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Abstract

Let V be a variety whose class of finite members has a decidable
first-order theory. We prove that each finite member A of V satisfies
the (3,1) and (3,2) transfer principles, and that the minimal sets of
prime quotients of type 2 or 3 in A must have empty tails. The first
result has already been used by J. Jeong [9] in characterizing the finite
subdirectly irreducible members of V with nonabelian monolith. The
second result implies that if V is also locally finite and omits type 1,
then V is congruence modular.

1 Introduction

A class fC of structures (in a finite language L) is decidable if the set of all
first-order L-sentences true in all members of K is recursive, and is finitely
decidable if the class of finite members of K is decidable. In this paper
we study varieties (that is, classes of algebras closed under subalgebras,
products, and homomorphic images) which are finitely decidable.

Through the work of R. McKenzie and M. Valeriote, the structure of
decidable locally finite varieties is now completely understood, modulo two
special cases. Less is known about (locally finite) finitely decidable varieties.

*1980 Mathematical Subject Classification (1985 Revision), Primary 08A05; Secondary
03C13.
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1



A few years ago, P. Idziak [6, 7, 8] determined the structure of those finitely
decidable varieties which are finitely generated and congruence distributive.
Very recently, J. Jeong [9] made a profound study of the finitely decidable
varieties which are locally finite and congruence modular. In this paper
we prove a few necessary conditions on finitely decidable varieties without
assuming congruence modularity.

Our tools are the tame congruence theory of D. Hobby and R. McKenzie
[5] and Yu. Ershov's notion of interpretation (or semantic embedding) of a
class fCf of L'-structures into a class K, of L-structures. The reader may find
a description of this method in [4], [3], or [11].

Following [11], we shall say that the class JC is ̂ -unstructured if there
is a semantic embedding of the class of finite graphs into the class of finite
members of K (and is ̂ -structured otherwise). Here are the properties of
this notion that we will use.

Basic Properties 1.1

1. IfK, is u>-unstructured and the language ofJC is finite, then K, is finitely
undecidable.

2. If tC is to-unstructured and K C K!, then fCf is OJ-unstructured.

3. Suppose A is a finite algebra, U C A is the range of some idempotent
unary polynomial of A, and AIu is the algebra induced by A on U with
the normal indexing (see [5]). IfV(Alu) is u-unstructured, then V(A)
is LO-unstructured. (This is a straightforward variation of Theorem 0.50
in [11]; it will be used in Section 3.)

We shall assume that the reader is familiar with tame congruence theory.
One fact connecting that theory to ̂ -unstructured varieties, which we shall
use in Section 3, is implicit in the proof of Lemma 11.1 from [5]: If V is an LO-
structured variety, then the type set of every finite algebra in V is contained
in {1,2,3}.

2 Transfer principles

The following definition is taken from [11].
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Definition 2*1 Let A be a finite algebra. If i, j G {1,2,3} are distinct types,
then A possesses the (i,j) transfer principle if for all <$, a,/? G Con A, if
6 -< a -< fl and typ(£, a) = i while typ(a, /?) = j , then there exists a
congruence 7 satisfying 6 -< 7 < /? and typ(£,7) = j . A variety satisfies the
(i, j) transfer principle if every finite member does.

Thus the (i,j) and (j,t) transfer principles govern to some extent the
relative placement of type i and type j prime quotients in Con A. Every
decidable locally finite variety satisfies all six possible transfer principles (this
follows from the main theorem of [11]). However, the (2,3) transfer principle
fails in the ring Z4 (which Zamjatin [12] proved generates a finitely decidable
variety), and P. Idziak and M. Valeriote have examples of finitely decidable
varieties which fail to satisfy the (1,3) transfer principle. On the other hand,
J. Jeong [9] has proved the (3,2) transfer principle for all finitely decidable
congruence modular varieties.

In this section we prove the (3,1) and (3,2) transfer principles for all
finitely decidable varieties. For the remainder of this section let A be a finite
algebra with congruences a and /? such that

• 0A -« OL -< /?,

• typ(0A,a) = 3 and typ(a,/3) G {1,2},

• If 7 is a non-zero congruence strictly below /?, then 7 = a.

