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The remaining case where k = 1 was discused in Cooper and Frieze [1], see also McDiarmid
and Reed [6].

If £ = 0 we write £>jb-tn and if k = 0 then we write De-out- If we drop the orientation in
Dk-out then we obtain the underlying undirected graph Gk-out- This has been the object
of considerable study and the main outstanding question is how large should k be in order
that almost every (a.e.) Gk-out has a Hamilton cycle. It is currently known that fc > 5 is
sufficient, Frieze and Luczak [4] and it is conjectured that the correct lower bound for k is
3. This paper considers the directed version of this problem. We prove a slightly stronger
result than is claimed in the abstract:

Theorem 1 a.e. D^in^out is Hamiltonian.

To prove the theorem we will regard D^in^out as the union of independent random di-
graphs DiUD2UD3{JD4. Here Dx e V2^in^ouUD2 € V2-*uuDz € £>2-m and D4 € VX-out.

This result is unlikely to be best possible and we conjecture that a.e. D2^in^oui is Hamil-
tonian.

We will use a three phase method as outlined below: a cycle decomposition is a set of
vertex disjoint directed cycles that cover all n vertices. The size of the decomposition is
the number of cycles.

Phase 1. We show that a.e. D\ contains a directed cycle decomposition of size at most
21ogn.

Phase 2. Using D2\JD$\JD4 we increase the minimum cycle size in the cycle decomposition
to j — 2 ^ . This is done by growing each small cycle as a path in a way which does not allow
the formation of any new cycle of size less than Ĵ SL . We then close the path to a cycle of
the required size.

Phase 3. Using D2 U D± we convert the Phase 2 cycle decomposition to a Hamilton cycle.
To do this we break the cycles of the cycle decomposition and rearrange the path sections so
formed into a Hamilton cycle. The manner of breaking and rearrangement is restricted in
a way which allows us to use the second moment method to count the number of Hamilton
cycles.



2 Phase 1. Making a cycle decomposition with at
most 21ogn cycles

With any digraph D on n vertices there is an associated bipartite graph G with n + n
vertices which contains an edge (u,v) iff D contains the directed edge (u,v). It is well
known that perfect matchings in G are in 1-1 correspondence with cycle decompositions of
D.

We start with the random digraph D\.

Lemma 2 a.e. D\ contains a cycle decomposition with at most 2iogn cycles.

Proof. Walkup [7] has shown that the bipartite graph associated with D\ a.s. contains a
perfect matching {(i, <f>(i)), f = 1,2,..., n}. We can argue by symmetry that we can take <f>
to be a random permutation. It is well known e.g. Feller [2] that a.e. permutation contains
at most 21ogn cycles, and thus the cycle decomposition has size at most 21ogn . O

Thus at the end of Phase 1 we can assume we have a cycle decomposition of size at most
21ogn.

3 Phase 2. Removing cycles of size j ^ or less from
the cycle decomposition

We partition the cycle decomposition into sets SMALL and LARGE, containing cycles C
of size \C\ < j^-j- and \C\ > ^^ respectively. We now describe an algorithm to replace
all small cycles by large ones. Essentially the algorithm works as follows. We break an
arbitrary edge (i;0, wo) on a given C € SMALL. Using the 2-out digraph X>2 we grow paths
from VQ using the edges of Z)2- These edges either attach the path to another cycle of the
cycle decomposition, or the path intersects itself producing a cycle plus a new path. In
our growth process, we only allow intersections which produce a cycle and a path both of
size at least j ~ ^ . This continues until we have m = y/n log n paths u$Pvi (i = 1, ...,ra)
with distinct endpoints t;,-. We now fix V{ and repeat the growth process for UQ using the
2-in digraph D$. The use of the independent 1-in digraph D4 allows us to a.s. successfully
close at least one of these paths to a cycle for each C € SMALL.

We now formally describe an algorithm (OutPhase 2) used to exclude the formation of
small cycles when growing paths using the 2-out digraph as discussed above.

Algorithm OutPhase 2
For any C € SMALL we define as OUTPHASE(C) a layered tree of depth at most 1.51ogn



whose set of nodes St at depth t consists of 5-tuples a(t) = (C,t,v,uoPvyV) defined
inductively as follows.
C is the current cycle of SMALL we are enlarging, t is the depth of the layer, v the current
active endpoint, P = UQPV the path obtained by making the changes which produce v as
an endpoint, V the current set of cycles which are a cycle decomposition for V — V(P).
The root of the tree is a(0) = (C, 0, VQ, UQPVO, T)Q — C) where X>o is the cycle decomposition
for the graph after the sucessful merging of the previous small cycle, and we have broken
an arbitrary edge (VQ, UO) of C to give UQPVQ.

If a e Su o = (C, *, v, uPv, D), the potential descendents & of a, & = (C, t+1 , x, u0P'x, V1)
are formed at iteration t + 1 as follows.

