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1. INTRODUCTION:

The idea of this paper was suggested to the author during work on artificial boundary

techniques for exterior scattering problems. The underlying theme is this. One has an

evolution equation containing effects that are non-local in space and/or time and these effects

produce dissipation. The non-local effects also produce serious numerical difficulties. The

question is can one approximate with equations which are more local, hence easier to handle,

while preserving the dissipation.

In the scattering problems the effects are both spatially and temporally non-local. They

are introduced artificially as a numerical device to reduce the problems to finite domains, [1],

[4] and [5]. Here we onsider systems in which the non—local effect is only temporal but in

which that effect is part of the model. Such models have been very useful in control theory,

viscoelasticity and heat flow.

This paper is a very modest first effort. We consider a simple model equation for which

we can give precise, but non—trivial, dissipativity results. We indicate some applications and

possible extensions in Section 5.

Our equation is typical of the hereditary models which have been successfully studied.

The equations can be nonlinear but the memory effect is linear. Specifically we consider

equations of the form,

ii(t) + Ljg(u)] • (t) = f(t), t > 0 u(0) = uQ

= I a(t-r) C(r))dr
0

We study this problem in a familiar Banach space setting with g possibly non—linear but

monotone and coercive.



We call (E ) a hereditary system. We say it is dissipative relative to a class & if for any uQ

and f € 9 there is a unique solution u(t) for all t > 0 and there is a unique

u = U f̂f, UQ] such that (in some sense) u(t) —» u as t —»oo.U f , UQ] uc ( ) ( )

There exist numerical approximation methods for equations like (E ), [9], [11]. These

are accurate but very complicated for reasons which are shown in Section 4. When a(t) = 1

(E ) reduces to a differential equation,

u(t) + g(u(t)) = f(t), t > 0 u(0) = uQ (Ex)

In the setting we use the theory for (E.) is very well known, [6], and one can obtain

numerical results quite easily by using simple time stepping, [3].

We will give conditions on g and a which insure dissipativity for (E ). These results

follow rather directly from work in [2], [7] and [8]. Our main goal is to approximate (E ) with

a low order ordinary differential equation. Numerically it will have about the same simplicity

as (EA We want this equation to preserve the dissipation exactly so that we capture the long

time behavior. We also want it to capture the short time behavior. Finally we want to be able

to form our approximating equation with very little specific knowledge about the kernel a.

The price for all the simplicity is, of course, that our scheme may be very crude at

intermediate times. We do not have any very good theorems about the error in our

approximation, a defect which also occurs in the scattering theory results. As a partial check

we present a numerical example in Section 4. We find the results there most intriguing. Our

approximation contains a free parameter 7 and the outcomes are very sensitive to the choice

of 7. In Section 2 we suggest two possible choices, based on rather vague arguments. In

Section 4 we find that the first choice gives considerable error at intermediate times while the

second gives striking accuracy for all t.

Our idea is extremely simple. We use well known Voltura equation ideas to show that

dissipativity is controlled by properties of the Laplace transform a(s). Next we follow



scattering theory ideas and find a low order Pade approximation b which agrees with a for

large and small s and preserves the dissipativity condition in the transform domain. Then we

replace a in (E ) by the inverse transform b of b. The rational character of b implies that

(E,) is equivalent to a differential equation.

The author wishes to make two acknowledgments. Preliminary work on the

approximation idea was carried out in a Master's thesis by Petros Hadjicostas for the linear

scalar problem of a viscoelastic fiber. Assistance on the numerical computations was provided

by Daniel Burkett.

2. STATEMENT OF RESULTS

Our general setting is familiar. We have a separable, reflexive Banach space V

continuously imbedded in a Hilbert space H. We imbed H in the dual V7 of V by

<h,v> = (h,v)Tj. We have a map g from V into V , with g(0) = 0, and we assume there

are constants p > 2, M > 0 and m > 0 such that,

g || , < M(l + || u HP"1 ), < g(u) -g(v), u - v > > m || u - u ||P (G)

We suppose uQ6 H and that f has the form,

f(t) = f + F(t), F € L (0,o,: V ) , P" 1 + q X = 1 (Fx)
q

Under these conditions the following result is standard ([6]) and its proof is essentially the same

as the theorem (2) below.

THEOREM 1: (i) There is a unique u^ such that g(u J = f̂

(ii) (E.) has a unique (generalized) solution u for all t > 0 with



u e L2(0, » : VO, u - u o 6 L (0, o : V) (2.1)

00
REMARK 2.1: The second of equations (2.1) is our decay result. It suggests that u(t) —» u

in V as t —»oo and, in fact, implies that result if one has additional smoothness on u.

