THERE IS NO HYPERRECURRENT S, K COMBINATOR by

Rick Statman

Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Research Report $91-133_{2}$
June, 1991

THERE IS NO HYPERRECURRENT S,K COMBINATOR

by
RICK STATMAN
JUNE 1991

Unversty Lbranes
Comie Aflion Unversity

$$
2415213-3890
$$

We work in the S, K combinator calculus with weak β reduction and conversion.
M is said to be hyperrecurrent if whenever $\mathrm{M}=\mathrm{N}, \mathrm{N}$ is recurrent [5]. We shall show that there is no hyperrecurrent combinator. First we note the following

PROPOSITION 1: N is recurrent $\Leftrightarrow \mathrm{Cpl}(\mathrm{N}) \longrightarrow>\mathrm{N}$

PROOF: We observe first that $\mathrm{M} \longrightarrow>\mathrm{N} \Rightarrow \mathrm{Cpl}(\mathrm{M}) \longrightarrow>\mathrm{Cpl}(\mathrm{N})$ by induction on the length of a reduction sequence from M to N .

Namely,

by FD! [1]. The proposition follows from the cofinality of Gross-Knuth sequences.

PROPOSITION 2: The following are equivalent
(1) M is hyperrecurrent
(2) $\mathrm{P}=\mathrm{M}=\mathrm{Q} \Rightarrow \mathrm{P} \longrightarrow>\mathrm{Q}$
(3) $\mathrm{P} \longrightarrow>\mathrm{M} \Rightarrow \mathrm{M} \longrightarrow>P$

PROOF: $(1) \Longrightarrow(2)$ by the Church Rosser theorem and (2) \Rightarrow (3) trivially. Suppose (3).
Recall the process of making M normal. Namely there is a normal N st NI $\underset{\neq \emptyset}{\longrightarrow}>M$. We observe that $\mathrm{NI} \longrightarrow>\mathrm{Q} \Rightarrow \mathrm{Q} \longrightarrow>$ NI by induction on the length of a reduction
sequence. Namely,

Thus NI is recurrent; so, M is recurrent. Hence $P=M \Rightarrow P \longrightarrow P M P$ and M is hyperrecurrent.

Recall the following definition from [3]. M is cyclically equivalent to $\mathrm{N}, \mathrm{M} \sim \mathrm{N}$, if $\mathrm{M} \longrightarrow>\mathrm{N}$ and $\mathrm{N} \longrightarrow>\mathrm{M}$. We obtain the following

COROLLARY: M is not hyperrecurrent $\Leftrightarrow M /=$ splits into at least infinitely many singletons and one infinite cyclic quivalence classes.

PROOF: If M is hyperrecurrent then $M /=$ is a cyclic equivalence class. If M is not hyperrecurrent then by proposition 2 for each $N=M$ there exists $P \longrightarrow P N$ s.t. P is not recurrent. For each such P there is a normal Q s.t. $\mathrm{QI} \underset{\neq \emptyset}{\longrightarrow}>\mathrm{P}$ so $\mathrm{QI} \longrightarrow>$ $\mathrm{Cpl}(\mathrm{QI}) \longrightarrow>P$. Since QI is not recurrent $\mathrm{Cpl}(\mathrm{QI}) \longrightarrow \gg$ QI. Thus, since QI has a unique redex, QI lies on no reduction cycle. That there is at least one infinite cyclic equivalence class as trivial.

M is said to have the upward Church Rosser property if whenever $\mathrm{P} \longrightarrow>\mathrm{M} \ll-\mathrm{Q}$ these exists R s.t. $\mathrm{P} \ll-\mathrm{R} \longrightarrow>\mathrm{Q}$. Plotkin first gave an example of a λ term without the upward Church Rosser property ([1]).

