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Decidable discriminator varieties
with lattice stalks

Ross Willard

Abstract

We determine those universal classes of lattices which generate a
decidable discriminator variety when augmented by a ternary discrim-
inator term. They are the locally finite universal classes whose finite
members are almost homogeneous.

1 Introduction
We are interested in determining which varieties have a decidable first-order
theory. For locally finite varieties, R. McKenzie and M. Valeriote [8] have
succeeded in reducing this problem to two special subproblems:

PROBLEM 1: For which finite rings R with unit is the variety of unitary left
R-modules decidable?

PROBLEM 2: Which locally finite discriminator varieties (in a finite lan-
guage) are decidable?

In this paper we continue our investigation [11, 9] of Problem 2.
The ternary discriminator on the set A is the function t^ : A3 —* A

given by tA(xyy,z) = x if x ^ y, t(x,x,z) = z. A discriminator variety is a
variety V for which there is a term £(x,y,z) in the language of V which de-
fines the ternary discriminator on the universe of every nontrivial subdirectly
irreducible member of V.

There is a canonical way to generate discriminator varieties. Let K be a
universal (i.e., definable by a set of universal first-order sentences) class of
algebras in the language L, let t be a ternary operation symbol not occurring
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in L, and let L(t) denote the language LU {t}. If A € K then A1 denotes the
L(t)-algebra (A,tA) , and Kl denotes {A1 : A € £ } . Then the variety V(K:t)
generated by K} is a discriminator variety, and every discriminator variety is
definitionally equivalent to one of that form.

In Section 4 we consider discriminator varieties of the form V(/Ct) where
K is a universal class of lattices, and describe which classes produce decidable
discriminator varieties. One characterization is the following. Let Q be the
chain of rational numbers under their usual ordering; let Nw be the unique
countably infinite lattice of height 3 having exactly one 4-element chain; let
MW)2 be the unique countably infinite modular lattice of height 3 having
exactly two coatoms (see Figure 1); and let M2,w be the dual of Mw,2- Then
for any universal class K of lattices, V(JC*) is decidable if and only if K omits
each of Q, Nw , MWt2, and M2,u>-

The result we shall use to establish undecidability is the following special
case of Lemma 4.1 from [11].

LEMMA 1,1 Let A be an algebra in the language L, and S a subalgebra of
A. Suppose there exist first-order L-formulas fi(x), T(X), and rp(z) such that,
setting M = nA\s,T = M D r A | 5 , and AutM S = {(76 Aut S : <r(M) = M},

(i) M is infinite while T is finite;

(ii) M = U M T ) : a € AutMS};

(iii) t/>A # 0 but ^ A | 5 = 0.

Then the class P8({S, A} ) is hereditarily undecidable.

The reader may already see how Lemma 1.1 can be applied to each of the
four forbidden lattices mentioned above (for Q one must choose A to be a
proper sublattice of Q).

Most of this paper is devoted to establishing that V(/Ct) is decidable
assuming that K omits Q, Nu,, MWt2 and M2,u>. The proof requires an im-
provement of existing technology for analyzing the first-order theory of dis-
criminator varieties. Specifically, we isolate a version of homogeneity which
is weaker than the one considered in [11], and we prove its relevance to the
general Problem 2. This is the real contribution of this paper.

We adopt the following conventions. A < ^ Flxex ^>* means that A
is a Boolean product of the*family (Ax)x €x (see [3] or [4]). We refer to the



Figure 1

members of (Ax)x€x as the stalks of A. For a class K, Ta(K) denotes the class
of all Boolean products with stalks from /C When referring to a particular
Boolean product of (A x ) x €x w shall assume that the Boolean topology on
X is specified.

If A ^HrpTixex ^x them: A is a subuniverse of the L(t)-algebra Ylx^x A*
We denoteilhe corresponding subalgebra of T\xex Ax by A(t). Clearly A(t)

; t). Conversely:

.

THEOREM 1.2 (Bulman-Fleming, Werner [1]) Suppose fC is a universal
class of algebras.

(i) If B € V ( ^ ) and \B\ > 1, then B S A(t) for some A € Ta()C).

(ii) If mMcmK&rM is countable, then the BcoJeaa product A <t>p Hx€x Ax

referred to in (i) c*n be chosen so that the Boolean topology on X has
only cotmtably many clopen sets.

If tC is a class of algebras in the language L, then Thv(£) denotes the
set of all universal (first-order) L-sentences true in all members of K. fC/in is
the class of all finite members of AC. A laitice has height n if it contains an
(n+L)-elenGLent chaia but no (nHr2)-efement chain. We say that an algebra is
n-generatesi if it is generated by a subset of cardinality at most n.



2 Homogeneity
A locally finite algebra A shall be called homogeneous if every isomorphism
between finite subalgebras of A can be extended to an automorphism of A.
If K is a locally finite universal class of algebras in a finite language, then
we say that K is homogeneous provided each of its finite (equivalently, each
of its countable) members is homogeneous. In [2] S. Burris, R. McKenzie,
and M. Valeriote established the following connection between homogeneous
classes and decidable discriminator varieties: if K is a locally finite universal
class of algebras in a finite language, and if /C is homogeneous in the above
sense and is finitely axiomatizable, then V(/C*) is decidable.

In this section we present several "finite perturbations" of the notion of
/C being homogeneous, each involving the existence of a finite set /Co of finite
members of K satisfying

(1) S(/Co) C I(/Co).

