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Abstract

In this paper we show that any system of equations over a free nilpotent
group of class c is either unitary or nullary. In fact, such a system either
has a most general solution (akin to the most general solution of a system
of linear diophantine equations), or every solution has a proper general-
ization. In principle we provide an algorithm for determining whether or
not a most general solution exists, and exhibiting it if it does. This re-
quires solving a system of linear diophantine equations for approximately
c(^j different right hand sides, where k is the number of parameters which
occur in a most general solution of the system in the variety of abelian
groups.

1 Introduction

The process of solving equations is central to much of algebra. In a general set-
ting, there are two questions to answer when presented with an equation: "Does
a solution exist?", and "If so, what is the most general form of a solution?". In
this paper we address these questions in the context of nilpotent groups. Before
we begin, a discussion of the exact meaning of the second question is in order.

We work in a variety V (of groups - though the following remarks can be
applied in a more general context.) A system E of equations in the variables



x = x\,X2,..., #n is a finite set of elements of the form:

t(x) = 1

where t is a term in the language of groups, and 1 denotes the identity element.
A solution of E in a group G G V is a sequence of elements a = ai, 02,. . . , an

from G such that t(a) = 1G for each element of E. Another way to put this is
that if -Fv(x) is the relatively free group in V with generators x, then a solution
of E is a homomorphism r from Fy (x) to G whose kernel contains each of the
terms t which appear on the left hand side of the equations in E. The group
in which we search for solutions will be the countably generated relatively free
group of V - which we will denote Fw.

Given two solutions T\ and r^ of E we say that T\ is at least as general as
T2, and write T\ < T^ if there is an endomorphism a : Fw —• Fw such that
ar\ — T2. Clearly < is a transitive and reflexive relation, however it need not be
anti-symmetric. There is a naturally associated equivalence relation ~ defined
by:

a ~ T <=> a < T and r < a.

and a partial order on equivalence classes of this relation which is induced by
<.

This definition of generalization is one which has been arrived at in the study
of resolution methods of theorem proving, and term rewriting systems (where
"solving equations" goes by the name of "unification"). It corresponds to the
natural understanding of generalization as the following simple example illus-
trates:

Consider the single equation

2x + Zy + 6z = 0

in the variety of abelian groups. One solution is given by:

x = 0, y = 2a, z = — a

for any generator a of the free abelian group. Another solution is given by:

x = Uyy= -& + 2c,z= -c ,

for generators 6 and c. It is clear that the second solutions is more general than
the first, and this is witnessed by any endomorphism which maps b to 0 and
c to a. In fact the second solution is a most general solution to the equation:
it is at least as general as any solution to the equation (for any other solution
x = s,t/ = t,z = u) an endomorphism which sends c to —u and b to —t — 2u
establishes this.) In fact, any system of equations in the variety of abelian
groups has such a most general solution - which amounts to a general solution
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of the same system viewed as homogeneous linear diophantine equations. Simple
Gaussian elimination (avoiding fractions) can be used to find such solutions but
may lead to a "blow up" in the size of coefficients at intermediate points in the
calculation. This problem can be avoided and polynomial time algorithms for
solving such systems are known, see for example [2] and [1].

The generalization relation need not always behave so nicely. For example
consider the equation:

xyx~ly~l = 1

in the variety of all groups. It is known that all solutions to this equation in a
free group are of the form:

x = tn,y = tm

for some t and integers n and m. Any solution is generalized by one in which
t is a generator and n and m are relatively prime. Among these more general
solutions none has any strict generalization, but any two such solutions which
differ in the exponents (by anything other than a sign change) are incomparable.
Therefore, this single equation has an infinite set of most general solutions. In
the variety of all groups it can be shown using the Nielsen-Schreier theorem,
and the fact that free groups are Hopfian, that any system of equations has a
set of most general solutions. At this time we do not know of any such system
which has more than one, but only finitely many most general solutions (up to
equivalence under automorphisms of the free group.)