Choose U an (a, /?)-minimal set and V a (OA,< )̂-minimal set. Let {0,1} be
the body of V, let V be the range of the idempotent polynomial e(x), and
let U be the range of the idempotent polynomial f(x).

LEMMA 2.2 Suppose (u,v) G fi\u \ 0u, and let N be the /3|c/-class con-
taining u and v. Then there is a polynomial g(x) of A satisfying g(A) C V,
g{u) = 0, g(v) = 1, and g(N) = {0,1}.

PROOF. The hypotheses imply (0,1) G CgA(u,t>), so there must be a
polynomial g(x) of A satisfying g(A) C V, g{u) ^ g{v), and 0 G {g(u)yg(v)}.

Using the psuedo-join operation described in Lemma 4.17 from [5], we
see that for any t G V \ {0,1}, the set {0,i} is a 2-snag. /? \ a contains no
2-snags (since (3 is abelian over a), which proves 0//?|y = {0,1}. Since g(N)
is disconnected and contains 0, it follows that {g(u),g(v)} = g(N) = {0,1}.



Finally, if (g(u),g(v)) = (1,0) then we could always replace g(x) with
#(#)', where' is a unary polynomial of A whose restriction to {0,1} is Boolean
complementation. I

Now fix an (a, /?)-trace N contained in U, two elements a, b of N which
are not a-related, and a polynomial k(x) satisfying k(A) C V, k(a) = 0,
and k(b) = 1. (The existence of such a polynomial follows from the previous
lemma.)

THEOREM 2*3 Assuming the conditions stated above, the class of finite
diagonal subpowers of A is to-unstructured.

PROOF. Let G = {G^E) be a finite graph. That is, G is a finite nonempty
set and E is a collection of two element subsets of G. Let X = GUEU{p},
where p is some new point, and we are assuming that G and E are disjoint.

For uGG, let fv : X —> {a, b} be defined as follows:

{ b if x = v
b if v e x e E .
a otherwise

Also, let G = {fv : v £ G} and let F be the set of all functions h : X —>
{a, b} such that GU{p} C A~1(a). For each c 6 A let c denote the constant
function X —> {c}, and let A = {c : c € A}.

Define a finite diagonal subpower A[G] of A as follows. If typ(a,/?) = 2
then A[G] = SgA*(Gui), while if typ(a, fi) = 1 then A[G] = SgAX(GUFUA).
Note that in either case the range of each function in A[G] is /^-connected,
since each generator is.

Ultimately we will show that the graph G can be recovered from A[G]
by first-order formulas with parameters, in such a way that the formulas do
not depend on G. Note first that the {0, l}-valued functions in A[G] (that
is, those fi 6 A[G] satisfying range(//) C {0,1}) are definable by the formula

e(x) = x & p(x,0) = 6

where p(x,y) is a pseudo-meet operation for V. Moreover, the {0, l}-valued
functions in A[G] inherit the Boolean operations of A{o,i} and thus form a
Boolean subalgebra of {0,1}X. In fact, the presence in A[G] of the functions
Hfv) (v € G) already ensure that {0,1}X C A[G].



More generally, we shall be interested in elements of A[G] which are two-
valued, that is, whose range is a two-element set. If fi is two-valued, then
the suppor t of /z is defined to be the set {x G X : fi(x) ^ fi>(p)}- Let H be
the set of all two-valued functions // in A[G] whose support is identical to
the support of fv for some v G G.

Now suppose we had a formula T(x) which defines in A[G] a set T sat-
isfying G C T C H. Then we could recover the graph G from A[G] in the
following way. Let \v ^ e the {0, l}-valued function which equals 1 only at
x = p, and let GEN(x) and E(x,y) be the following formulas respectively:

range(x) = {0,1} & x A x P = 6 &

GEN(x) & GEN(y) & x^y k xAy^O.