(2) (If the language of fC contains constant symbols): Every O-generated
member of tC is in I(/Co).

Definition 2.1 Suppose K is a locally finite universal class of algebras in a
finite language, /Co is a finite set of finite members of /C satisfying conditions
(1) and (2) above, and A € /C. A maximal Ko-subuniverse of A is a subuni-
verse Ao such that (i) either Ao = 0 or Ao is isomorphic to some member of
/Co, and (ii) Ao is maximal (among subuniverses of A ordered by inclusion)
with respect to property (i).

Observe that if /Co satisfies conditions (1) and (2), then every algebra
in /C has at least one maximal /Co-subuniverse; and if Ao is a maximal /Co-
subuniverse of A and B < A, then AQC\ B can be extended to a maximal
/Co-subuniverse of B (in particular, if Ao C B then Ao is a maximal /Co-
subuni verse of B).

The perturbations of homogeneity that we have in mind axe most easily
stated in terms of "extension conditions," by which we mean the following.
Suppose A is an algebra, Ao is a subuniverse, and B and B ' are subal-
gebras of A satisfying B 0 Ao = Bf C\ AQ. Then the extension condition
exi(A, Ao,B,B ;) is the claim that every isomorphism a : B = B7 satisfying

C&11 be extended to an automorphism a of A satisfying



&\AQ = id^. So for example, a locally finite algebra A is homogeneous if and
only if ezt(A, SgA(0), B, B') holds for all finite subalgebras B and B' of A.

Definition 2.2 Let K be a locally finite universal class of algebras in a finite
language, and n € {0,1,2,3}. K satisfies Hn if there exists a finite set JCQ
(called a witnessing set) of finite members of K satisfying the conditions (1)
and (2) above and

• (if n = 0) for every A 6 /C/,n there exists a maximal /Co-subuniverse
Ao of A such that for all subalgebras B, B ; of A satisfying Ao C B
and Ao C B', ez<(A, A0 ,B,B') holds.

• (if n = 1) for every A 6 /C/;n and every maximal /Co-subuniverse Ao of
A, and for all subalgebras B, B' of A satisfying Ao C B and Ao C J9',
ez*(A,A0,B,B') holds.

• (if n = 2) for every A € /C/tn and every maximal /Co-subuniverse Ao

of A, and for all subalgebras B, B' of A for which B fl Ao = B1 D Ao,
if B n Ao is itself a maximal /C0-subuniverse of both B and B' then
ez*(A,Ao,B,B') holds.

• (if n = 3) for every A € Kj%n and every subuniverse Ao of A, if
there exists C € K, and a maximal /Co-subuniverse Co of C such that
A < C and Ao = A fl Co, then for all subalgebras B, B' of A for which
B n Ao = B' n Ao, txt(A, Ao, B, B') holds.

For the sake of completeness, we shall also say that K satisfies H4 if K is
homogeneous. Clearly H3 =4» H2 => Hi =̂  Ho since (for n < 3) Hn requires
fewer extension conditions than does Hn+i with respect to a given set Ko-
And H4 implies H3 because if AC is homogeneous then we can always let fCo
be the set (possibly empty) consisting of one member from each isomorphism
class of the 0-generated members of AC. (/Co will be finite because the language
of K is finite.)

On the other hand, H3 is strictly weaker than H4 since, for example, if /Co
is any finite set of finite algebras (in a finite language) then IS (/Co) satisfies
H3 (S(/Co) is its witnessing set). In our earlier paper [11] we called a (locally
finite universal) class almost locally homogeneous if it satisfied H3, and proved
that if tC satisfies H3 and is finitely axiomatizable, then V(/Ct) is decidable.
In Section 3 we will improve that result by replacing H3 with H2.



An example of a class satisfying H2 but not H3 is the smallest universal
class K of lattices containing the lattice M£ pictured in Figure 1. A set wit-
nessing H2 for /C is the set consisting of a 5-element chain and its subchains.
/C does not satisfy H3, for if /Co were a witnessing set for H3 and Co were a
maximal /Co-subuniverse of M", then because Co is finite it would be possible
to find a finite sublattice A of M£ and an atom x and a coatom y of M£
which belong to A but not to Co. Put AQ = A n Co, B = {x} and Bf = {y};
then the extension condition ezf(A, Ao,B,B') should hold, but doesn't.

Ho is equivalent to the following condition: there exist locally finite uni-
versal classes /Ci , . . . , /Cr in the languages Li , . . . , Lr respectively, where each
Lt is an expansion of L by finitely many constant symbols and each /C, is ho-
mogeneous, such that /C = (jy=1 /Ct-1 L• This is a fairly natural condition, and
one might suspect that any decidability result for homogeneous classes could
be lifted to classes satisfying Ho. But this is false: for example, if K is the
smallest universal class of lattices containing the lattice Nw , then /C is locally
finite, finitely axiomatizable, and satisfies Ho, yet V(/Ct) is undecidable. This
K is also an example of a class which satisfies Ho but not Hi.

We do not know whether Hi is strictly weaker than H2. For all particular
(locally finite universal) classes /C we have examined so fax, it turns out that
the following are equivalent: (i) V(/Ct) is decidable; (ii) /C satisfies Hi; (iii) K
satisfies H2 and is finitely axiomatizable. We wonder if this is true in general.