Let us make our terminology a little more precise. A most general solution a
of E is one which has no proper generalization (i.e. if r < a then a < r). We
say that £ is unitary if there is a single most general solution which generalizes
every solution (this solution need not be unique); finitary if there are finitely
many most general solutions, such that every solution is generalized by at least
one of them; infinitary if there is an infinite family of most general solutions
of this type; and nullary if none of the preceding cases occurs, which means
that there is at least one solution which is not generalized by any most general
solution. In terms of the partial order obtained from < above, £ is unitary if the
order has a smallest element, finitary (infinitary) if the set of minimal elements
is finite (infinite) and every element lies above a minimal element, and nullary
if there is some element which does not lie above a minimal element.

We will see that for each c > 1 every system of equations in the variety of all
nilpotent groups of class c is either unitary or nullary. In fact, if a system is
nullary, then we will prove that every solution has a strict generalization. The
proof will implicitly specify an algorithm which either finds the most general
solution to a system of equations, or establishes that no such solution exists,
and the main part of this algorithm involves solving the same system of linear
diophantine equations (with differing right hand sides) roughly c(*) times -
hence the algorithm can be made polynomial, and in fact quite practical, at
least for small values of c.



We hope that this paper will be accessible to a wide audience, and so we have
attempted to make it as self-contained as possible. In particular section 2.1
contains a great deal of basic material. There is no doubt that an acquaintance
with the material on nilpotent groups which can be found in [4] would be of
more than a little value. The results and definitions which we require from this
reference are collected at the beginning of the next section.

2 Results

2.1 Preliminaries

The language of groups contains symbols for multiplication, inverse, and the
identity element (which we denote 1). To this language we add the commutator
bracket:

[a,b] = a~lb-1ab

and the "left-normed commutators of weight c + 1" defined inductively by:

[xi,x2, • • -,^c+i] = [[#i>Z2> • • .,a?c],a?c+i].

A group G is said to be nilpotent of class c (c > 1) if for all g\, #2, • • •, 9c+i € G,

So the groups which are nilpotent of class 1 are just abelian groups.

For any c, the nilpotent groups of class c form a variety of groups denoted «A/"C,
i.e. a class of groups closed under the formation of subgroups, quotient groups,
and Cartesian products. In Mc (more generally in any variety), there exists, for
every set X, a free group F(X) generated by Xy with the following universal
mapping property:

for every G (E Afc and every function / : X —> G there is a group
homomorphism / : F(X) —* G which extends / .

Given a free group F in a variety, any subset X of F which generates F and
has the above universal mapping property is referred to as a free generating set
ofF.

When we speak of "the" free group in a variety we will mean a countably gener-
ated free group on an unspecified generating set (from which we will occasionally
pull elements).

The center of a free group of Nc is the group generated by all left normed
commutators of weight c. This group is free abelian, and if the generating



set is linearly ordered, has a basis consisting of all the left normed weight c
commutators of generators, where the generators occur in strictly increasing
order in the commutator. By "general nonsense" the quotient of a free group of
Mc by its commutator subgroup is also a free abelian group, generated by the
images of the generators of the original group (generally, the quotient by the
(fth term of the descending central series will be a free group in Md-)

The following specializes Theorem 42.31 of [4] to the situation at hand.

Proposition 1 Let A be a subset of a free group F in Mc. If the image of A
under the natural homomorphism from F to F/F1 is independent and generates
a direct factor of F/F1 then A can be extended to a free generating set of F.

Finally we need the following fact, related to results of J. Lawrence in [3] whose
proof we defer until section 2.4

Lemma 2 Let F be the free group in Mc, let r be a positive integer, and let p
be a prime which is not a divisor of r. Then for all positive integers k there
exists a positive integer <j>(k) such that, for any M > <j>{k), and any subset
{u{j : 1 < i < M, I < j < c} of cM distinct elements of a free generating set the
equation:

k M

i=i i=i

has no solution in F.

We begin the proof of our general result with a consideration of the class 2 case.
Although formally there is no difference between this case, and the induction
step of the general proof, the technical details are somewhat less inhibiting, and
the general idea of the proof is illustrated much more clearly.

2.2 Nilpotent class 2 groups

This section is devoted to proving the following theorem, followed by some
examples of its application.

Theorem 3 In the variety of nilpotent groups of class 2 every finite system of
equations is either unitary or nullary. If a system is nullary then every solution
has a proper generalization.