Let w be the terminal vertex of an out edge of v in the independent 2-out digraph D<i-
Case 1. it; is a vertex of a cycle C ' e D with edge (x, w) 6 C". Let wQx be Cf — (x, w),
and let uP'x be uPv U (v, w) U wQx, and P7 = V - C .
Case £ it; is a vertex of uPv. Either w = tx, or (x, w) is an edge of P, in which case uP'x
is made by breaking (x, w). Note that Vf = 2) + (t/;Pv U (v, ̂ )) in either case.

In fact we only admit to St+\ those o7 which satisfy the following conditions.
(i) In Case 2 above, the cycle formed must have at least ~^- vertices, and the path formed
must either be empty or have at least ^ - vertices.
(ii) x & OUTEND, where OUTEND is the set of vertices whose out edges have been
examined in this or some previous OUTPHASE. If & is admitted to level t + 1, then
OUTEND is updated to include x.
(in) To simplify the discussion we do not allow w to be a vertex of a cycle currently in
SMALL during the OUTPHASE.

An edge (i;, w) which satisfies the above conditions is described as sucessful

In order to remove any ambiguity, we imagine the vertices v of a(t) G St examined in
ascending label order for the construction of 5«+i.

We note that the expected number of vertices on cycles of size at most ^2L [S ^ - (see e.g.
Kolchin [5]) and so we may use n >

2 ° ^ w as an upper bound on the size |V(SMALL)| of the
vertex set of cycles in SMALL.

Lemma 3 For given C G SMALL, and with probability of the converse O ( ( l o ^ w ) ) ,

there exists at* < | ^3)2 | suc^ that \Sf\ ^ Vnl°gn -

Proof We assume we stop OUTPHASE(C) when |S*| = y/n log n , and show inductively
that a.s. (§)* < \St\ < 2\ for t > 3. Thus |OUTEND| is at most |SMALL| x 2 r < n086.
In general, let Xt be the number of unsucessful edges at iteration t, (t = l,2,...,t*). The



event of a particular out edge being unsucessful is stochastically dominated by a Bernouilli
trial with

n

For t < c, constant, the probability of 2 or more unsucessful edges in levels t < c is
O H ' ^ y ) and thus |St+1| > 2|S«| - 1 > (|)',t > 3.
In order to see this, note that in the case where there is only one sucessful edge at the first
iteration, subsequent levels expand by a power of 2, and |Si| = 2 otherwise.
For t > c,c large, the expected number of unsucessful edges at iteration t is at most
fi = 2p\St\ and thus

After OUTPHASE(C) we have nodes (C,t*,t;t,WoPvt,Pt) € 5 r , for i = l,...,m (m =
y/n log n ), each with a path u^Pvi of length at least j ^ ~ , (unless we have already sucess-
fully made a cycle) plus a cycle decompostion V of V \ V(UQPV{). We now carry out
INPHASE(C, Vi) for each i. We start with u0Pvi and £>, and using the 2-in digraph D3 we
build a layered tree similar in description to one made by Algorithm OutPhase 2, Here all
paths generated end with t;t.

Lemma 4 With probability of the converse O P l o ^ ° ^ V a cycle decomposition with min-
imal cycle length j ^ is produced in Phase 2.

Proof. Describe a path UoPvi as bad, if INPHASE(C,i;t) fails to generate
wPv( from a vertex w to vt. By arguments similar to the previous lemma,

Pr(u0Pvi is bad ) = O

Thus

Hence

Pr (the number of bad paths > 2^SL) = 0 f ( 1 ? f l o g "H .
V ~ log log nj V (logn)2 J

Pr(3C € SMALL with more than ^nl°Zn bad paths ) = O ((1°flogn?)
loglogn \ logn /



Now, let m! = m ( l — i o g i 1
Q g n ) - Adding the independent copy JD4 of 1-out, we see that

( I \m '
/logn\ =0(l\ n J \n

At this stage we have shown that a 4-in,5-out digraph almost always contains a cycle
decomposition J in which the minimum cycle size is at least j ^ .

We shall refer to J as the Phase 2 cycle decomposition.

Also let A denote the union of the sets OUTEND created as we removed each small cycle.
Thus we know that \A\ < n9/10 a.s. . Furthermore, if v £ A then both the in-edges of D2

and the out-edge of D4 incident with v are unexamined and hence unconditioned.

4 Phase 3. Patching the Phase 2 cycle decomposi-
tion to a Hamilton cycle

Let C\,C2,...yCk be the cycles of J, and let ct = \d \ A\, c\ < c2 < • • • < c*., and
c\ > jjjk - n"9/10. Let a = ^ . For each Q we consider selecting a set of mt = 2[^J + 1
vertices v £ A, and deleting the edge (v, u) in J. Let m = Sf=1 mt- and relabel (temporarily)
the broken edges as (t;t*,tt,-),t € [m] as follows: in cycle C, identify the lowest numbered
vertex x, which loses a cycle edge directed out of it. Put v\ = xy and then go round C\
defining v2,V2,.. ,vmi in order. Then let vmi+i = x2 and so on. We thus have m path
sections U{PVJ in J. If P = U;PVJ is such a section, define <f> by <f>(j) = i, (j = 1, ...,ra).
We see that <f> is an even permutation as all the cycles of <j> are of odd length.

