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Abstract

We prove that a locally finite, finitely generated, congruence modular
variety V whose subdirectly irreducible algebras are all either abelian or
linear type 3 above the monolith is finitely decidable if and only if the
theory of the finite abelian algebras in V is decidable.

In this paper we present a fairly restrictive set of conditions on a variety V which
are sufficient to guarantee finite decidability: the decidability of the theory of
the finite models in V. Specifically:

Theorem 1 Let V be a variety which satisfies the following conditions:

e V is generated by finitely many finite algebras,
e V is congruence permutable,

e The non-abelian subdirectly irreducible algebras in V have linear congru-
ence lattices, in which the centralizer of the monolith u is 0 or u, and all
covers other than (0, p) have type 3.

o The theory of the finite abelian algebras in V is decidable.

Then V is finitely decidable.

Since the abelian algebras in such a variety V are finitely axiomatized relative
to the variety (by sentences saying that a Mal’cev term commutes with each
basic operation), the stronger claim made in the abstract is also true.

In comparison with the necessary conditions for finite decidability of a finitely
generated congruence modular variety (due to J. Jeong [8]), the only restrictive
assumption here is the one on the centralizer of the monolith. Under these
necessary conditions, this assumption guarantees the linearity of the congruence

*Subject Classifications (1991), Primary 03B25, Secondary 03C13, 08B26.







lattices of the subdirectly irreducible algebras, and this is the fact which we use
most heavily. We will discuss some situations in which it may be possible to
weaken this hypothesis at the end of the paper.

Although the conditions which we impose are quite restrictive, they are satisfied
by all locally finite finitely decidable varieties of rings, and by all finitely gen-
erated finitely decidable distributive varieties (cf. [10], [5], [6] and [7]). Indeed
the ideas leading to the proof of the general result stated -above were motivated
by a desire to understand the results for varieties of rings. Theorem 1 does
generalize all known (to the author) sufficient conditions for finite decidability
in the congruence modular setting.

Our result is not the end of the story, since a construction due to Idziak can be
used to produce non-abelian finitely generated locally finite varieties which are
finitely decidable, but which do not satisfy the assumptions of our theorem. We
will discuss such examples at the end of the paper.

The proof proceeds in two stages. First we will establish a structure theorem
(a “tree decomposition theorem”) for the finite non-abelian directly indecom-
posable algebras in such a variety V. Then we give a semantic embedding of
the theory of these into the monadic second order theory of finite trees (which
is decidable by a small modification of the arguments in [9] which was previ-
ously used by K. Idziak and P.M. Idziak ([4]) for the case of Heyting algebras.
The decidability of the theory of all finite algebras in V then follows from the
Feferman-Vaught theorem. The first part of the proof uses commutator theory
[2] and tame congruence theory [3] (the latter mainly implicitly through the
necessary conditions due to Jeong) to provide a couple of “black boxes” which
are needed for the proof. The second part is very direct.

1 The structure theorem

Henceforth V is to be taken to be a variety which satisfies the conditions above,
and p(z,y, z) shall be a Mal’cev term for V. We begin with some notation,
definitions, and preliminary lemmas. Several of the lemmas do not require all
the restrictions which we have placed on V. It should be clear from the proofs
which assumptions are used. '

Notation:

1. If X is a set, A, are algebras, and
B< [] 4.,
zeX

then for Y C X, By will denote the image of B under the projection onto
Y, and for b € B, by will denote the image of b under this same projection.






If £ € X then we use b, for b{,}. If 0, € Con A, for each z € X then
o=1] ¢
zeX

may be viewed either as a congruence on [] Az, or on B, and fy denotes
the obvious congruence on By. We say that B is #-closed if for any f and
g from [] A; which are 0-related, f € B if and only if g € B (i.e. Bis a
union of @ blocks.)

2. Suppose that A is an algebra whose congruence lattice is a finite chain.
Then g or u! denotes the monolith, and in general uFt! denotes the
congruence which covers ¥ unless we already have that u* = 1, in which
case pktl = 1.