In a free nilpotent group of class 2 every element can be written as a product of
powers of distinct generators times a product of commutators. So, modulo the



laws of this variety, we may assume that each equation in our system has the
general form:

where

plays no visibly significant role in the rest of the proof.

We consider the same system of equations in the free abelian group. As all
commutators are the identity here, only the powers of generators are important.
As is traditional we rewrite the system additively, and in matrix form as:

Mx = 0 (2)

Since the variety of abelian groups is unitary, equation (2) has a most general
solution:

Xi = Wi(y) \<i<n y = yliy2i.. .,y*.

which can be chosen in such a way that there are terms <j(x) so that for any
solution a of equation (2), if we set:

then
a,- = Wi(h) 1 < i < n.

It follows that if a is a solution to the original equation (1), then for bj = *j(a)
and certain elements Pi, P2> • • • > Pn of the commutator subgroup

ai = Wi(b)Pi.

Substituting in the original equations, using the fact that all commutators are
central, and that

[xy,z] = [x,2][y,z]

in a nilpotent class 2 group, we obtain a system of equations of the form:

... P?* = JlibiW (3)

for certain integers n,y which depend only on (1), and not on the particular
solution chosen. Conversely, given any b and elements Pi,P2,...iPn of the
commutator subgroup which satisfy (3), the elements at- = Wi(b)P{ satisfy (1).

We can now state the criterion which determines whether or not (1) is unitary.



Claim: If each system of linear diophantine equations:

Mx = mj l<i<j<k (4)

has a solution then (1) is unitary. Otherwise it is nullary and every solution has
a proper generalization.

Notice that we have (2) systems of linear diophantine equations above, one for
each pair of parameters &,-, bj.

We now prove the claim above. First suppose that each of the systems (4) has
a solution. Let u\t u2y • •., u* be a subset of the free generators of the free group
in Af2. Then because the systems (4) have solutions, we can find a solution
of (3) in which each P is written as a product of commutators of the form
[t/j, Uj] (1 < iI < j < k). Take such a solution and consider the solution:

x2 = w2(u)P2(u)
r : . (5)

xn = wn(u)Pn(u)

of (1) which arises from it. Then this is a most general solution of (1).

To see this, consider any solution a of (1). As noted before the claim, there
exist elements b and elements of the commutator subgroup P' i , P ' 2 , . . . , P'n
such that:

<U =
a2 =

an = v,nQ>)K
The substitution which sends each Uj to bj does not necessarily send -Pt(u) to
P(. However, it does yield a solution c with the property that:

ai = CiQi (1 < i < n)

and
QT1Q29'"Qnn = ̂

for some Qi,Q2,..., Qn in the commutator subgroup. Since the most general
solution of (2) is in fact a most general solution in any torsion free abelian group,
there exist Qi, Q2,..., Qk in the commutator subgroup such that:

Therefore, the substitution which sends Uj to bjQj sends



to
Wi(b)wi(Qi, Q2, • • •, Qk)Pi(h) =

where to obtain the first result we use the fact that [biQi,bjQj] = [&t>fy] since
the Q belong to the commutator subgroup. Thus r is as general as any other
solution, and so the equation (1) is unitary in this case.

Now consider the case where one of the linear diophantine systems in (4) does
not have a solution. Without loss of generality suppose that it is the system
with i — 1 and j = 2. This means that some integer linear combination of
the rows of M has a prime factor q which is not a factor of the corresponding
combination of the elements of and 1112. We obtain a corresponding equation of
the form:

where q is not a divisor of n'.

Let a be any solution of (1), and let bj = fy(a). So we have:

( l < * < n ) (7)

for some elements P{, P-J, . . . , P^ of the commutator subgroup. Also, from the
above, there is a relationship of the form:

where q is a prime which is not a divisor of n'.