Then clearly A[G] |= GEN(z/) if and only if v = k(fv) for some v G G,
and A[G] f= E(k(fv)yk(fu)) if and only if {v,u} G J5. In other words,
the formulas GEN(x) and E(x,y) recover the graph G from A[G], and thus
define a semantic embedding of the class of finite graphs into the class of
finite diagonal subpowers of A.

The remainder of the proof is devoted to proving the existence of a first-
order definable subset T of A[G] satisfying G C T C H. Define

To = {/i € A[G] : // is two-valued and range(/i) C U}

T\ = {fi G To : the support of \i contains exactly one v G G}

T2 = {/i G Ti : if range(^) = {r, s} then (r, 3) ^ a}

T = {h(fv) : t; G G and ft G P0I1A such that fc([7) = U}.

Clearly G C T C /f and T C T2 C Tx C To. We shall show that each Tt- is
definable in A[G] and that T2 = T.

Claim 1 To and T\ are definable in A[G],

PROOF. Suppose fi G A[G]. The range of ji is contained in U if and only
if / ( ^ ) = fj,. And we claim that if the range of fi is contained in [/, then fi is
two-valued if and only if

// is not constant, and for every pair of polynomials g\{x) and
(72(#) of A having range contained in V, if range(<7i(//)) =
range(#2(/*)) = {0,1} then either g^fi) = g2{^) or gx{p) =



(Here, as before, ' is a unary polynomial of A whose restriction to {0,1} is
Boolean complementation). Clearly if \i is two-valued then it satisfies the
displayed condition. Conversely, suppose the range of // is contained in U
and contains at least three distinct values r, s,t (which necessarily belong
to the same /?|c/-class). By Lemma 2.2 there exist polynomials gi(x) of A
(i = 1,2,3) satisfying

9i(r) = 0, #i(s) = 1, range(#i(//)) = {0,1},

<72(r)=0, g2(t) = l, range(<72(/*)) = {0,l},

93(s) = 0,

Then either g\ and g2 or g2 and g$ witness the failure of the displayed con-
dition.

This proves that To is definable. To see that 7\ is definable, let XG =
1|G U 0\X\G] then an element // of To belongs to T\ if and only if there is a
polynomial g(x) of A such that range(<7(//)) = {0,1}, g(fi) A x? = 0? a n d
g(fi) A XG is an atom of the Boolean algebra {0,1}X . I

Claim 2 T2 = T.

PROOF. It must be shown that T2 C T. Suppose fi G T2. Let {r,s} be
the range of ^, with /i(p) = r, and let v be the unique vertex for which
n(v) = s. By hypothesis, (r, s) £ /?|c/ \ a|t/. By the minimality of U (that
is, by Theorem 2.8 from [5]), to prove fi G T it will be enough to show that
// = h(fv) for some polynomial h(x) of A whose range is contained in U.

Let N' be the (a, ^)-trace in U containing {r, 5}. By Corollary 5.2 of [5]
there exist polynomials mapping N bijectively to JV and vice versa, so we
may as well assume that Nf = N.

CASE 1. typ(a,/?) = 1.
By the definition of A[G] in this cause,

for some n + fc-ary polynomial < of A, distinct vertices v i , . . . , vn G G, and
nonconstant generators Ai , . . . , hk G F. We may assume that t{An+k) C [/
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and hence t(Nn+k) C N. So t\jy is in the clone of A|JV and therefore depends
on at most one variable modulo a.

fi(p) = r implies £(a, a, . . ,,a\a,..., a) = r. Since fi(v) = s, and because
of the nature of the generators, it follows that v = vi for some i = 1 , . . . , ra,
say v = vi, and that i(fe, a , . . . , a; a , . . . , a) = s. So t\jy depends on its first
variable modulo a, and hence on no others. Let h{x) = t(x, a , . . . , a; a , . . . , a).
It follows that h({a,b}) = {r,s} and fi(x) = h(fv)(x) for all x e X. These
facts imply \i = h(fv).