3. A finite subdirect product:

B < ] 4.,
zeX

is called ¢rredundant if for each proper subset Y C X, the projection:
7y : B— By

is not an isomorphism. Equivalently, for each £ € X there exist b and ¢
in B such that:

bx—{z} = cx—{z)} and b; # c;.
Lemma 2 Let X be a finite set, let Ay € V be subdirectly irreducible algebras,

and suppose that:
A< ] 4
zeX

is an irredundant subdirect product of the algebras A;. Then A is p-closed.

Proof: It is sufficient to show that for each z € X, A is
O0x0x---Xpyx0x---%x0

closed. Since A is an irredundant subdirect product, there exist f,g € A such
that:

fX—{z} = 9x-{z}
f: # 9s

Suppose that h € A, and k € Hzex A is such that:

hx—(zy = kx-{z)
(kz,kz)) € Uz






Since:

(hz,kz) € Con a,(fz,9z)

and V is congruence-permutable, there exists a polynomialon A, in one variable,
say t(y, ¢) such that:

he =t(fz,c)
ke =t(g9z,c).
Chose d € A such that d; = ¢ and define:
B = t(f,d)
¥ = t(g,d).
Then:
X-tz} = kx_{s}
hl, = hg
ki, = ks
Thus:
p(h, W K )x_(z} = hx_{z} =kx_{z}
p(h) hl» k’)z = ka:~
Therefore p(h, hq, k1) = k so k € A as required. u

Lemma 3 If D is a finite directly indecomposable member of V, then D is either
abelian, or a subdirect product of non-abelian subdirectly irreducible algebras.

Proof: Let D be a directly indecomposable algebra in V, and suppose that D
has an irredundant subdirect representation:

D< T 4- x [T 4y,

z€X yeY

where each A; is a non-abelian subdirectly irreducible algebra in V, and each A,
is an abelian subdirectly irreducible algebra in V. Let 6% and ¥ be the congru-
ences on A which are the kernels of the projections onto X and Y respectively.
Then certainly:

%X AGY = 0.

Moreover,
60X vo¥ > p,






since if (f, g) € p then
h=fxUgy €D

by Lemma 2, and

L
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f=h

g.
Let _
D=D/p< [ Ac/p= x [] Av/ny
zeX yeyYy

and let X and 6Y be the congruences of D which are the kernels of the composite
of the natural map D — D and the projections of D onto X and Y respectively.
Then we claim:

H"X

6% v u
¥ = 6¥vu

To prove this, suppose that f,¢g € D and

s

f

Equivalently, fx = gx, or
fz E=£ 9z
for all z € X. But in this case, by Lemma 2

h=gxUfy €D,

and

On the other hand, if for some A,

x B
then f; = gs forallz € X. So f o_=_ g. This establishes the claim for §X and
the same reasoning applies to §Y .

The interval above 8% is the congruence lattice of a subdirect product of the
algebras A, /p,. As we have assumed that these algebras have no abelian covers
their type set is {3}, and this property is preserved by finite subdirect products
in modular varieties. On the other hand, the interval above 6Y is abelian.
Therefore 6X v 0¥ = 1, and hence 6X v §¥ = 1, since we already know that
O0x V Oy > p. Since D is directly indecomposable, one of these two congruences
must be 0, and the other 1 which establishes that D is either abelian, or a
subdirect product of non-abelian subdirectly irreducible algebras. ]






We depart briefly from our fixed assumptions on V to prove the following. Recall
that a neutral algebra is one in which the commutator of two congruences is
their intersection. As noted above, neutrality is preserved by finite subdirect
products, and implies the distributive law in the lattice of congruences.

Lemma 4 Let A, for x € X be a finite collection of neutral algebras, let B be a
subdirect product of these, let A be a subdirectly irreducible algebra, and suppose
that n : B — A is a surjective homomorphism. Then 7 factors through one of
the projections m, : B — A;.

Proof: The congruence ker 9 is meet irreducible, hence if ker 9 2 ker 7, for
any z:

/\(kernvkenr,) > keryp
zeX

kern vV /\ kerm, > keryp
zeX
kernp > kery.

This contradiction establishes that ker > ker , for some ¢ € X as claimed. »

Given a subdirect product B of algebras A,, and a proper non-empty subset
Y of X, we say that the projections my and wx_y are complementary, if their
kernels are complementary congruences.