It follows that b cannot be a subset of a generating set of the free nilpotent
group of class 2, since the commutator subgroup of such a group is free abelian
with generators [&,-, bj] among others, and hence the right hand side of (8) could
not be a qth power. By 1 this implies that the images b of b modulo the
commutator subgroup do not generate a direct factor of the free abelian group.
So without loss of generality, there is a prime <j, and a positive integer r which
is not a multiple of q such that:

l\ = 6*26*3 • k

for some integers A2, A3,..., A*, and some D £ F. Hence:

for some C in the commutator subgroup, and some D £ F. Let u\, u2i... be a
sequence of generators which do not appear in any bj or P' (from (7)), nor in



C or D. Let:

M

CJ = bj (2<j<k)

and consider the solution:
a{ = u,.-(c)i?

of (1). This is a solution, because in general if we multiply the elements of
b by elements of the commutator subgroup then the right hand side of (3) is
unchanged, so no change is required in P/,Pl

2,...^P!ri.

The solution a' is at least as general as a because the homomorphism which
sends each of the tii, t*2,... to 1 and leaves the remaining generators unaffected
sends a' to a. On the other hand, suppose that there existed a homomorphism
T which sent a to a'. Then, as bj = tj(a) and Cj = tj(a.f) (which follows from a
direct computation using the fact that rL=i[w25) U2s+i] is central), it must be
the case that r(6,) = c» for 1 < i < k. In particular,

and so,

(f[ (9)
3 = 1

But C is the product of some fixed number k of commutators

hence

so for sufficiently large M (depending on the number of commutators which
occur in C) this together with (9) yields a contradiction (by Lemma 2 for c = 2.)
So the new solution is a strict generalization of the original solution, and the
equation is nullary.

Thus ends the proof of the theorem for nilpotent groups of class 2. It should be
clear that the proof in fact specifies an algorithm for determining whether any
particular system of equations is nilpotent. For examples of its application see
the next section.



2.3 Nilpotent class c groups

We now aim to provide a classification of the unification type of systems of equa-
tions in nilpotent groups of class c, for all c > 2. As noted in the introduction it
was not actually necessary to deal with the class 2 case separately, but having
done so enables us to present the proof of this case in a somewhat less technical
manner (which is to say, we omit some of the details which are handled in the
same way as above). The theorem which we will prove is:

T h e o r e m 4 For every c>\, every system of equations in variables

over the free nilpotent group of class c is either unitary or nullary. If a system
is unitary, then there is a most general solution of the form:

Xi = Wi(yi,y2,..-,yk) forl <i<n

where yi, y2> • • •» y* *5 a sequence of free generators, and there are terms:

*i(x),*2(x),...,**(*)>

with the property that for any solution a;

Q>% = w,(*i(a),t2(a),...,tjfe(a)) forl < i < n.

If a system of equations is nullary, then every solution has a proper generaliza-
tion.

The proof is by induction on c, the base case c = 1 of abelian groups certainly
satisfy the conditions (in fact all equations are unitary), and also the case c = 2
was verified above. So we suppose that the result is true for all systems of
equations over nilpotent groups of class less than c.

Let a system S of equations over the free nilpotent group of class c be given.
Such a system may equally well be considered as a system over the free group
of class c — 1, and so by the inductive hypothesis we may suppose that as such
it is either unitary or nullary. We will see that in the latter case S remains
nullary (a slight strengthening of the inductive hypothesis will be required to
verify this). In the former case, E in class c will be either unitary or nullary,
and we will also see that the required strengthening of the inductive hypothesis
is valid. Let us begin with this case.

So E is a given set of equations such that in class c — 1 it is unitary, with a
most general solution X{ = W{(y) and terms t i , t2,••• ,** as provided by the
inductive hypothesis. Thus, if ui,u2,..., Uk are free generators, and we make
the substitutions:

x, = Wi(u)Pi for 1 < i < n

10



in E where Pi, P2, • • •, Pn are to stand for arbitrary elements of the center of the
free nilpotent group of class c (which we recall equals the subgroup generated
by the basic commutators of weight c); then we obtain a system of equations of
the form:

If this system has a solution then it has one with Pi, P2, . . . , Pn elements of the
subgroup generated by:

{[uix, ui2i..., uic] : ti < i2 < - - • < ic}

and we claim that if we choose any such solution Pi(u), p2(u),. . . , Pn(u) then:

Xi = Wi(u)Pi(u) for 1 < i < n (11)

is a most general solution of E. Furthermore we can find terms s\, S2> • • •, $k so
that for any solution a of E,

a,- = Wi(si(sL), «2(a),..., sjk(a))Pi(si(a), 52(a), . . . , «jb(a)) for 1 < i < n.