CASE 2. typ(a,/?) = 2.
By the definition of A[G] in this case,

for some n-ary polynomial of A and distinct vertices Ui, . . . ,vn 6 G. As
before, we can assume that t\w is a member of the clone of A|w and hence
satisfies the term condition modulo a. Also as before, we can assume that
v = V\ and hence

*(a ,a , . . . ,a ) = r

<(6,a, . . . ,a) = s.

Furthermore, if 2 < i < n then fi(yi) = r which implies

So by the term condition modulo a in A|JV, *|{a,6} depends on only its first
variable modulo a. Hence as before, fi = h(fv) where h(x) = i(x, a , . . . , a). I

To prove Theorem 2.3 it remains only to show that T2 is definable relative
to T\. Again the argument splits into cases depending on the type of (a, ft).

Claim 3 Suppose typ(a,/?) = 2. Let M be the (a,/3)-body ofU. Then:

(i) CL\M = OM and hence T2 = {/i G Tx : range(fi) C M).

(ii) T2 z*5 definable.



PROOF. Suppose OC\M ̂  OM- Then we can find a (0A,«)-minimal set V
whose body {0', I7} is contained in M. Let e' be an idempotent polynomial
of A whose range is V7, and let V" = range(/e /). As 0' and 1' are fixed points
of both e' and / , fe\a\v) % §A and so V" is a (CU,a)-minimal set. Note
that V" C U and that the (0^,a)-body of V" (namely, {0', 1'}) is contained
in M.

Using Lemma 4.30 from [5], it follows that V" = U. Thus it is possible
to find an element t in the (0^, a)-tail of V" which is /^-related to 0'. But we
have already seen in the proof of Lemma 2.2 that that is impossible. This
proves the first item.

The second item follows easily from Lemmas 4.20 and 4.25 in [5]: if
// G A[G], then the range of \i is contained in M if and only if its range is
contained in U and ^(//,//,a) = a. I

Claim 4 Suppose typ(a,/?) = 1. Define T = {y G A[G] : range{y) C U}.
Let ft be an element ofTi, let {r, s} be the range of fi with /n(p) = r, and let
v £ G be the unique vertex satisfying fi(v) = s. Then:

(i) /i = p(fv^hiyh2jhs) for some J^-ary polynomial p(xJy1z^w) of A and
generators h\^h2^h^ G F.

(ii) fi £ T2 (that is, (rys) G a) if and only if fi = p(v0, vx,v2, v3) for
some 4-ary polynomial p(x, j / , jar, w) of A with range contained in U and
elements V{ G T such that none of the four polynomials p(x,v\,V2,Vz)>
p{yn,x,V2,vz), etc. o/A[G] are one-to-one when restricted to T.

(iii) T2 is definable.

PROOF. The third item follows from the second, as there are only finitely
many 4-ary polynomials of A.

By an argument similar to the proof of Case 1 in Claim 2,

for some n + l-ary polynomial t of A and nonconstant generators <7i,..., </n
G U F , and

t(a,a,...,a) = r

i (6 ,a , . . . , a ) = s.

8



Let \i\ = £ ( / v , a , . . . , a). If \i\ = fi then we would be done, but there
is no guarantee that this will be the case. At least the following is true:
fj>i(x) = fx(x) for all x G GU {p}. (This follows from the above equations,
our assumption that // G Ti, and the form of the generators in G U F.)
Suppose e G E and //i(e) ^ //(e). Then either t; G e but fi(e) = r, which
implies

i(6, c i , . . . , Cn) = r for some c, G {a, 6}, (1)

or else v £ e but fx(e) = s, which implies

t(a, cfi,..., dn) = 5 for some c?t- G {a, 6}. (2)

Pick ( c i , . . . , ^ ) and (di , . . . ,d n ) witnessing equations (1) and (2), if such
exist.

Define

E1 = {e G E : p(e) = //x(e)}

£̂ 2 = { e e £ : v 6 E and /^(e) = r}
£3 = {e£ E : v g E and //(e) = 5}

and for i = 1 , . . . , n define hi : X —> {a, 6} to be the function
A

h | U Ci\E2 U rft|^3.