Clearly if M is hyperrecurrent then it has the upward church Rosser property.
We observe here that it is impossible to construct effectively for each M a term P_{M} such that $P_{M} \longrightarrow>M$ but $M \xrightarrow{\longrightarrow}>P_{M}$ because the Ershov fixed point theorem applies to the relation $\longrightarrow>$ (see [4]). We shall construct P_{M} and Q_{M} s.t. $P_{M} \longrightarrow>$ $\mathrm{M} \ll-\mathrm{Q}_{\mathrm{M}}$ and either $\mathrm{M} \longrightarrow>\mathrm{P}_{\mathrm{M}}$ or $\mathrm{M} \xrightarrow{\longrightarrow}>\mathrm{Q}_{\mathrm{M}}$.

THEOREM: M has the upward Church Rosser property $\Leftrightarrow M=$ an atom.

PROOF: \Rightarrow Set $\Omega \equiv$ SII (SII). If N^{\prime} and N^{\prime} are distinct normal terms then $\Omega \mathrm{N} \longrightarrow>P \Longrightarrow P \longrightarrow>S$ and P contains no subterm $=\Omega N^{\prime}$. If $M \neq$ an atom and N is normal set $\alpha_{N} \equiv[\mathrm{x}] \mathrm{M}(\Omega \mathrm{N})$ so $\alpha_{\mathrm{N}} \longrightarrow>\mathrm{M}$

```
head
```

(1) If β has order 0 and $[\mathrm{x}] \mathrm{M} \beta \xrightarrow{\text { head }}>\mathrm{P}$ then P contains a trace of β and every trace of $\beta \equiv \beta$.

Consider a head reduction \mathscr{R} beginning with $[\mathrm{x}] \mathrm{M} \beta$. We partition \mathscr{R} into segments $\mathscr{R}_{1} \mathscr{R}_{2} \ldots \mathscr{R}_{1} \mathscr{\mathscr { L }}$. Each \mathscr{R}_{i} begins with an applicative combination of terms of the form [x]Q β and proceeds by simulating, with β for x , a canonical (see [6] pg. 36) head reduction until a term of the form $\mathrm{KA} \beta \mathrm{R}_{1} \ldots \mathrm{R}_{\mathrm{s}}$ is obtained, where A is an atom. At this stage $\mathrm{s} \neq 0$ since $\mathrm{M} \neq \mathrm{A} . \mathscr{R}_{\mathrm{i}}$ then terminates by projecting β and applying the reduction rule for A if a head redex results from the projection. The trailing \mathscr{H} is just a partial such segment.
(2) Suppose

Then there exist L, P, Q, R such that

and J contains a trace of H
The proof is by induction on the length of the reduction $G \longrightarrow>[x] M$. The basis case is just (1) and its proof. Now suppose $G \xrightarrow{\Delta} \boldsymbol{F} \longrightarrow>[x] M$. We simulate the head reduction from GH with FH. This is nothing more than paying attention to the proof of the strip lemma ([1]). The simulation can be obtained vertically by replacing the residuals of Δ by its immediate reduct Δ^{\prime}. Horizontally, head reductions are skipped when Δ is at the head. All these occurrences are disjoint from traces of H. Applying the induction hypothesis gives

111

$\stackrel{\downarrow}{\boxed{L} \cdot \mathrm{~J}}$

Now it cannot be that some whole term in the head reduction from GH consists of a residual of Δ. Since this contradicts the fact that the corresponding term in the head reduction of FH has a trace of H . Thus $\mathrm{J} \equiv \mathrm{LP}$ and $\mathrm{L} \xrightarrow{\text { cpl } \Delta \text { residuals }} \mathrm{U}$ and $\mathrm{P} \xrightarrow{\text { cpl } \Delta \text { residuals }} \mathrm{V}$
(3) Suppose $\alpha_{N_{0}} \ll \longrightarrow \mathrm{~F} \longrightarrow>\alpha_{N_{1}}$. Then for some i $\alpha_{N_{i}} \longrightarrow>\alpha_{N_{1-i}}$.

If $\alpha_{\mathrm{N}_{0}} \ll-\mathrm{F} \longrightarrow>\alpha_{\mathrm{N}_{1}}$ then by the standardization theorem there exist $\mathrm{L}, \mathrm{P}, \mathrm{Q}, \mathrm{R}$ st.