3 Decidability
Until further notice, assume that /C is a locally finite universal class of alge-
bras in a finite language L containing no constant symbols, and that /Co is a
finite set of finite members of /C which satisfies S(/Co) C I(/Co).

Because L has no constant symbols, it is possible to find a finite L-algebra
H and a collection C of subuniverses of H satisfying

2. I({C < H : C € C and C ^ 0}) = I(/Co);

3. For every C € C with C ^ 0, every A € /Co and every embedding
a : C «—• A there exists a D € C with C C D and an isomorphism
(3 : A = D which satisfies and /3a(c) = c for all c e C.



Fix such a pair (H,C). The next definition is taken from [11].

Definition 3.1

(1) K/H denotes the class of all A € AC for which the set Ao := A D H is
a common subuniverse of A and H and, if nonempty, Ao inherits the
same operations from A as it does from H.

(2) Suppose A ,B € /C/H. An H-embedding from A to B is an embedding
J : A ^ B which satisfies a(a) = a for all a G A D H and a(a) £ H

for all a € A \ H. In this case write a : A *-• B. An H- isomorphism
is an isomorphism which is an H-embedding in the above sense.

(3) If A, B € £ / H , write A <-» B to mean there exists an H-embedding
H H

( T : A ^ B , and A = B to mean there exists an H-isomorphism from
A t o B .

Remark: If A and B are algebras in some expansion of L and if A||_, B|L G
H H

, then by A *-* B (A = B) we mean the obvious thing, namely, there
exists an embedding (isomorphism) from A to B which is an H-embedding
(H-isomorphism) from A|L to B|L-

Definition 3-2

(1) /C/(H,C,/C0) is the class of those A € fC/H for which A n H is both
an element of C and a maximal /Co-subuniverse of A.

(2) ra(/C/(H,C,/C0)) is the class of all Boolean products A <bp

which satisfy the following properties:

(i) Ax € /C/(H,C,/Co) for all x € X.

(ii) For all a € A and c € U£> the set a~x(c) is clopen in X.

The next lemma follows from the proof of Lemma 3.4 in [11].

LEMMA 3.3 With the above assumptions, for every countable member A
of Ta(K) there exists A; € r a (£/ (H,C,£ 0 ) ) having the same underlying
Boolean space as A and satisfying A(t) = A;(t). I



As in [2] and [11], the idea now is to show that if the stalks Ax of A €
r°(/C/(H,C,/Co)) a r e "H-homogeneous" in some specified sense, then one
can achieve a satisfactory Feferman-Vaught-type analysis of A(t).

First, we impose one further requirement on the choice of H and C,
namely,

4. (C, C) is a tree with 0 being the root.

Next, we strengthen the notion of quantifier-free H-n-type found in [11]. Let
A € £/(H,C,/Co) with Ao = A n # , and suppose a = (a i , . . . ,a n ) € An

(n > 0). Define CA(5) to be the C-least member C of C satisfying these
properties:

1. S g A ( { a 1 , . . . , a n } u C ) n A 0 = C.

2. (if n > 0) C is a maximal JCo-subuniverse of Sg A ( {a i , . . . , an} U C).

Clearly C := Ao satisfies these properties, so CA(G) exists because C is a tree.
With C A ( 5 ) SO defined, M A ( 5 ) denotes the subuniverse of A generated by
{a i , . . . , an} U C A ( S ) . Thus if n > 0 then MA(O) is the smallest subalgebra of
A which belongs to /C/(H,C,/Co) and whose universe contains {a i , . . . ,a n } ,
while if n = 0 then CA() = MA() = 0.

Definition 3.4 Fix an infinite sequence bi,b2,... of constant symbols not
occurring in L. With A and a as above, the quantifier-free (H,C,/Co)-n-
type of a in A is (some specification of) the H-isomorphism type of the
L U {bi , . . . , bn}-algebra ( M A ( 5 ) ; a i , . . . , an) (assuming n > 0; if n = 0 then
it is 0). typ(a) will denote the quantifier-free (H,C,/Co)-rc-type of a in A.

For example, typ(a) can be taken to be what model theorists call the
"quantifier-free n-type of a over the set CA(<*)." Here axe some properties of
quantifier-free (H,C,/Co)-rc-types.

LEMMA 3.5 Suppose A ,B € £/(H,C,JC0), au.. .,an,c € A and 6i, . . . ,6n ,
d eB.

(i) If (A; a i , . . . , on) £ (B; k , . . . , 6n) then typ(a) = typ(6).

(ii) If typ(a,c) = t y p ( 6 , 4 then typ(a) = typ(6).
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PROOF, (i) is left to the reader, (ii) is trivial if n = 0, so suppose typ(a, c) =
typ(6, d) with n > 0. By definition this means

(MA (a,c);a 1 , . . . ,an ,c)S(MB (6,d);6 1 , . . . ,6n , ( f ) . (1)

Hence ( M A ( 5 ) ; a i , . . . , an) c-> (A; a i , . . . , an) on the one hand, and

XT

( M A ( a ) ; a i , . . . , a n ) <^ (M A (a , c ) ;a i , . . . , a n )
XT

S (MB (b, d); 6a , . . . , bn) by equation (1)