By construction, hi e F C A[G] and // = i ( / v , / i i , . . . ,An)- Furthermore,
because there are only four possibilities for each (ct-, dt), one of which is (a, a),
the set {hij... ,/&n} contains at most three distinct nonconstant functions.
This prove the first item of the Claim.

To prove the second item, suppose first that (r, s) G a. By what has just
been shown, fi = p(ho, /ii, hi, h<$) for some 4-ary polynomial p and generators
hi G G U F . We can assume that each hi is nonconstant and that the range of
p is contained in U. Since typ(a, f3) = 1, p\w depends on at most one variable
modulo a. In fact, because the range of each hi is not a-connected while the
range of // is a-connected, and by the minimality of C/, P\N cannot depend
on exactly one variable modulo a; hence p\w is constant modulo a. It follows
(again by minimality of U) that for any Co, ci, c2, c3 G JV, the unary polynomi-
als p(:r, ci, c2, c3), p(co, x, c2, C3), etc. of A collapse f3\u into a\u- This implies
that each of the four unary polynomials p(x, ^1,^2? ^3)5 p(^o, 3:, ̂ 2? ̂ 3), etc. of



A[G] maps T into its proper subset {y G T : range(z/) is a-connected}, and
so fails to be one-to-one on T. Thus p and / to, . . . , /*3 witness the condition
stated in the Claim.

Conversely, suppose that // = ^(^o? fu v2-> us) f° r s o m e polynomial p of A
with range contained in U and elements V{ G T such that none of the four
functions p(x, v\,vi, ^3), p^o?^^?*^)? etc. are one-to-one when restricted
to T. For each i < 3 let N{ be the /3|j/-class containing the range of i/t-. As
typ(e*, /?) = 1, p(x, j / , z, it;) restricted to JV0 x • • • x iV3 depends on at most one
variable modulo a. Since p(#, ^1,^2, ^3) is not one-to-one on T, there must
exist Ci G Ni such that the polynomial p(#,Ci,C2,c3) of A is not one-to-one
when restricted to U. So by minimality of [/, this polynomial collapses f3\u
into a|c/, which proves that p restricted to No x • • • x JV3 cannot depend on
exactly the first variable modulo a. The same argument in the other three
variables establish that p is constant modulo a on No x • • • x JV3. So the
range of fi is a-connected, as desired. I

This completes the proof that T2 is definable in A[G], By Claim 2 and
the remarks preceding Claim 1, the graph G can be defined in A[G] by
formulas (with parameters) which do not depend on G. In other words,
these formulas define a semantic embedding of the class of finite graphs into
the class of finite diagonal subpowers of A, and Theorem 2.3 is proved. I

COROLLARY 2.4 Every finitely decidable variety satisfies the (3,1) and
(3,2) transfer principles.

PROOF. Suppose V is a variety which fails to satisfy one of these transfer
principles. Then by Lemma 5.3 from [11], there is a finite algebra A in
V which satisfies the assumptions at the beginning of this section. So by
Theorem 2.3 and the Basic Properties listed in the Introduction, V is finitely
undecidable. I

3 Empty tails

In [5] it was shown that if V is a decidable variety and A is a finite member
of V, then all minimal sets of type 2 or 3 prime quotients in Con A must have
empty tails. From that it followed that any decidable locally finite variety
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which omits type 1 must be congruence modular. In this section we shall
prove these same results under the assumption that V is finitely decidable.

THEOREM 3.1 Suppose A is a finite algebra belonging to an co-structured
variety. For every prime quotient S -< a in Con A, if typ(<5, a) ^ 1 then the
(6) a)-minimal sets have empty tails.

PROOF. If the theorem were false, we could pick an algebra A and a prime
quotient (£, a) which falsifies the claim, and such that the cardinality of A
is as small as possible. By Lemma 11.1 from [5], typ{A} C {1,2,3}. Let U
be a (<$, a)-minimal set, and let B and T be its body and tail respectively,
with T =̂  0. The minimality of \A\ implies several facts:

1.5 = 0^. (For if not, then A/S would provide a smaller counterexample.)