By (2) there exist U, V s.t. $\alpha_{N_{i}} \longrightarrow \gg \mathrm{Lead}, U \longrightarrow>[x] M$ and $V \longrightarrow>\mathrm{N}_{1-\mathrm{i}}$. This proves (3).

Next we consider a head reduction beginning with $\alpha_{N_{0}}$ and we mark exactly those terms GH s.t. $\mathrm{G} \longrightarrow>[\mathrm{x}] \mathrm{M}$ and $\mathrm{H} \longrightarrow>\Omega \mathrm{N}$ for some normal N

For $\mathrm{i}=1,2, \ldots$ we can apply (2) to obtain

By (1) all the traces of $\Omega \mathrm{N}_{\mathrm{i}}$ in $\mathrm{U}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}$ are $\equiv \Omega \mathrm{N}_{\mathrm{i}}$. We indicate these by writing $\mathrm{U}_{\mathrm{i}} \equiv \mathrm{U}_{\mathrm{i}}$ $\left[\Omega \mathrm{N}_{\mathrm{i}}\right]$ and $\mathrm{V}_{\mathrm{i}} \equiv \mathrm{V}_{\mathrm{i}}\left[\Omega \mathrm{N}_{\mathrm{i}}\right]$. In particular, we have either $\mathrm{V}_{\mathrm{i}}[\mathrm{x}] \longrightarrow>\mathrm{x}$ or $\mathrm{V}_{\mathrm{i}}[\mathrm{x}] \longrightarrow>\Omega$ $\mathrm{N}_{\mathrm{i}+1}$. Observe that in the first case $\mathrm{N}_{\mathrm{i}+1} \equiv \mathrm{~N}_{\mathrm{i}}$ and this applies equally well to $\mathrm{i}=0$ with H_{1} for V_{1}. Suppose now that i is smallest s.t. $\mathrm{V}_{\mathrm{i}}[\mathrm{x}] \longrightarrow>\Omega \mathrm{N}_{\mathrm{i}+1}$ and $\mathrm{N}_{\mathrm{i}+1} \not \equiv \mathrm{~N}_{0}$. Then we have

$$
[\mathrm{x}] \mathrm{M}\left(\Omega \mathrm{~N}_{0}\right) \xrightarrow{\text { head }} \underset{\mathrm{k}}{\mathrm{k}}>_{\mathrm{i} \text { teps }}^{\mathrm{U}_{\mathrm{i}}}\left[\Omega \mathrm{~N}_{0}\right] \mathrm{V}_{\mathrm{i}}\left[\Omega \mathrm{~N}_{0}\right]
$$

by substitution. Hence $i=1$, and by similar reasoning for all $i \geq 1 N_{j} \equiv N_{1}$. We conclude (4) For each normal N there is at most one normal $N^{\prime} \not \equiv N$ such that $\alpha_{N} \longrightarrow>\alpha_{N^{\prime}}$

We are now ready to conclude the proof of \Rightarrow. (3) and (4) imply that for any 3 distinct α_{N} at most 2 pairs are reducts of a common term.
\Leftarrow Suppose $\mathrm{M}=$ the atom A and $\mathrm{P} \longrightarrow>\mathrm{A} \ll-\mathrm{Q}$. Consider the reduction $P \longrightarrow>A$. A is the trace of a unique occurrence of A in P which we indicate $P[A]$. Then $\mathrm{P} \ll-\mathrm{P}[\mathrm{Q}] \longrightarrow>\mathrm{Q}$. This completes the proof.

REFERENCES

[1] Barendregt The Lambda Calculus, North Holland 1984.
[2] Klop Combinatory Reduction Systems, Mathematisch Centrum 1980.
[3] Reduction Cycles in Combinatory Logic, in Curry Festschrift North Holland 1980, Seldin \& Hindley eds 193-214
[4] Visser Numerations, λ-Calculus, and Arithmetic, in Curry Festschrift 259-284.
[5] Venturini Zilli Reduction Graphs in the λ Calculus, TCS 29 (1984) 251-275.
[6] Curry, Hindley and Seldin Combinatory Logic II, North Holland 1972.