£ (B;&!,...A)
on the other. So by (i), typ(a) = typ(6). I

Suppose A € £/(H,C,£o) and a 6 An. Then M A ( 5 ) is TV-generated,
where N = n + \H\. There are only finitely many iV-generated algebras
in K up to isomorphism (observation of Weispfennig [10]). Therefore for
each n > 0 there axe only finitely many quantifier-free (H,C,£o)-n-types
realized in £/(H,C,/Co). Let them be called pn t i , . . . ,pn,A(n)- The notation
pn+i,i h pnj shall mean the obvious thing, i.e., for all A € £/(H,C,/Co) and
au . . . , an, c 6 A, if typ(a, c) = pn+lt» then typ(a) = pnj. By Lemma 3.5(ii),
for each i = l , . . . ,A(n+l ) there is a (unique) j such that pn+i,» (~ Pnj-
Similarly, if <f>(x\,..., xn) is a quantifier-free L(t)-formula then pn,t- h <f> means
A1 (= ^(5) whenever A € ra(/C/(H,C,/C0)), a € An, and typ(fi) = pn,t-.

For each n > 0 fix a finite set /Cn of finite members of JC/(H,C,/Co) w^^
the following properties:

1. For each n > 0 and i = 1 , . . . , A(n) there exists an A € Kn and a G An

such that typ(a) = pntl- and M A ( 5 ) = A.

2. Conversely, for every A e fCn there exist a € An such that MA (a) = A.

3. For all A , B € /Cn, if A Si B then A = B.

4. /Cn C /Cn+i for all n > 0.

Also let /Co, = Un>0 ̂ n-
Now suppose A <6p Flxex Ax is in ro(/C/(H,C,£0)). For each B € /Cw

XT

let f/fi = {^ G X : B <—>'AX}. Because of item (ii) in the definition of



r°(/C/(H,C,/Co)), UBJs an open subset of X. 'As in [11], X(A) denotes
(X, ( J 7 B ) B € O ^ ^ ^(A)* denotes the dual Boolean algebra with distin-
guished family of ideals indexed by Kw. Finally, if 5 € An and 1 < i < \(n)
then by [pntt(a)l we mean the set of those x € X for which the quantifier-free
(H,C,/C0)-n-type of (ai(*), . . . ,an(x)) in A r is pn,t.

The next three lemmas provide the ingredients needed for the general
argument from [11] to work.

LEMMA 3.6 Suppose A <*p Uxtx A* is in ra(/C/(H,C,/C0)) and a e An

(n > 0). Then (IPn,t(a)])t=i is a clopen partition of X.

PROOF. It is enough to show that each [pn,i(*0I is open. This follows from
Lemma 3.5(i) and item (ii) in the definition of ra(JC/(H,C,/Co)). "

LEMMA 3.7 Let T = {B i , . . . ,B*} be a finite subset of K». Suppose
each B, is nt--generated, and let N = n\-\ h n* + \H\ + 1. Then for every
A <bp Uxex Ax in ra(/C/(H,C,£0)) for which the Boolean algebra X* of
clopen sets of X is countable, there is a subalgebra A' < A such that

(i) A' € ra(/C/(H,C,/C0)) (with the same topology on X).

(ii) U^ = UB for each Bef.

(iii) Ax is N-generated for each x € X.

PROOF. This is a minor variation of Lemma 3.5 in [11]. To ensure that A' is
in r°(£/(H,C, £o)) it is enough to have A' < A, A1 closed under patchwork,
and Ax D H C A'x for each x € X. The inclusion of | if | in the formula for TV
is what allows us to meet this last demand. I

LEMMA 3.8 Suppose, in addition to everything else assumed ofK and /Co,
that K satisfies the homogeneity condition H2 and tiat KQ is a witnessing
set. Suppose further that A € JC/(H,C,£o), *^a* ** € An, and that pn+i,»
is a quantifier-free (H,C,/Co)-(n+l)-type satisfying Pn+iti •" typ(a). PicJc
B € /Cn+i and (6,(f) € S n + 1 satisfying M B (M) = S and typ(fe,d) = pn+i,t.
Then H

(3c € A)(typ(a, c) = pn+i,t) if and onJy if B ^ A.
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P R O O F . (=»>) is obvious.
(<*=) The claim is trivial if n = 0, so assume n > 0. Let Ao = A D H and

suppose 7 : B £ A. Also let M = MA(a); thus M < A, M € £/(H,C,/C0),
H —

and there exists a : M «-• B satisfying a(a) = 6. Finally let M' = 7a(M)
and 2? = SgA(M U 7(£) U Ao). We have:

1. M, M' and D are finite members of K with M < D and M' < D.

2. Ao is a maximal JCo-subuniverse of D.

3. MflAo = M'DAo (= C A ( 5 ) ) and the common intersection is a maximal
£o-subuniverse of both M and M'.

4. 7a : M = M' satisfies 7a|Afru0 = '^MnAo-

Because /Co witnesses H2 for /C, 7a extends to an automorphism ft of D satis-
H —

fying fi\A0 = id^o- Let TJ = /x~x7 and c = rj(d). Then r/ : B <—• A and rj(b) =
a, so by Lemma 3.5(i) and our choice of B, typ(a,c) = typ(r}{b),r](d)) =
typ(M) =p n + i f i . •

Here is the principal result of this section.

THEOREM 3.9 Suppose K is a locally finite universal class of algebras
in a finite language. If Thy(£) is decidable (for example, if K is finitely
axiomatizable) and K satisfies H2, then V(/Ct) is decidable.