2. If (/?,7) is any prime quotient in Con A with (3 > 0^, then the (^,7)-
minimal sets have empty tails (by the same reasoning).

3. U = A. (Otherwise, Alt/ would be a smaller counterexample, by Basic
Property 3 in the introduction to this paper.)

4. A is subdirectly irreducible.

To see why this last item is true, suppose A were not subdirectly irre-
ducible; pick /? € Con A maximal with respect to not containing a, and let
<y = j3 Va. Obviously 7 is the unique cover of f3 and (/?, 7) is perspective with
(0,a). Thus A is also (0,7)-minimal and typ(/?,7) = typ(0,a) € {2,3}. It
follows that the (/5,7)-tail of A is nonempty, since otherwise A^ would be
Mal'cev, which it is not (A is minimal with nonempty tail relative to one of
its prime quotients; see the proof of Theorem 8.5 in [5]). This contradicts
item (2).

We now consider cases.

CASE 1. typ(0,a) = 3.
Thus \B\ = 2, say, B = {0,1}. As A is subdirectly irreducible, the (3,1)

and (3,2) transfer principles (proved in Section 2) imply that typ{A} = {3}.
Pick congruences ft and 7 satisfying ^ C 5 2 U T 2 , 7 P 2 U T2, and /? -< 7.
By Lemma 2.17 from [5], and because /3 ̂  O4, there must exist an element
2 € T such that {0,2} or {1,2} is a (/?, 7)-minimal set. We may assume
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that it is {0,2}. Choose a (0, a)-pseudo-join operation q(x,y) and note that
q satisfies q(x, 0) = x for all x G A, and q(x, 2) = 2 for each x G {0,2}. The
next lemma will supply the needed contradiction.

LEMMA 3.2 Suppose, in general, that A is a finite algebra, a is an atom in
Con A, and A is (0, a)-minimal. Let N be a (0, a)-trace and T the (0, a)-tail,
and assume there exist elements 0 G N and 2 G T such that:

(i) {0,2} is the image of an idempotent unary polynomial e, and A|{0,2>
is polynomially equivalent to a Boolean algebra.

(ii) A has a polynomial q(x,y) satisfying q(x,0) = x for all x G A and
q(x,2) = 2 for each x G {0,2}.

Tien tie class of finite diagonal subpowers of A is w-unstructured.

PROOF. Fix an element 1 G N distinct from 0. Observe that g(l,2) = 2
(as 9(1,2) = 9(0,2) = 2), so the polynomial h(x) := q(l,x) satisfies h(0) = 1
and h(2) = 2. Also observe that e(N) = {0}.

Claim 5 Ifp(xi,..., xn\ i/i,..., ym) is a polynomial of A such that, for some
c G {0, l}n, p(x;c) restricted to {0,1} is nonconstant, then there is an i G
{l,.._.,n} such that for all a G {0,2}n and d G {0,2}m, a,- = 2 implies
P(aJ)eT.
PROOF. We need only to prove this when n = 1. If the claim were false for
some specific values of c and J, then by using the polynomial h we can assume
that c = 0, and so by suppressing those variables j/t- for which ct- = d{ we can
further assume that d = 2. Then the polynomial b(x,y) := p(x, y,. . . ,j/)
satisfies 6(0,0) ^ 6(1,0) and 6(2,2) G B. Now let f(x) = b{x,e{x)). Then
/(0) 7̂  /(I) and yet /(2) G B, which contradicts the (0, a)-minimality of A
(and proves the claim). I

To finish the proof of the Lemma, let G = (G, E) be a finite graph and
let X be the disjoint union of G and a two-element set {a, 6}. For each v G G
and e e E define fv : X —> A and fe : X —> A by

f ( \ — / 2 tfz = v
MX) ~ \ 0 otherwise

2 if x G e
I ifx = 6
0 otherwise
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Let A[G] be the subalgebra of A * generated by the set

{fv'veG} U {/e : e G E} U {a : a e A}.