Lemma 5 Let A, be algebras, 6, € ConA; be meet irreducible congruences
such that for each z, A; /0, is neutral, and let B be a 8-closed subdirect product
of the A;. Suppose thatY C X, is such that wy is an isomorphism from B/6
to By /6y and

B':= By /by < [] Ay/0y
yey

1s irredundant. If B has no complementary projections, then neither does B'.

Proof: For each £ € X — Y there is a surjective homomorphism

Ne: B — Az /0,

be ] 4.

XeXx

such that for

with by /0y € B':

bEB < nu(by/0y) = b,/ for all z € X.






(each 7, is just the map which factors 7, through 7y .) Since each of the algebras
Az /0 is neutral and subdirectly irreducible, each 7, factors through some (s,
with a factoring map a,. Then, for b as above, we have:

beB <=  ai(by)/by)) =bs/b;forallz € X.

Suppose that B’ has complementary projections given by 7z: and my_z+. Let
Z=Z'U{zeX-Y :y(z) € Z}.

We claim that w7 and nx_z are complementary projections on B. let b and ¢
be elements of B. Then we can find an element d in B such that:

dy /0y = bz [0z:Ucy_z [0y -z
So d agrees with b modulo 8z, on Z’. But for each z such that y(z) € Z’,

bz /02 = ctz(by(z)/0y(x)) = @a(dy(z)/by(s)) = d= /0
and for other =z, ¢; /0, = d;/0,. But then since B is f-closed, this implies that:
bzUcx-z € B,
and hence 7z and wx_z are complementary projections for B. =

We will now describe a particular sub-product construction, which we will call
the “tree construction”. Again, it could be given in somewhat more general
terms, but these are not necessary for the situation at hand. We will be able to
show that the finite non-abelian directly indecomposable algebras in varieties V
which satisfy our hypotheses can be constructed from the subdirectly irreducible
algebras using this construction (the “tree decomposition theorem”). Then it
will be a relatively simple matter to describe a decision procedure for this class.

Let X be a (non-empty) set, T a rooted tree with vertices labelled by X, and
let X’ be X minus the label of the root, and let f the function which assigns
to each z € X' its “parent”. Let A, for £ € X be algebras, 8, € Con A; be
congruences; and

ozt Agz) = Az /0

be surjective homomorphisms for each z € X’. Then the subalgebra:
BT,a,a S H Aa:
zeX
(or more briefly B) consists of those tuples a such that
a; € a,(af(,))
forallz € X'.

It may not be immediately clear why this gives a subdirect product, but this is
guaranteed by the condition that each « be surjective, and that a, is determined
only modulo 6.






Proposition 6 Every finite non-abelian directly indecomposable algebra in V
can be obtained by a tree construction from subdirectly irreducible algebras.

Proof: We remark at the outset that the construction is not unique. The
simplest example of this is seen by taking two identical algebras A; and A2 and
the subdirect product of these which is just the set of pairs which are p-related.
Then either 1 or 2 can be the root of the tree. Extending this example to three
algebras one can see that not even the structure of the tree is determined.

Let B be a non-abelian directly indecomposable algebra in V, and take an
arbitrary irredundant subdirect representation:

B <[] 4.
zeX

We will show that this representation carries an appropriate tree structure. The
idea is to gradually discover the nodes, branches, and labels. This process is by
a sort of “genealogical search” — which uncovers the tree, beginning with the
nodes which are farthest from the root, and then working down step by step to
the root.

We know already that each A, is non-abelian by Lemma 3, and that B is p-
closed by Lemma 2. Choose n; > 1 such that B is u™* but not u™:+! closed.
Then it must be the case that the representation:

BW :=B/p™ < ] As/u™.
reX

is redundant, or else it would be p!-closed (by linearity, all the algebras A, /u™*
are subdirectly irreducible), and this would imply that B was u™1t1 closed.

Now choose X; C X such that:
BW = B < T] Ac/uz.
z€eX,

is an irredundant representation. Let Y; = X — X3

Thus for each y € Y7 there is a surjective homomorphism,

1
My - B,(X,) - Ay/:“;/‘1

Such that:
be B

if and only if

bx,/u%, € BM and g, (bx, /15.) = by/uy* for each y € ;.