PROOF. The proof is nearly identical to the proofs of Theorems 2.7 and 3.3
in [11], so we give only a sketch. Both the hypotheses and the conclusion
axe invariant under the transformation of K which replaces each constant
by a constant unary operation, so we may assume that the language L of K
contains no constant symbols. Let KQ witness the property H2 for £ , and
choose H and C as above. Because Thy(£) is decidable, there exist effective
representations of (1) the quantifier-free (H,C, £o)-n-types realized in £ , and
(2) the members of Ku. As well, there are effective procedures which:

1. Given n > 0, list the quantifier-free (H,C,/Co)-n-types pn,i, •. • >Pn,A(n)-

2. Given n > 0, list the members of Kn.

11



3. Given n > O^and 1 < i < A(n), specify a member B of fCn for which
there exists 6 € Bn satisfying typ(6) = pn,s- and MB(&) = B.

4. Given n > 0, 1 < % < A(n+1), and 1 < j < n, determine whether

5. Given n > 0,1 < i < A(n), and a quantifier-free L(t)-formula <£(xi,..., zn) ,
determine whether pnt, h <£.

6. Given B € /Cw, determine the least integer n such that B is n-generated.

These facts together with Lemmas 3.6 and 3.8 guarantee (as in [11])
the following Feferman-Vaught-like theorem: There is a recursive procedure
which, given an arbitrary L(t)-formula <f>(xi,... ,x n) , produces a formula
$(-Xi, . . . , Xx(n)) in the first-order language for Boolean algebras with a fam-
ily of distinguished ideals indexed by /Cw, such that for all A € F°(/C/(H, C, fC0))
and all a € An,

A(t) h= ^(3) if and only if X(A)m f= * ( K i ( S ) l , • • - b».A(n)(5)I).

Lemma 3.7 then implies (again as in [11]) that there is an effectively
computable function from the set of L(t)-sentences to the set of positive
integers, written <f> »—¥ n(<̂ >), with the property that, for each <f>, V(/Ct) [= <f>
if and only if V((/Cn(^))t) [= <f>. Since /Cn(^) is finite, V((/Cn(^))t) is decidable
(uniformly in the "input parameter" £n(<£)) ky the result of Burris and Werner
[4]. Hence V(KX) is decidable. I

4 Lattices
We shall use the following terminology. An M\ is any lattice of height 2
having at least two atoms. If L is a lattice, then an M\ in L is an M\ which
is a sublattice of L. An M\ is free in L if:

1. It is an interval sublattice I[a, 6] of L, and

2. Is such that each atom of I[a,6] is both meet-irreducible and join-
irreducible in L.

Definition 4.1 A skeleton ofL is a subset SQL satisfying:

12



(1) If x € L \ S then x is an atom of some free M\ in L.

(2) For each free M\ in L, exactly one of its atoms belongs to S.

Every lattice has a skeleton. Skeletons are sublattices, and any two skele-
tons of the same lattice are isomorphic. The following facts are easily proved
from the definition: (i) if L is a lattice, S is a skeleton of L, and a and b are
elements of S such that a -< b in S, then a -< b in L; (ii) if L has a finite
skeleton, then L is locally finite.

Here are two more obvious consequences. Let L be a lattice with a skele-
ton 5, and let (bi)i<7) be the distinct elements of S which are atoms of free
MAS in L. For each i < rj let X{ be the set of all atoms of the free M\ contain-
ing b{ and let At = \Xi\. Then: (iii) the isomorphism type of L is determined
by the isomorphism type of the pointed skeleton (S; (6t)t<T3) and the sequence
(^i)i<r) of "dimensions"; (iv) for each family of bijections (<7t- : X{ —• Xi)i<r}

satisfying at(6t) = 6, there is an automorphism a of L satisfying a\s = ids
and a\xi = o% for all i < rj.

If K is a class of lattices then we say that K has bounded skeletons if there
is a finite upper bound to the cardinality of the skeletons of members of K.

LEMMA 4.2 Suppose K is a universal class of lattices. K has bounded
skeletons if and only if K omits each of Q, Nu,, M ^ , and M2fU,.

PROOF. Each of the above four lattices is its own skeleton, so (=>) follows.
Conversely, assume that K is a universal class of lattices which omits each of
the above four lattices.

Claim 1 1. There is a finite upper bound to the height of members ofK.

2. For sufficiently large n, the following is true: ifL 6 K, a, &i,..., 6n, c
are distinct elements of L with a -< 6, < c for all i, and {a, &i,..., 6n, c}
is an M\ in L, then I[a,c] is an M\ in L.