Of course it suffices to verify this last claim.

We know already that for x determined from u according to the substitution
(11)

«< = *«(*)TiWii>Ui2> • • • ̂ uic]
dil ic for 1 < i < k. (12)

for some integers dilt,,,tic. This occurs because modulo the center of the free
nilpotent group of class c:

Ui £ U(x) for 1 < i < k. (13)

But in any nilpotent group G of class c:

gj S fy (mod Z(G)) for 1 < j < c

implies [^i,(/2, • • -,9c) = [huh2,...,he] (in fact it already implies [01,02] =

|7*i,^2])- Using this fact and the congruences (13) we obtain from (12) the

equation:

So we may take S{ to be the term on the right hand side above (treating x once
again as variable symbols).

What happens in the case that (10) does not have any solutions? In this case,
some combination of these equations is of the form:

f< [uil,ui2,...,uicr'n «..

11



Where q is a prime which does not divide some n^ ic.

Let a be an arbitrary solution of E. Because of the above relationships, if

&j=tj(a) f o r l < i < J b

then without loss of generality there must be some relation of the form:

where C belongs to the commutator subgroup, D £ F and q is a prime which
does not divide r.

However,
ai = Wi(b)Pi for 1 < i < n

for some P? in the center of the free nilpotent group of class c, as the sequence
ttfi, ttf2, • • •, Wn is a most general solution of E in the free nilpotent group of class
c — 1, and hence certainly also in any torsion-free abelian group. Hence, if we
set:

5=0

Cj = bj (2<j<k)

where the y are free generators which do not occur in any of b or P?, then

al = Wi(c)Pt* for 1 < i < n
is also a solution of E and Cj = tj(a!). But then as in the class 2 case, this
solution strictly generalizes the original solution if M is chosen sufficiently large.

Now suppose that E is already nullary as a system of equations over the free
nilpotent group of class c — 1. From the discussion above, this implies that for
some w\, W2,..., wn which reduce to a most general abelian solution of E and
for some terms <i, ̂ 2> • • • > ̂ *> f°r a n v solution a of E in the free nilpotent group
of class c, if bj = tj(a) for 1 < j < k, and if bj for 1 < j < k denote the images
of these elements in the free nilpotent group of class c — 1 then without loss of
generality:

(A)c-i For some integers r, A2,..., A*, some prime q which is not a divisor of
r, some D in the free nilpotent group of class c — 1 and some C in the
commutator subgroup of this group:

(B)c For some P? in the commutator subgroup of the free nilpotent group of
class c,

ai - Wi(b)P; for 1 < i < n.

12



Strictly speaking, the discussion above only guarantees (A)d and (B)d for some
d < c. However, both these assertions contain factors which are to be chosen
from the commutator subgroup, hence provided that they hold modulo some
term in the lower central series of the free nilpotent group of class c, they will
hold in the free nilpotent group of class c. The fact that (A)c_i, (A)c and (B)c

hold is the strengthening of the inductive hypothesis which we referred to above.
But in the first part of the proof we saw that these relationships hold when E is
nullary in class c and unitary in class c — 1, and we are currently in the process
of showing that they likewise hold when E is nullary in class c — 1.

From (A)c_i we may deduce (A)c i.e.

for some C in the commutator subgroup of the free nilpotent group of class c.
From (B)c if we form c and a' as above:

M

5=0

cj = bj (2<j<k)

we will still have a solution. But then from (A)c (which now holds with c in
place of b everywhere) this will be a proper generalization of the solution a
provided that M is chosen sufficiently large.

2.4 An important technical lemma

This section is devoted to the proof of Lemma 2 which we restate here for
convenience:

Lemma For all positive integers k non-zero integers r and primes p which do
not divide r, there is a positive integer <f>(k) such that, for any M > <i>{k), the
equation:

k M

i, ««, • • •,uic])r

has no solution in any free group in Nc in which {uu : 1 < i < M, 1 < / < c} is
a subset of cM elements of a free generating set.

Proof: The proof is similar to the argument in [3]. We first construct a
finite group Hc which is a nilpotent class c p-group, generated by a sequence
ai, a2,. . . , acy such that [ai, a2 , . . . , ac] is not a pih power. Then we exhibit a
homomorphism from the free group in Mc to Hc which sends the left hand side

13



of the equation above to [ai, a 2 , . . . , ac], while sending each of the commutators
on the right to 1.