Clearly the set B of all functions in A[G] whose range is included in {0,2}
is definable in A[G]. Moreover, B is a Boolean subalgebra of {0,2}* and its
Boolean operations are definable in A[G]. (For definiteness, we assume that
0 < 2.) Let XG = 2|G U 0|{a>&}; then XG is in B (XG is the join of the /v 's) and
the set {fv : v G G?}, which is precisely the set of atoms in B lying below XG->
is definable in A[G] by a formula G(x) using XG and the constant functions
as parameters.

We claim, for distinct v,w G G, that {i>,u;} G E iff there exists g G
A[G] such that range(flf|a) Q {0,2}, g"1{2) C\G = {v,w}, and #(a) ^
#(6). Certainly if {t>,w} = e € E then # := / e has these properties.
Conversely, suppose g G A[G] has these properties. Pick a polynomial
p (x i , . . . , xn\ j / i , . . . , ym) of A and nonconstant generators fei, fVj such that
0 = K/ea , • • . , £ „ ; / , * , . . . , / . J . Then 5(a) ^ ^(6) implies p(0; 0) ^ p(l; 0).
It follows from Claim 5 that for some i,

d C {u G G : flf(u) GT} = { u G j : flr(t/) = 2} = {v,w}

and hence {t>,ttf} = et G J5 as desired.
What remains is to show that the edge relation is first-order definable in

A[G]. To this end, let S = {u G A : q(u,2) = 2}. Note that N U {2} C S
and that E, the set of functions in A[G] whose range is contained in 5, is
definable in A[G]. We claim that the relation " / ( a ) = /(&)" restricted to
those / in E is definable. The defining formula Equala6(x) is:

V <l(x,XG) = q(u,XG).

Furthermore, the formula Good (a:) given by

x G S & e(q(

defines the functions in A[G] which are {0,2}-valued on G and S-valued on
{a, 6}. (XG is the Boolean complement of XG in {0,2}x.) These remarks im-
ply that the formula E(#, y), which is the conjunction of G(x) & G(y) & x ^ y
and

[ ( ) ( ) XG = X Vy &
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recovers the edge relation of the original graph. This proves Lemma 3.2, and
completes the proof of Case 1. I

CASE 2. typ(0, a) = 2.
Let B be the (0,a)-body of A and T the tail. Let d(x,y,z) be a (0,a)-

pseudo-Mal'cev operation, let 0 be the largest congruence of A satisfying
f3 C B2 U T2, and let 7 be a cover of j3. (/?, 7) is nonabelian by Lemma 4.27
of [5], so typ(/?,7) = 3. (3 > OA and therefore by our choice of A, the (^,7)-
minimal sets must have empty tails. As in Case 1 there must exist 0 G B
and 2 € T such that {0,2} is a (/?, 7)-minimal set. Let e be an idempotent
unary polynomial whose range is {0,2} and set q{x, y) = d(x, e(x) A e(y), y).
Then q(x,0) = d(z,0,0) = x for all x e A, while q{x,2) = d(x,x,2) = 2 for
each x G {0,2}. So Lemma 3.2 again can be applied, which proves that Case
2 is impossible. Theorem 3.1 is proved. I

COROLLARY 3.3 Suppose V is a locally finite variety in a finite language.
IfV is finitely decidable and omits type 1, then V is congruence modular.

4 Conclusion

Let V be a locally finite ^-structured variety. We would like to summarize
what is currently known about the structure of V, in order to suggest prob-
lems for further study. We shall concentrate on the structure of the finite
subdirectly irreducible members of V, where the results are sharpest.

Suppose first that A is a finite subdirectly irreducible member of V whose
monolith \i is nonabelian. Thus typ(0^, //) = 3 and so by the (3,1) and (3,2)
transfer principles proved in Section 2, all prime quotients of A must be of
type 3. From this J. Jeong [9] was able to prove that the congruence lattice
of A is a chain. (P. Idziak [7] had earlier proved this result assuming V is
congruence distributive.)

