_i i = 1 \dots s$.

CASE ii: Some residual of Δ is contracted. Let

$$\mathcal{Z} \xrightarrow{\Delta}_{\beta} > \mathcal{Z} \equiv \lambda \mathbf{x}_1 \dots \mathbf{x}_t \cdot \begin{bmatrix} \mathcal{Z}_1 / \mathbf{x} \end{bmatrix} \mathcal{Z}_0 \mathcal{Z}_2 \dots \mathcal{Z}_s.$$

By permutability of head contractions $\mathcal{Z} \xrightarrow{\beta \Gamma} >> \mathcal{Y}$. Since $|\mathcal{X}| > |\mathcal{Z}|$, by induction

hypothesis there is a Γ complete prestandard reduction from \mathbb{Z} to \mathcal{Y} say \mathcal{R} . The desired reduction is $\mathcal{K} \xrightarrow{\Delta} \beta > \mathcal{R}$.

COROLLARY: In $\lambda \Gamma_{\beta}^{\mathbf{T}}$ if \mathscr{X} is well put together and $\mathscr{X} \longrightarrow \mathscr{Y}$ then there exists a prestandard Γ complete reduction from \mathscr{X} to the $-\Gamma \gg$ normal form of \mathscr{Y} .

PROOF: Like the proof of theorem 1.

Standardization is now obtained for the untyped case by observing that if \mathcal{R} is Γ complete prestandard then $|\mathcal{R}|$ is standard.

SUBGROUPS OF AUT (T).

A subgroup $G \subseteq Aut(T)$ is said to be well orbited if whenever $d_{i_1} \cdots d_{i_k} n$ belongs to the G orbit of n we have k = 0. Given the subgroup G, $\lambda \Gamma_G^T$ is defined like $\lambda \Gamma^T$ except that we require $\gamma \in G$.

THEOREM 3: Suppose that G is admissible and well orbited. Then for any untyped term \mathscr{S} the following are equivalent.

(1)
$$\exists \mathcal{Y} \in \lambda \Gamma_{\mathbf{G}}^{\mathbf{T}}$$
 $\mathscr{S} = |\mathcal{Y}|$
(2) $\exists \mathcal{Y} \in \lambda^{\mathbf{S}}$ $\mathscr{S} = |\mathcal{Y}|$

PROOF: Trivially (2) \Rightarrow (1). Suppose (1) since G is admissible we can assume that each member of T appearing in \mathcal{Y} actually belongs to S. Moreover, we can assume that we are given $\sigma_1 \dots \sigma_n \in S$ $\gamma_1 \dots \gamma_n \in G$ such that $\gamma_j \sigma_i \in S$ and whenever $\Gamma_{\sigma}^{\gamma(\sigma)}$ appears in $\mathcal{Y} \sigma$ is a σ_i and γ is a γ_j . We shall construct an $h \in \text{Hom}$ (T) such that $h \sigma_i = h(\gamma_i \sigma_i)$. The

desired \mathcal{Y} is then obtained from the given one by applying h and then deleting Γ .

To construct h we proceed as follows.

First, we expand S by adding a unary operation g_{γ} for each $\gamma \in G$. Let \mathscr{E} be a finite set of equations between expressions in the expanded language of S. We define certain rewrite rules applicable to \mathscr{E} , its equations, and the expressions in its equations as follows.

generator

Where $\sigma \doteq \tau$ denotes ambiguously $\sigma = \tau$ and $\tau = \sigma$. The last rewrite is called a pivot on $n \doteq \sigma$. Clearly if no pivot is applied the rewriting \mathcal{E} terminates.

Now suppose G is well orbited and we are given $\sigma_1 \dots \sigma_n \in S$ and $\gamma_1 \dots \gamma_n \in G$ such that $\gamma_i \sigma_j \in S$. Let $\mathcal{E} =$ the set of $g_{\gamma_i} \sigma_j = \gamma_i (\sigma_j)$. Note that each $E \in \mathcal{E}$ is true of S and G and rewrites preserve truth. Now in the course of rewriting \mathcal{E} , for any pivot on $n \doteq \sigma$, we have $n \notin \sigma$, for otherwise rewriting σ and applying d_0 and d_1 we would obtain $d_{i_1} \dots d_{i_k}$ $n = \gamma(n)$ for some $\gamma \in G$ and k > 0. Thus each pivot eliminates a generator from \mathcal{E} and rewriting \mathcal{E} terminates.

Now when rewriting \mathcal{E} terminates the equations in \mathcal{E} have the form n = n or

$$n \doteq g_{\gamma} n. \text{ Let}$$

$$n_{1} \doteq \sigma_{1}$$

$$\vdots$$

$$n_{k} \doteq \sigma_{k}$$

be the pivots made on \mathscr{E} in order of occurrence. If $m \in \sigma_i$ then either no pivot is made on m or the pivot made on m is at least the $i + 1^{st}$. Now define an $h \in \text{Hom}(T)$ by h(m) = m if no pivot is made on m $h(n_i) = h(\sigma_i)$ where each g_{γ} in σ is interpreted as the identity. Now apply h to each equation in \mathscr{E} and each pivot, interpreting each g_{γ} as the identity. The resulting equations are all true. Moreover this interpretation is preserved under rewrite reversal. Thus we have

$$h \sigma_i = h(\gamma_i \sigma_i)$$

for $1 \leq i, j \leq n$ and h is as desired.

Admissible, well orbited subgroups of Aut (T) are easy to construct. For example, one can easily be constructed from the infinite (rootless) homogeneous binary tree.

÷

4