Consider the Zp2-algebra generated by x\, z 2 , . . . , xc with the following relations:

1. Any monomial containing more than one occurrence of any variable is 0,

2. XiXj = XjXi for all i, j G {2 ,3 , . . .c}

Observe that in this algebra, if M is a sum of monomials of degree at least one
then:

M c + 1 = 0

since any monomial in M c + 1 contains a repeated variable.

Let Gc be the group of units of this algebra of the form 1 + M where M i s a
sum of monomials of degree at least 1. The group Gc is a p-group since for any
such monomial M, if n is such that

then:

(1 + M)pn =

If M and N are such sums which in addition are homogeneous in each variable,
then (1 - M ) " 1 = 1 4- M and (1 - N)~l = 1 + JV and furthermore:

[1 - M, 1 - N] = 1 + MN - NM. (14)

Note that MN — NM is also homogeneous in each variable.

Let:
a{i = 1 — Xi so ajl = 1 -f %i

and let ifc be the multiplicative subgroup of Gc generated by a\, 02 , . . . , ac.

For each j between 1 and c, ajdiaj1 contains x\ in each of its non-constant
monomials, and hence commutes with a\ = 1 + xi. Therefore the normal sub-
group (ai) of Hc generated by a\ is abelian. Certainly the subgroup generated
by a2> fl3j • •. > <*c is also abelian since X{ and Xj commute for i,j > 1.

It is clear that:
[ a i , a 2 , . . . , a c ] ^ 1

since from (14) it will equal

1+

14



On the other hand, any commutator of ai, <Z2,..., ac of weight greater than c
contains a repeated symbol, hence is equal to 1. Thus Hc is nilpotent of class
c. It remains to show that [ai, <*2,..., ac] is not a pth power.

Suppose otherwise, namely that for some M which is sum of monomials all of
degree at least 1:

We first claim that M contains a monomial of degree less than c whose coefficient
is not a multiple of p. Otherwise, M = pN -f Y where N is a sum of monomials
of degree at least one, and Y is sum of monomials of degree c, and:

(pN + y) 2 = p2N2 + pNY -f pYN + Y2 = 0.

Hence:
(1 +pN + Yf = 1 +p(PN + Y) = 1 + PY.

But none of the coefficients of [ai, 02,. . . , ac] are multiples of p so this is not
possible.

So choose a monomial m from M of smallest degree whose coefficient is not a
multiple of p. Thus:

M = pA

for some A which is a sum of monomials of degree at least one, and B which is
a sum of monomials whose degree is at least as great as the degree of ra. Then:

(1 + pA + m -f B)p = 1 -f p(pA + m + 5)-f terms of higher degree than m
= 1 -f p(m + 5) + terms of higher degree than my

and this cannot equal [ai, 82,. . . , ac] since it contains a monomial of degree less
than c.

Let A be the c-generated relatively free algebra in the variety generated by Hc

(and fix generators 61,62, • • •, bc of A). Since Hc is finite, so is A. Let N = |A|.
Since Hc is generated by c elements, it is a homomorphic image of A.

Returning to our equation:

k M

t = l

suppose that M > jV2*+1. If we have a solution to this equation in the free
group of Afc:

pp
group of Afc:

k M

t = l

15



then we may assume that pi,P2> • • • ,Pk and ?i, ?2> • • •> 4fc a r e contained in the
subgroup generated by

{tigj : 1 < t < M, 1 < / < c}.

This subgroup is of course also free on this set of generators. Consider the
homomorphisms from this group to A determined as follows:

&i :— } j

Now define a map V> : {1, 2 , . . . M } - • A2fc by:

Since M > AT2**1 and N = |A| there exist W distinct elements i of {1 ,2 , . . . , M}
for which the values tp(i) are all the same. Since the maps 0,- can be permuted
by permuting our generating set, we may for convenience assume that:

Since &i, &2> • • • > &c is a sequence of free generators for A this means that in any
group of the variety containing A, and in particular in Hc, for any tuple x of
length c, and 1 a c-tuple of l's, and for each 1 < j < k:

Pj (1, . . ., 1, X, 1, . . . , 1, . . .) = Pj (1, . . ., 1, 1, 1, . . . , X, . . .)