3. For sufficiently large n, ifL^K and I[a,c] is an M\ in L with at least
n elements, then I[a,c] is a free M\ in L.

PROOF. These axe easy consequences of the compactness theorem. (1) is
equivalent to the fact that K omits Q. Because K omits Nw, for sufficiently
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large n the hypotheses of (2) imply 6; -< c for al i i . (If not, say 61 yk c, then
because the height of L is bounded we could pick x € L such that 61 -< x < c.
Then 6t 5C x would imply x A 6t- = a for i ^ 1, so {a, 6 1 , . . . , 6n, £, c} would
be isomorphic to an arbitrarily large sublattice of N^ of height 3.) Now
let X = {6 G L : a -< b X c}. If /[a,c] ^ X U {a,c}, then because L has
finite height we could pick a minimal element y of /[a,c]\(XU{a,c}), which
must be incomparable to each element of X. Hence a -< y (by minimality)
and {a,6i , . . . ,6n 9y,c} is an Mx. But then the previous argument implies
y -< c, so y € X, a contradiction. Thus /[a,c] = X U {a,c}, so I[a,c] is
an MA, which establishes (2). To show (3), suppose L € K> has an interval
I[a,c] which is an arbitrarily laxge (possibly infinite) Mx but which is not
free in L. As the height of L is bounded, there is an atom 6 of I[a, c] and an
element x € L\ /[a,c] such that either x X 6 or 6 -< x. If 6 -< x then then
7[a,c] U {x,x V c} is the universe of a sublattice of L which either contains
MWt2 as a sublattice (if /[a, c] is infinite) or is isomorphic to an arbitrarily
large sublattice of M ^ of height 3. Both alternatives contradict the fact
that K omits M ^ - A similax argument using M2tW works in case x X b. I

Claim 2 There is a positive integer N with the following property: if S is a
skeleton of some member ofK, then as a lattice S satisfies

(*) If a, 61 , . . . ,6n>c are distinct elements of S with a -< 6f < c for each i,
and if {a, 6 1 , . . . , 6n, c} is an Mx in S, then n < N.

PROOF. Suppose instead that n can be arbitrarily large. Choose L € K, such
that S < L and 5 is a skeleton of L. By a remark following Definition 4.1,
each 6t- covers a in L as well as in S. So by items (2) and (3) from the
previous claim, the interval sublattice I[a, c] of L is a free Mx in L (assuming
n is sufficiently large). But then only one of its atoms should be in 5, which
is not the case. I

Until further notice, N will be a fixed positive integer satisfying the as-
sertion in the previous claim.

Claim 3 Let C be the class of all lattices S € K which satisfy the condition
(*) given in Claim 2. There is a finite upper bound to the cardinality of the
members of C.
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PROOF. Note that C is closed under taking interval sublattices. We shall
prove the claim by induction on the height of S. If S has height 2, then
\S\ < N + 2 by condition (*). Suppose ft > 2 and the claim is true for all
members of C of height less than ft. Let S € C be of height ft; let 0 and 1
be its least and greatest elements respectively, and let A be its set of atoms.
For each a € A the interval I[a, 1] is a member of C of height less than ft, so
the cardinality of /[a, 1] is bounded. Thus assuming the claim to be false for
the members of C of height ft, it must be possible to choose S as above with
\A\ arbitrarily large (perhaps infinite). Do so, and then pick a subset Ao of
A which is maximal with respect to the property that the join of any two
distinct elements of Ao is 1. By condition (*), |Ao| < N and so \A \ Ao\ can
be arranged to be sufficiently large.

By the maximality of Ao, for each x € A \ Ao there exists a € Ao such
that x V a < 1. Because |Ao| is bounded, a fixed ao € Ao can be chosen
with the property that the, set X = {a; € A \ Ao : ao V x < 1} is sufficiently
large. For each x € X there m a coatom c € /[ao? 1] satisfying x < c. Again
because /[ao, 1] is bounded it is possible to choose a fixed coatom CQ € /[ao, 1]
dominating a sufficiently large subset of X. But that contradicts the fact
that I[0, Co], being a member of C of height less than ft, must have bounded
cardinality. I

The previous two claims imply that K has bounded skeletons, proving
(<*=) of Lemma 4.2. I

Here is the main result of the paper.

THEOREM 4.3 For any universal class K of lattices, the following are
equivalent:

(1) VitC1) is decidable.

(2) V(/Ct) is not hereditarily undecidable.

(3) K omits Q, N ^ Mu,̂  and M2,u/.

(4) K has bounded skeletons.

(5) K is locally finite and satisfies Hi.

(6) K is locally finite, finitely axiomatizable, and satisfies H2.
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PROOF. (1) =» (2) and (6) => (5) axe trivial. (3) ^ (4) is a restatement
of Lemma 4.2, while (6) => (1) follows from Theorem 3.9. We will show
-(3) => -.(2) & -i(5) and then (4) => (6).

Suppose (3) fails; so K, contains one of Q, N^, Mu,,2 or M2,u,.

CASE 1. Assume Nw € K. For future reference, name the elements of the
unique 4-element chain in Nw by 0 -< a •< b -< 1, let the atoms of Nw other
than a be a, (i < a;), and put Mw = JVW \ {6} and M j = Mu; \ {a}.

We first show that V(/Ct) is hereditarily undecidable by verifying the
hypotheses of Lemma 1.1. (This was already done in [9]; for the sake of
completeness, we repeat the proof here.) Let A = Nw and S = Mw . Note
that the automorphism group of Mw acts transitively on its set of atoms.
Let //(x), r(x) and tl>(z) be formulas asserting respectively that x is an atom,
x belongs to a 4-element chain, and z is a coatom belonging to a 4-element
chain. Then /i, r and xf> witness the hypotheses of Lemma 1.1.

Next suppose that £ 0 is a finite set of finite lattices witnessing Hi for K,
and let LQ be a maximal /Co-subuni verse of Nw. If L»o could be embedded in
M ; (i.e., if {0,a,6,1} % LQ), say Lo = Lx < M~, then Lx must itself be a
maximal JCo-subuniverse of Nw . Choose a, £ L\. Then the isomorphism from
Sg(Zq U {at}) to Sg(Li U {a}) sending a; to a and fixing all other elements
cannot be extended to an automorphism of Nw , violating Hi.

