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We work in the S,K combinator calculus with weak [ reduction and conversion.
M is said to be hyperrecurrent if whenever M = N, N is recurrent [5]. We shall show

that there is no hyperrecurrent combinator. First we note the following

PROPOSITION 1: N is recurrent & Cpl (N) —>> N

PROOF: We observe first that M ——>> N= Cpl (M) ——>> Cpl (N) by induction
on the length of a reduction sequence from M to N.

Namely,
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by FD! [1]. The proposition follows from the cofinality of Gross—Knuth sequences.

PROPOSITION 2: The following are equivalent
(1) M is hyperrecurrent
2 P=M=Q = P—>> Q
B P—>>M=M—>>P

PROOF: (1) = (2) by the Church Rosser theorem and (2) = (3) trivially. Suppose (3).

Recall the process of making M normal. Namely there is a normal N s.t NI n>> M. We
observe that NI —>> Q = Q ——>> NI by induction on the length of a reduction



sequence. Namely,
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Thus NI is recurrent; so, M is recurrent. Hence P=M =P —>>M= M —>>P
and M is hyperrecurrent.

Recall the following definition from [3]. M is cyclically equivalent to N, M ~ N, if
M ——>> N and N——>> M. We obtain the following

COROLLARY: M is not hyperrecurrent & M/= splits into at least infinitely many

singletons and one infinite cyclic quivalence classes.

PROOF: If M is hyperrecurrent then M/= is a cyclic equivalence class. If M is not
hyperrecurrent then by proposition 2 for each N = M there exists P ——>> N s.t. P is not

recurrent. For each such P there is a normal Q s.t. QI —6>> P so QI —>>
#

Cpl (QI) —>> P. Since QI is not recurrent Cpl (QI) —4=>> QI. Thus, since QI has a
unique redex, QI lies on no reduction cycle. That there is at least one infinite cyclic
equivalence class as trivial.

M is said to have the upward Church Rosser property if whenever

P——>> M <<—— Q these exists Rs.t. P << R >> Q. Plotkin first gave an

example of a A term without the upward Church Rosser property ([1]).



Clearly if M is hyperrecurrent then it has the upward church Rosser property.

We observe here that it is impossible to construct effectively for each M a term Pu
such that PM —>>M but M —fe>> PM because the Ershov fixed point theorem
applies to the relation —>> (see [4]). We shall construct Py, and Qpp s.t. Py —>>
M <<——Qy and either M —f=>> Py or M —f=>> Q1.

THEOREM: M has the upward Church Rosser property & M = an atom.

PROOF: = Set € =SII(SII). If N and N’ are distinct normal terms then
ON—>>P=P——>> QN and P contains no subterm = Q N’/. If M # an atom and

N is normal set ap = [x]M (2 N) so oy —>>M

head
(1) If g hasorder 0 and [x]M 8

of =4

Consider a head reduction £ beginning with [x]M §. We partition &£ into segments

>> P then P contains a trace of § and every trace

& Ry - &y . Each R, begins with an applicative combination of terms of the form [x]Q
f and proceeds by simulating, with S for x, a canonical (see [6] pg. 36) head reduction until a
term of the form K A g R1 Rs is obtained, where A is an atom. At this stage s # 0 since
M#A. %, then terminates by projecting § and applying the reduction rule for A if a head
redex results from the projection. The trailing o is just a partial such segment.

(2)  Suppose
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Then there exist L, P, Q, R such that

J= L P )
bea O \\l /2717 )
2 » ,
O(A/ <4 STeps (@

and J contains a trace of H

The proof is by induction on the length of the reduction G —>> [x]M. The basis
case is just (1) and its proof. Now suppose G 24 F—>> [x]M. We simulate the head
reduction from GH with FH. This is nothing more than paying attention to the proof of the
strip lemma, ([1]). The simulation can be obtained vertically by replacing the residuals of a by
its immediate reduct a’. Horizontally, head reductions are skipped when A is at the head.

All these occurrences are dis joint from traces of H. Applying the induction hypothesis gives
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Now it cannot be that some whole term in the head reduction from GH consists of a residual

of A. Since this contradicts the fact that the corresponding term in the head reduction of FH

cpl a residuals cpl A residuals
has a trace of H. Thus J=LP and L _— Uand P —_— 'V

(3) Suppose aNO <<—F —>> @y - Then for some i aNi —>> ay
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If oy <<—F—>> o then by the standardization theorem there exist

0 1
L,P,Q,Rs.t.
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By (2) there exist U, V s.t. oy, —>>UV,U—>>[x]M and V—>>QN,_.. This
i
proves (3).
Next we consider a head reduction beginning with o and we mark exactly those
0
terms GH s.t. G —>> [x]M and H—>> Q N for some normal N
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For i =1, 2, ... we can apply (2) to obtain
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By (1) all the traces of @ N; in U, V; are=Q N.. We indicate these by writing U, = U,

[@N;] and V, =V, [2 N;]. In particular, we have either Vx| >>x or Vi[x] —>>Q

Ni 41 Observe that in the first case Ni 1% Ni and this applies equally well to i =0 with
H, for V,. Suppose now that i is smallest s.t. V,[x] —>> QN , and N;_ 4 £ N,

Then we have

head
[x] M (Q NO) _—>> Ui [Q NO] Vi [Q NO]
< ki s teps S/
7

by substitution. Hence i =1, and by similar reasoning for all i> 1 Nj = Nl' We conclude
(4) For each normal N there is at most one normal N’ # N such that oy —>> oy
We are now ready to conclude the proof of =. (3) and (4) imply that for any 3 distinct
ay at most 2 pairs are reducts of a common term.
& Suppose M = the atom A and P —>> A <<—— Q. Consider the reduction
P —>> A. Ais the trace of a unique occurrence of A in P which we indicate P[A]. Then

P <<——P[Q] —>> Q. This completes the proof.



[1]
[2]
(3]

(4]
[5]
[6]

e 18 208

ﬂ|\HHI\\\|\l|\l\l|\l\|lI\T!\|\|\\\\l\ll\lll\ﬂ :

3 aya2 013k38

REFERENCES

Barendregt The Lambda Calculus, North Holland 1984.
Klop Combinatory Reduction Systems, Mathematisch Centrum 1980.

Reduction Cycles in Combinatory Logic, in Curry Festschrift North Holland 1980, Seldin
& Hindley eds 193-214

Visser Numerations, A—Calculus, and Arithmetic, in Curry Festschrift 259—284.
Venturini Zilli Reduction Graphs in the A Calculus, TCS 29 (1984) 251-275.
Curry, Hindley and Seldin Combinatory Logic II, North Holland 1972.