We wish to try rejoin these path sections of J to make a Hamilton cycle using D2 U £>4.
Suppose we can. We define a permutation p where /9(z') = j if u^Pvi is joined to U^PVJ

by (v,-, u#j))- This also defines a permutation 7 where 7(1) = <f>(j) and hence 7(1') = <f>(p(i)).
Let i /m be the set of cyclic permutations on [m]. Let R^ = {p € -fiTm : <f>p = 7,7 G Hm}
be the cyc/ic solutions to 7= <£p.
Thus we have not only constructed a Hamilton cycle in JU D2U-D4, but also in the auxiliary
digraph F, whose edges are (1,7(1)).

Lemma 5 (m - 2)! < [R^ < (m - 1)!

Proo/. We grow a path l,7(l),72(l), . . . ,7 f c(l) in T, maintaining feasibility in the way we
join the path sections of J at the same time.



We note that at vertex i of F, an out edge corresponds to an edge from V{ in u^Pvi] and
an in edge to an edge to ut in ti,-Ptty-i(,-). On adding the edge (1,7(1)) we must avoid an
edge to <£(1) ( i.e. to u^i) in J) and also an edge to 1 (i.e. joining v\ to ui ). Thus there
are ra — 2 choices for 7(1) since <f>(l) ^ 1.

In general, at vertex 7*(1), (k = 0,1,...,m - 3), on adding the edge (7*r(l)>7*r+1(1)). t h e

subscripts 7(1), ...,7*(1) of u are already used. We must also avoid the subscripts 1 and £
where ui is the initial vertex of the path terminating at t>7*(i) made by joining path sections
of J. Thus there are either m — (k + 1) or m - (k + 2) choices for 7*r+1(1) depending on
whether or not £ = 1.

Hence, when k = m — 3, there may be only one choice for 7m~2(l), the vertex ft say. After
adding this edge, let the remaining isolated vertex of F be w. We now need to show that
we can complete 7, p so that 7,p € Hm.

Which vertices are missing edges in T at this stage ? Vertices l,w are missing in edges,
and ft, w out edges. Hence the path sections of J are joined so that either

ui —> vh, uw -> vw or ui -4 vw , uw - • iv*.

The first case can be (uniquely) feasibly completed in both V and J by setting 7(ft) =
w,j(w) = 1. Completing the second case to a cycle in J forces

(1)

and thus 7 £ i7m. We show this case cannot arise.

7 = 4>p and (f> even implies that 7 and p have the same parity. On the other hand p € Hm

has a different parity to 7 in (1) - contradiction.

Thus there is a (unique) completion of the path in F. •

Let H stand for the cycle decomposition J to which D<i U D4 has beeen added.

Lemma 6 Pr( H does not contain a Hamilton cycle ) = O(n~0M).

Proof. Let X be the number of Hamilton cycles in H resulting from rearranging the path
sections generated by <f> according to those p € R^. We will show that E(X) —> 00 and

Vax(X) < E(X) + E(X)2O(n-0Z)

and thus we may use the second moment method.

Let Q denote the set of possible cycle re-arrangements.



>- (=(-*e
However, m,; = 2[^J + 1 so ^- >

fl(=:
1=1

Hence

(5)3(5)"-
— o(l)J a, and thus

- ( (« " 0(1)) °)

en
046But (§j - o(l)) logn < m < §logn and so we have E(X) > ?z0

Let M, M1 be two sets of selected edges which have been deleted in J and whose path
sections have been rearranged into Hamilton cycles according to p,p' respectively. Let
N, N' be the corresponding sets of edges which have been added to make the Hamilton
cycles. What is the interaction between these two Hamilton cycles?

Let $ = \M n M'\ and t = \N n N'\. Now t < $ since if (v, u) e Nf)N' then there must be
a unique (£, u) € M n M' which is the unique J-edge into u. We claim that t = s implies
t = $ = m and (M, p) = (M', p'). (This is why we have restricted our attention to p 6 RA-)
Suppose then that t = s and (v,-,ut-) € M PI M'. Now the edge (i;t,u7(t)) G iV and since
i = s this edge must also be in Nf. But this implies that (ttyi),^*)) € M' and hence in
M n Mf. Repeating the argument we see that (vyk^yuyk^) € M C\ M' for all k > 0. But
7 is cyclic and so our claim follows.

We adopt the following notation. Let t = 0 denote the event that no common edges occur,
and (M) denote \M nM'\ = s and \N D N'\ = t.

2(1
ft v n

m m 5—1 m—t

say.
Clearly E\ < E(X)2. For given p, how many p' satisfy the condition (s,t)? Previously
\R(h\ > (TTI - 2)! and now |-RA(S, *)| < (m — t — 1)!, (consider fixing t edges of I*).
Thus

(m-t-l)l fny
(m - 2)!

5=2 t=l 1=1



Now

< + <

C{ a c\ 10a

Also H ) ^ ! * ^ and so

The result follows by the Chebychev inequality.•
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