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We work in the S,K combinator calculus with weak /? reduction and conversion.

M is said to be hyperrecurrent if whenever M = N, N is recurrent [5]. We shall show

that there is no hyperrecurrent combinator. First we note the following

PROPOSITION 1: N is recurrent <=> Cpl (N) »N

PROOF: We observe first that M » N = > Cpl (M) » Cpl (N) by induction

on the length of a reduction sequence from M to N.

Namely,

M » f

e •—T^V

A/ "—-—# h
by FD! [1]. The proposition follows from the cofinality of Gross—Knuth sequences.

PROPOSITION 2: The following are equivalent

(1) M is hyperrecurrent

(2) P = M = Q => P » Q

(3) P » M =» M » P

PROOF: (1) =* (2) by the Church Rosser theorem and (2) =* (3) trivially. Suppose (3).

Recall the process of making M normal. Namely there is a normal N s.t NI >> M. We
^ 0

observe that NI » Q =* Q >> NI by induction on the length of a reduction



sequence. Namely,

NX
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Thus NI is recurrent; so, M is recurrent. Hence P = M => P > > M =* M > > P

and M is hyperrecurrent.

Recall the following definition from [3]. M is cyclically equivalent to N, M ~ N, if

M > > N and N >> M. We obtain the following

COROLLARY: M is not hyperrecurrent <=> M/= splits into at least infinitely many

singletons and one infinite cyclic quivalence classes.

PROOF: If M is hyperrecurrent then M/= is a cyclic equivalence class. If M is not

hyperrecurrent then by proposition 2 for each N = M there exists P > > N s.t. P is not

recurrent. For each such P there is a normal Q s.t. QI > > P so QI > >

Cpl(QI) > > P. Since QI is not recurrent Cpl (QI) —>l~*» QI. Thus, since QI has a

unique redex, QI lies on no reduction cycle. That there is at least one infinite cyclic

equivalence class as trivial.

M is said to have the upward Church Rosser property if whenever

P >> M < < Q these exists R s.t. P << R > > Q. Plotkin first gave an

example of a A term without the upward Church Rosser property ([!]).



Clearly if M is hyperrecurrent then it has the upward church Rosser property.

We observe here that it is impossible to construct effectively for each M a term Pj^-

such that Pjyj >> M but M / >> P*j because the Ershov fixed point theorem

applies to the relation >> (see [4]). We shall construct P M and Q M s.t. P M >>

M << Q M and either M - / - > > P M or M —f-» QM-

THEOREM: M has the upward Church Rosser property *=> M = an atom.

PROOF: =* Set fi = SII (SII). If N and 1ST are distinct normal terms then

fl N >> P => P >> Q N and P contains no subterm = f i N / . If M $ an atom and

N is normal set aN = [x]M (Q N) so c*N >> M
head

(1) If P has order 0 and [x]M/? >> P then P contains a trace of /5 and every trace

of 0 = 0.

Consider a head reduction 9t beginning with [x]M /?. We partition 9t into segments

9t, 5?2 ••• ^ i ^- Each 91* begins with an applicative combination of terms of the form [x]Q

/? and proceeds by simulating, with /? for x, a canonical (see [6] pg. 36) head reduction until a

term of the form K A j S L ... Ro is obtained, where A is an atom. At this stage s f 0 since
1 S

M / A. 91- then terminates by projecting (3 and applying the reduction rule for A if a head

redex results from the projection. The trailing <$f is just a partial such segment.

(2) Suppose

/ v m trteps

MM '



Then there exist L, P, Q, R such that

. -^—» d
A/ ^ i

= ( L ±> )

» d
and J contains a trace of H

The proof is by induction on the length of the reduction G » [x]M. The basis

case is just (1) and its proof. Now suppose G ^ F » [x]M. We simulate the head

reduction from GH with FH. This is nothing more than paying attention to the proof of the

strip lemma ([1]). The simulation can be obtained vertically by replacing the residuals of A by

its immediate reduct A' . Horizontally, head reductions are skipped when A is at the head.

All these occurrences are disjoint from traces of H. Applying the induction hypothesis gives

vs 4^

Now it cannot be that some whole term in the head reduction from GH consists of a residual

of A. Since this contradicts the fact that the corresponding term in the head reduction of FH

has a trace of H. Thus J s LP and L C p l ^ ! ^ ^ s
 n a n d p cpl_^residuals y

(3) Suppose a ^ « p » ^ . Then for some i aN » a .
1 i 1—i



If aN « F ->> a^ then by the standardization theorem there exist

L, P, Q, R s.t.

r.
i fiiea.

( l a ) • » (

MM (J?M;
/ - I

head
By (2) there exist U, V s.t. c*N — » UV, U — » [x]M and V — » ft N ^ . This

proves (3).

Next we consider a head reduction beginning with aM and we mark exactly those

terms GH s.t. G — » [x]M and H » Q N for some normal N

N
o

\

«r • ©

For i = 1, 2, ... we can apply (2) to obtain

i '
(J2A/- )
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By (1) all the traces of Q N. in XL V- are = fi N.. We indicate these by writing U. = U.

[Q N.] and V. = V. [Q N.]. In particular, we have either Vjx] » x or V.[x] » fl

N.+ 1 . Observe that in the first case N.+^ = N. and this applies equally well to i = 0 with

H l for V r SuPP°se n o w t h a t * i s s m a i l e s t s-t- V.[x] >> Q N . + 1 and N J + 1 i NQ.

Then we have

head
[x] M (0 NQ) » U. [fl NQ] V. [0 No]

u < k. steps

[x]M

by substitution. Hence i = 1, and by similar reasoning for all i > 1 N. = N.. We conclude

(4) For each normal N there is at most one normal N7 f N such that a^ >> a^,.

We are now ready to conclude the proof of =>. (3) and (4) imply that for any 3 distinct

â r at most 2 pairs are reducts of a common term.

<= Suppose M = the atom A and P >> A << Q. Consider the reduction

P >> A. A is the trace of a unique occurrence of A in P which we indicate P[A]. Then

P « P[Q] » Q. This completes the proof.
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