Hence every maximal /Co-subuniverse of Nw must contain {0, a, 6,1}. Let
LQ be a maximal /Co-subuniverse of Nw of greatest cardinality, and put Lf

0 =
LQ \ {6}. As before we can find a Li < M~ such that Li = L'Q. Since
LQ € IS (/Co) = I(£o)> we can extend L\ to a maximal /Co-subuni verse L2 of
Nu,. By the previous argument, {a,6} C L2\£ i , so \L2\ > | ^ i | + 2 = |LO| + 1,
contradicting our choice of LQ. This proves that fC does not satisfy Hi.

CASE 2. Assume M ^ € fC. (A dual argument will take care of the case
when M2,u, € JC.) Let 6 be the join-irreducible coatom of Mw>2, let c be the
other coatom, and let a be the unique lower cover of b.

To show that V(/Ct) is hereditarily undecidable, let A = MW)2 and S =
I[0,c], and let /i(ar), r(x) and xl>(z) be formulas asserting respectively that x
is an atom, x is meet-reducible, and z is a join-irreducible coatom. Then /i,
T and xp witness the hypotheses of Lemma 1.1.

An argument like the one in Case 1 can be given to show that K does
not satisfy Hi. One uses /[0,c] \ {a} and {0,a,6,c, 1} in place of M j and
{0, a, 6,1}. The details are left to the reader.
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CASE 3. Assume Q € fC. We repeat the proof from [9] that K is hereditarily
undecidable. Let A = {x € Q : |x| > 1} and S = A \ {1}. Note that S 9* Q
so the automorphism group of S is transitive. Let /i(x), r(x) and tj>(z) be
formulas asserting respectively that x = x, x has an upper cover, and z has
a lower cover. Then /i, r and ^ witness the hypotheses of Lemma 1.1.

To show that K, does not satisfy Hi, suppose that KQ witnesses Hi for
K and let LQ be a maximal /Co-subuniverse of A. Thus Lo is an n-element
chain, and every n-element subchain of A is a maximal ACo-subuniverse of A.
In particular, Lx = {-n, —(n-1) , . . . , - 2 , - 1 } is a maximal /C0-subuniverse
of A. But the unique isomorphism from L\ U {1} to L\ U {2} does not extend
to an automorphism of A, contradicting Hi. This completes the proof that
-(3) =• -(2) h -(5).

(4) =» (6). Let TV be an upper bound to the cardinality of skeletons of
members of K. Let H be the class of all lattices whose skeletons have at
most N elements. H is a finitely axiomatizable locally finite universal class
and K C H. Recall that if L € W, 5 is a skeleton of L, 6 i , . . . ,6 r are
the distinct elements of S which are atoms of free MAS in L, and At is the
cardinal number of the set of atoms of the free M\ in L containing 6t, then the
pointed skeleton (S; &i,.. .,&r) together with the sequence of "dimensions"
(Ai,.. . ,Ar) determines L up to isomorphism. More significantly, if 1/ is
another member of H with pointed skeleton (S'; 6;

x,..., b'r) = (S; &i,..., 6r)
and dimensions (A^,..., AJ.), then At < AJ for all i implies that L can be
embedded in I/.

Since there are up to isomorphism only finitely many pointed skeletons of
members of ?i, it follows (as in [11, Claim 5.6]) that the poset of isomorphism
classes in 7i/»n under embeddability has no infinite antichains, and hence
every universal subclass of H (K in particular) is finitely axiomatizable.

Now we must show that K satisfies H2. Let K* be the class of all L € fC
such that no free M\ in L has more than N atoms. The next claim should
be obvious.

Claim 4 K' = \{KQ) for some finite set KQ of finite lattices.

For the remainder of this section, let KQ be a set witnessing the previous
claim.

Claim 5 S(/Co) C I(£o).
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PROOF. It must be shown that if Li < L € K* and {a, &i,... , 6n, c} is a
free M\ in Lx with a < 6f < c (and 6< ^ bj for i ^ j) then n < N. U the
interval in L from a to c is itself a free M\ in L, then n < N by our choice
of L. Otherwise, we can show n < N in the following way.

Choose a skeleton 5 of L. Assume for simplicity that S D {&!,..., bn} =
{&i,..., 6jt} for some k < n. So if k < i < n then &,- must be an atom of a
free M\ in L, say I[u,-, r t] , and there must be an atom dt 7̂  &,- of I[u,, v,-] which
belongs to 5. Working now in L, it follows that a < ut -< &;, d{ -< vt- < c, and
either the first or the last inequality is strict (since I[a, c] is not a free MA in
L). It can then be shown that &» 7̂  dj for 1 < i < k < j < n and c?t ^ dj for
A: < i < j < n. So 6 1 , . . . , 6*9 cfo+i,..., ^n are distinct elements of 5, which
proves n < \S\ < N. I

Claim 6 IfL £ K and Lo is a maximal Ko-$ubuniverse ofh, then LQ con-
tains a skeleton o/L.

PROOF. Assume L € K, and let LQ be a maximal /Co-subuniverse of L.
Choose a skeleton 5 of L with the property that if I[a, c] is a free M\ of L at
least one of whose atoms belongs to i 0 , then the atom of I[a, c] contained in
5 also belongs to Lo. Let L\ = Lo U 5. Li is a sublattice of L, so if we can
show that Li € K1 then it will follow from the maximality of LQ that S C Lo.