Suppose next that A is a finite subdirectly irreducible member of V whose
monolith fi is abelian. In this case, less is known but much is conjectured.
Let v be the largest solvable congruence of A. In the nicest of all possible
worlds, we would hope that the following are true:

1. v is abelian.

14



2.

3. v is comparable to every congruence of A.

4. The interval from v to 1^ is a chain.

If item (1) were known to be true, then it would follow that all locally
solvable congruences of members of V are abelian. In particular, the locally
solvable algebras in V would form an abelian subvariety A of V. It is shown
in [11] that any locally finite abelian unstructured variety satisfies the (1,2)
and (2,1) transfer principles. It can then be shown (using results from [1]
and [10]) that A would decompose as a varietal product of a strongly abelian
subvariety and an affine subvariety. (This decomposition of A was announced
in [11], where it is attributed to Valeriote, but his original proof was messy
and has not been published.)

If the (1,2) and (2,1) transfer principles hold throughout V (not just in
•4), then item (2) follows automatically. Idziak and Valeriote have recently
investigated the necessity of these transfer principles, and can show the fol-
lowing: if B is a finite member of V and 0^ -< a -< (3 is a failure of the
(l,2)-transfer principle, and if M is a (0£,a)-trace and N is an (a,/?)-trace,
then there must be a unary polynomial / of B such that f(N) C M and
/ is nonconstant on N. (The proof is obtained by modifying the proof of
Lemma 8.4 in [11].) We expect that this result will prove to be useful in
the further study of the (1,2) transfer principle, but we do not regard it as
evidence that the (1,2) transfer principle will necessarily hold. (Idziak and
Valeriote can prove the same result for failures of the (1,3) transfer principle,
and the result is automatically true for failures of the (2,3) transfer principle
[11, Lemma 6.2], and yet it is known that these principles can fail in finitely
decidable varieties.)

K. Kearnes was the first to ask whether item (3) should be true. Idziak
and Valeriote have announced a proof of this for the case typ(0,4, fi) = 2. We
do not know whether it must be true when typ(0^,/i) = 1.

In light of the structure of finite subdirectly irreducibles with nonabelian
monolith mentioned above, item (4) is equivalent to the claim that v has at
most one cover. We conjecture that this will always be the case, at least if

Our motivation for all four items has been the study of unstructured lo-
cally finite congruence modular varieties made by J. Jeong [9]. In addition to
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the result concerning finite subdirectly irreducibles with nonabelian mono-
lith mentioned above, he proved that the finite subdirectly irreducibles with
abelian monolith in such varieties must satisfy items (1), (2) and (4). As
well, he proved that such varieties must be congruence permutable and each
finitely generated subvariety must be residually small.

Less is known about conditions which are sufficient for a variety V to
be finitely decidable. Idziak [6] has shown that if V is arithmetical, finitely
generated, and its subdirectly irreducible members have linear congruence
lattices, then V is finitely decidable. Recently M. Albert [2] has generalized
this result in the following way. Suppose V is congruence permutable, finitely
generated, and residually small. If:

1. each nonabelian subdirectly irreducible member of V has a linear con-
gruence lattice;

2. each nonabelian subdirectly irreducible member of V with abelian mono-
lith fi satisfies v = \i (same notation as above);

then V is finitely decidable if and only if the variety of i2-modules associated
with the largest abelian subvariety of V is finitely decidable.

Ultimately we hope that our research will lead to an answer to the ques-
tion "Which finitely generated varieties (in a finite language) are finitely
decidable?" where the answer will be stated in terms of the structure of V
and the finite decidability of certain classes of modules associated with V.
We can pose the same question for locally finite varieties (even arbitrary va-
rieties) but then we no longer have confidence that a solution will be found.
Even restricted to locally finite discriminator varieties, the problem is as hard
as determining which locally finite universal classes of algebras are finitely
decidable.
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