^ • ( 1 , . . . , 1, x, 1,... ,!,. . .) = ^ ( 1 , . . . , 1 ,1 ,1 , . . . , x , . . . )

provided that both occurrences of x are in the first iV blocks.

Now consider the homomorphism 7 from the free group in Mc to Hc defined by:

{ at for 1 < i < AT, 2 < / < c
a\ for % = 1, / = 1
1 otherwise

Let a = , . . . , ac, and a = I , a 2 , . . . ,ac- Then for 1 < j < k:

The first equality follows from the relations above, and the fact that the sub-
group of Hc generated by a 2 , . . . , a n is abelian. The second comes from the
fact that N = |A| and Hc is a homomorphic image of A. The same calculation
yields:

N
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Hence, for 1 < ,;' < fc,

7 V - 1

since a = a (mod (ai)). But since (ai) is abelian, this implies that:

while
M

T((n[wti,«t2, • • •, «»c])r) = [ai, a2 , . . . , ac]
r

which is not a pth power by the above (recall that p is not a divisor of r.) This
contradiction concludes the proof. •

3 Examples

We will now illustrate the technique of solving systems of equations in nilpotent
class 2 groups with two detailed examples.

Example 1 The pair of equations:

x^xlx3xl[x2,x3]
3 = 1

zj"1 x2 X31 x\ [xu x2] [xu x3] [x2, x4] [x3t xA]"1 = 1

has a most general solution in the variety of nilpotent class 2 groups.

The abelian reduction of this system:

x-*x2
2x3x\ = 1

has a most general solution:

1 x\ =

2= uv

x3 = u2v3
x2 =
x3 =
X\ = UV

17



In a nilpotent class 2 group:

and similarly,
(uv^iu^v^v3)-1^)4 = [u, v]2.

Further:

[xi,x2] = [u,v]3

[xi,x3] = [u,v]-x

[xi,x4] = K ^ ] " 1

[x2)x3] = [u,v]-5

Therefore:

1 x\\ i, x3] [a?2, x4] [x3, X4]-1 = [u, v]3 .

So with xi = uv2P\, x2 = u~lvP2, x3 = u2v3P3i x4 = uvP4 we obtain:

P1-1P2P3-1P4
4 = k^]- 3 .

which has a particular solution:

Pi = K t , ] - \ P2 = [t/.t;]"4, P3 = P4 = 1

so we obtain a most general solution to the original system:

x3 = u2v3

Example 2 The pair of equations:
— 5 2 5 r ~. l 2 i

X^ X2 X3 X^ [X 2 , X3J = 1

x± X2X3 x4[xi,x2] [xi,x3] [x2,x4] [x3, x4]~ = 1

ot have a most general solution in the variety of nilpotent class 2 groups.
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This example differs from the first only in the exponent of [#2, #3] in the first
equation. The analysis of the abelian solution is therefore the same, but this
time we are led to the equations:

pf5p2
2p3p4

5 = k ^ r 8

and consequently (remembering that PiiP2iPs,P4 commute:

Since the exponent on the right is not a multiple of 3, this system does not have
a most general solution.

4 Conclusion

We have shown that there is a close connection between solving systems of
equations in nilpotent groups and doing so in abelian groups. Similar methods
can be used to show that some systems of equations in other varieties of groups
(particularly those which are generated by a finite group) are also nullary. In
fact, the proof in this paper applies to any variety of groups which is nilpotent,
contains the groups Hc used in the techical lemma for each prime p, and such
that each free group is residually a finite p-group for each p. A particular
variety of this type is the intersection of the variety of metabelian groups and
Mc- However, a complete classification of systems of equations in an arbitrary
variety of groups would seem to be very difficult. We list a few of the more
interesting open cases of such questions below:

Question 1 In the variety of all groups is there an equation or system of equa-
tions which is finitary but not unitary?

Question 2 Can systems of equations in solvable groups, in particular in meta-
belian groups, be classified as above?

Question 3 Can the unification type of the variety generated by a finite group
G be determined?
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