Suppose {a,61,...,&*,<:} is a free MA of Li, with a -< 6t -< c. Then
a -< &» -< c in L as well, so if the interval in L from a to c is not a free MA
in L then {61, . . . , bn} C 5, which would imply n < | 5 | < N. On the other
hand, if the interval in L from a to 6 is a free MA in L then {61, . . . , 6n} Q Lo

by our choice of 5, so {a, 6 1 , . . . , 6n> c} is a free MA in Lo and hence n < N
as Lo € £ ' . This prove La € £ ; . •

We will now complete the proof of Theorem 4.3 by showing that KQ
witnesses H2 for K. Let L be a finite member of /C, and let Lo be a maximal
/Co-subuniverse of L. Suppose that B and B ; are sublattices of L satisfying
B n Lo = B' n Lo (=: Bo) and BQ is a maximal JCo-subuniverse of both B
and B ; . Finally, suppose that a is an isomorphism from B to B ; satisfying
cr(x) = x for all x 6 BQ.

By the previous claim, Lo contains a skeleton of L. Suppose x € B and
<T(X) ̂  x. Then x £ Lo, so x is an atom of some free MA I[a, b] in L. Because
Lo contains a skeleton of L, Lo contains at least one atom c of I[a,6], We

18



claim that BQ must also contain an atom cx of I[a, b] For if this were false
then we could put Bx = Sg(£0 U {x}) and Lx = Sg(S0 U {c}) and have
B o < Bi < B and Bi = Li < Lo € I(X0), contradicting the fact that Bo

is a maximal JCo-subuniverse of B. So cx 6 Bo exists as claimed. Now since
{x, Cx] C B and since a and b belong to every skeleton of L, it follows that
{a,b} CBnL0(= Bo) and hence a = a(a) < <r(x) < a(b) = 6.

Thus ii x € B and <7(x) ^ x, then x and o-(x) are atoms in the same
free M\ of L. It follows that a can be extended to an automorphism a of
L satisfying <J|L0 = î Lo- This verifies ex*(L,L0,B>B') and proves that Ko

witnesses H2 for K. I

5 Conclusion
Theorem 4.3 and its proof bear striking similarities to our analysis of unary
algebras in [11]. (An algebra is unary if the arity of each of its fundamental
operations is 1.) We can strengthen these similarities.

Let K be a locally finite universal class of unary algebras in a finite lan-
guage and let A € K. In [11] the following recipe for converting A to a vertex-
colored poset was given. For a 6 A let [a] = {x € A : SgA(x) = SgA(a)}
and let [A] = {[a] : a£A}. Defining [a] < [6] to mean SgA(a) C SgA(fe)
turns [A] into a poset (of finite height, since K is locally finite).

For a e A define Da = {x € A : [x] < [a]}. We say that [a], [b] e [A] have
the same color if Da = D\> and there exists an isomorphism a : SgA(a) =
SgA(6) satisfying o\ua = idjr>a and <r([a]) = [6], A color class in [A] is the
set of all [a] € [A] of one fixed color.

Let us call a color class free if each of its elements is maximal (i.e., has
no upper cover in the poset [A]). Then by a base for A we mean a subset
B C [A] satisfying (1) if [a] € [A] \ B then [a] is an element of a free color
class in [A]; (2) for each free color class in [A], exactly one of its elements
is a member of B. Bases coordinatize members of K in the same way that
skeletons coordinatize lattices. More precisely, suppose A € AC, B is a base
for A, B = \JB, ([&t])t<i) are the distinct elements of B belonging to free
color classes of [A], and At is the cardinality of the free color class containing
[&,]. Then A is determined up to isomorphism by the isomorphism type of
(B; (&t)t<i?) a n d the sequence of "dimensions" (Ai);<f?.
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By slightly extending the analysis in [11] we can prove the following the-
orem.

THEOREM 5.1 Suppose K is a locally finite universal class of unary al-
gebras in a finite language L Let N be a positive integer bounding the
maximum cardinality of the 1 -generated members of K. Then the following
are equivalent:

(1) Vt/C1) is decidable.

(2) V(/Ct) is not hereditarily undecidable.

(3) K omits each member of a specific finite set Fijj of countably infinite
L-algebras. (T^^ depends on L and N but not on K.)

(4) K has bounded bases.

(5) K satisfies Hi.

(6) K is finitely axiomatizable and satisfies H2.

Surely there is a general theorem, incorporating Theorems 4.3 and 5.1 as
special cases, waiting to be discovered. Its proof will undoubtedly come from
model theory. In that field G. Cherlin, L. Harrington, A. H. Lachlan and oth-
ers have already made a profound study of the countable stable homogeneous
relational structures in a finite language (see e.g. [7, 5, 6]). They found that
for a given language the above-mentioned structures fall into finitely many
families in each of which the members are determined up to isomorphism by
a finite sequence of dimensions. Motivated by their work, we propose the
following two problems for further study.

PROBLEM 1. Given a locally finite universal class K of algebras in a fi-
nite language and a positive integer r, describe the countable homogeneous
members of K of complete rank at most r.

PROBLEM 2. Given a locally finite universal class K of algebras in a finite
language, describe the homogeneous universal subclasses of /C. Are they
finitely axiomatizable?
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