By Lemma 4 for each y € Y; there is an f(y) € X; such that 7, factors through
the projection onto

Arw)/ Biyy:
Finally, define 6, = py*, and ay to be the composite of the natural map from
Ay to Agy) /p’}(‘y), and the map which factors ny. The picture below may
make this a little more clear (the right hand column is ay):

At ()
Ti(y)
v
ni
B [u - () Xy ~BY) ~Asy)/ By
Ty
y/ byt

Note that Bg(ll) is also isomorphic to Bx,/uY,. Furthermore, from all of the
above we have:
beB <<= bx,/p¥ € Bg(ll) and
by € ay(bsy)) foreach y €Y. ()

This verifies that for those y for which f(y) has been defined, the conditions
required of a tree construction hold.

The proof will now proceed inductively, with a successful discovery of a little
more information about f, a, and 6 at each stage. There is one slight hitch
- it is not apparent that the algebra B(1) is indecomposable. Happily, it is
indecomposable enough for our purposes, since Lemma 5 guarantees that it
does not have complementary projections.

We now attempt to state an inductive hypothesis. After k iterations of the
process above, we will have obtained a subset X} C X, and p™*, and defined
f(y), ay and 8, for all y € X — X such that the following hold:

1. The directed graph of edges (z, f(z)) is a forest with roots in X,

2. Bx, is u™* closed, and the quotient

E
BS) = Bx, /w3, < T As/upr
z€Xx

is irredundant and has no complementary projections.






beB < bx,/u} €BY) and
by, € ay(bf(y)) for each y € X — X;.

In summary, all of the properties of a tree construction hold at this point, and
moreover Bgfk) is a subdirect product which has no complementary projections.
If X} is a singleton then we have completed a tree construction. Otherwise ...

Since we have an irredundant representation of B(kB, we know that it will be

u™ but not py™+! closed for some m > 0 (note that this time p refers to the
product of the minimal congruences of A, /u2* for r € X;.) Moreover, for no
z € X can it be the case that

bz =1

or else Bg?k) would decompose through a projection onto {z}. However, by our
choice of m the product:

B(k) H A /#nk+m
z€Xx

'is redundant. Let ng41 = ng + m, and let
k
B+ — fo,‘)/#m
Choose X4 a proper subset of X such that:

~ pk+1
BE+1) o~ B(Xk+1) < H Ax/ﬂ:k+l,
Xk+1
is an irredundant representation, and let Yi41 = Xg41 — X
For y € Yi41 choose a surjective homomorphism:
+
(Xk+l) - Ay/"nk"’l

such that:

E E+1

dx, € B**) = dx,,, € BEH andn(dx,,,) = dy for each y € Yip.

By Lemma 4, each 7, factors through the projection onto a coordinate f(y) €

Xk4+1, we may set §, = pu™*+, and o, the composition of the natural map from
Aj(y) onto Agy)/ut*+* followed by the factoring map above. Now,

beB <<= bx/u¥ € B(k) and
b, € ay(bf(y)) for each y € X — X;.

10






However to determine whether

n k
bx./HY, € BY)

holds is equivalent to determining whether

dx, = be //t""‘“

is in B(*+1)_ By the definition of ay, and 8 for y € Y41 this holds if and only

if
ay(by) = bf(y)/oy

and (k+1)
n
ka-{-l//“X'::.l‘ € BX;;+1

which verifies that the part of the inductive hypothesis beginning “6 € B <= "
is still satisfied. Finally, Bgﬁ:ll) can have no complementary projections or else

Bg:) would also have them.

Thus we can carry out a complete tree construction inductively, which estab-
lishes the stated result. =

In passing, we note that the depth of the tree required is at most the length of
the longest chain in the congruence lattices of the finite subdirectly irreducible
algebras of V. Although this is not required for the subsequent interpretation,
it does limit the complexity of the directly indecomposables (and hence of the
theory) to a certain extent.

2 Semantic Embeddings

Now we will provide the semantic embedding of the theory of the non-abelian
algebras in V which have a tree decomposition into the monadic second-order
theory of finite trees. Since this class contains all the non-abelian finite directly
indecomposable algebras, and as the finite abelian algebras in V have a decidable
theory by assumption, this is sufficient to complete the proof of Theorem 1 (by
an application of the Feferman-Vaught theorem).

First of all, let S) be a set of disjoint non-abelian subdirectly irreducible algebras
in V which contains exactly one algebra of each isomorphism type. Let ® denote
the set of all 4-tuples:

(4,B,a,0)

where A and B are elements of S}, 6 is a congruence on B, and « is a surjective
homomorphism from A to B/f. A typical element of & will be denoted:

a = (Aa!Ba,a) 0&)

11






For each such a (there are only finitely many) introduce a set constant p,.
Further, let S be the union of ). We can, and will, interpret the elements of
any tree construction as being functions from the set of nodes of the tree into
S. That is, we demand that the stalks of a tree construction come from our
representative set S) of non-abelian subdirectly irreducible algebras.

The intended interpretation of a tree construction in the second-order monadic
theory of finite trees is that each node will be labelled with the “type” p, for
some a from ®, which it realizes in the tree construction (for consistency, the
root may be labelled by any p, for which B, is equal to the stalk at the root)
. Elements will be interpreted by |S|-tuples of sets which form a partition of
the nodes, where the kth element of the tuple specifies the nodes at which
the element takes on that value. Now given a finite tree T, specified by its
predecessor function f, and constants p, it is a relatively easy matter to realize
this interpretation.

Let T’ denote T with its root deleted. First of all, this particular tree with
constants represents an algebra obtained from a tree construction if and only if

e the constants p, form a partition of T', and

o for each z € T, if z € po and f(z) € ps then A, = Bg.

Secondly, we can define a predicate: Elem (for elements) on S-tuples of sets by:

{X.} partitions T, and

Elem({Xa}ees) if y € Xs Npa then f(y) € Xo-1(as0.)

We have implicitly added the requirement that the partitions X and p are
consistent in that if y € X, then y € p, for some « such that a belongs to B,.

It is easy to see that we can also interpret the basic operations of V on tuples
satisfying Elem, by considering predicates on sequences of |S|-tuples which
impose consistency requirements (so that the elements which they code come
from the same algebras at each node), and which say that the final element
takes at each node the value of the operation when evaluated at the rest of
the elements. Hence we obtain a semantic embedding of algebras in V obtained
from tree constructions into the monadic second order theory of finite trees (with
constants), which is sufficient to establish the decidability of such algebras. For
further details of a very similar construction the reader may wish to consult [1].
Then by the Feferman-Vaught theorem, the theory of all finite algebras in V is
decidable, and we have concluded the proof of Theorem 1.
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3 Discussion

The most obvious question which arises from the work above is to ask what hap-
pens is the assumption of linearity of the congruence lattices of the subdirectly
irreducibles is dropped. In this case we can still say a little. By the necessary
conditions of Jeong, it is still the case that each such congruence lattice is lin-
ear above the centralizer of the monolith (this congruence is denoted v). An
immediate consequence is:

Theorem 7 IfV is a finitely generated congruence modular variety which sat-
isfies the necessary conditions for finite decidability given in [8], if every finite
non-abelian directly indecomposable algebra of V has a v-closed representation as
a subdirect product of irreducibles, and if the theory of the finite abelian algebras
in V is decidable, then V 1is finitely decidable.

So one approach to further results (which is being pursued by the author and R.
Willard) would be to classify those varieties V which satisfy the conditions above.
However, there exists a ring R which has 8 elements, is local and does not have a
linear congruence lattice. The variety of left R-modules is finitely decidable. A
construction outlined by Idziak then allows one to construct a finitely decidable
variety V whose directly indecomposable algebras are formed from R-modules
by the addition of a single element. The directly indecomposable obtained from
R itself considered as a left R-module in this way has 9 elements, whereas a
v-closed subdirect product would have at least 17 elements.

Because of examples of this type, it seems unlikely that a necessary and sufficient
criterion for the finite decidability of locally finite congruence modular varieties
of the form “condition on the congruence lattice of the subdirectly irreducibles”
plus “decidability of the abelian part” exists.

Another question, raised by S. Burris, arises from the method of the proof: does
there exist a locally finite variety V which is finitely decidable but for which the
theory of the finite directly indecomposable algebras in V is undecidable?
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