We aim at an analogous result for (E J if (G) holds and we need conditions on a.
a

These conditions are rather technical and are given in the Laplace transform domain. Let us

make a definition.

DEFINITION 1: Let r = {s : £ + i 77, ( > 0}. The space Lm is the set of all <p such that

(i) p(s) = <p s""1 + #(s), <p > 0, i e C^' (F)

(ii) i is analytic in F and f?(s) is real for s real and positive

(iii) i(s) = ty"1 + ... + * m s ~ m ~ 1 + 0 (s~m~~2) as s - i CD in T

(iv) i ^ ( s ) = 0 (s~~2) as s —̂  OD j = 1, 2, 3

Functions p in L are the Laplace transforms of functions p(t) = <p + i(t) with

properties which we describe at the end of the section. First let us state our results. We make

two assumptions on a. * The first is technical:

a has a Laplace transform a in L, (A.I)

Proposition 1 at the end of the section shows that (A.I) implies a e c ' qO, co). Our second

condition on a is familiar in Volterra equation theory and is the key to dissipativity.

We assume here that a is a sealer function. We comment on the extension to the case where
a(t) is a family of linear operators in Section 5.



a(0) > 0, a(0) < 0, Re a(i TJ) > 0 V r) (A.2)

REMARK 2.2: It is known that a sufficient conditions for (A.2) is ( - l ) k a^k^(t) > 0,k = 0,1,2.

A prototype is e~~fl , a > 0. There are, however, oscillatory function which satisfy (A.2), for

instance e cos /?t, a > 0, 0 > 0

We also need an additional condition on f:

F e 1 (̂0, . : V) , I" ( f || F(r) || , d r)2 dt < o (P2)
J0 Jt

We assume (G), (A^, (A2), (Fx) and (F2) hold.

DISSIPATIVITY:

THEOREM 2: (i) //a^ > 0 there is a unique u^ = U^ [f, u j such that

a g(u ) = f (2.2)
CD O V 0D / 0D V '

(ii) / /a = 0 and f = 0 there is a unique u = U^ [f, UQ] such that

A(0) u + g(u ) = uQ + p F(r) dr (2.3)

(iii) In either case (E ) has a unique (generalized) solution for all

t > 0 with,

UGL9(O,OD: V ' ) , U - U 6L_(0,OD:V) (2.4)
& OD jp



REMARK 2.3: Notice that the damping effect with a > 0 is stronger than when a^ = 0.

APPROXIMATION:

THEOREM 3: Define b(s) = a^s 1 + B(s) where

B(s) = (s2 + Rs + 7r1(A(0)s + 7 A(0)), R = (7 A(0) - A(0))/A(0) (2.5)

Then, for any 7 > 0, b is the transform of a function b satisfying the hypothesis of theorem

(2) with b = a and
V ' CD 00

b(0) = a(0), 6(0) = 4(0), B(0) = A(0) (2.6)

We will explain and verify the following result in the next section.

THEOREM 4: / / a = 0 (a > 0) (E,) is formally equivalent to a second (third) order

differential equation.

The idea now is to solve (E,) giving u, and hope that it is close to the solution u a of

(Ea). A first remark in this direction is u and u^ will agree for long time. Indeed we have

^a ft uol = ^b ft uol s o t*iat ub "~ ua e ^ ^ ' °° * ^ ' ^n(^er s o m e additional assumptions they

will also agree for short time. Suppose uQG V and g is differentiate at uQ. Then from the

equation one has formally,



If ua and u^ are smooth enough that (2.1) is valid then we have

u b ( t ) -u a ( t ) = o(t2) as t — 0 (2.8)

REMARK 2.4: For each of the functions in Remark 2.2 the approximate equation (E,) is

exact.

The parameter 7 is so far free. We indicate two possible choices.

Choice L So far we have a(0) = b(0), a(0) = b(0). An obvious choice is to try to make

a(0) = b(0). It will follow from Proposition 1 that this will be so if,

7 = (A(0)2 - A(0) A(0)) / (A(0)2 + A(0) A(0)) (2.9)

The argument of the preceding paragraph can then be extended to show that formally

Choice IL Here we try to make b agree with a for large t instead of small. Suppose we

know that a decays exponentially, a(t) = 0(e~~ ) and we can choose 7 = 7JJ so that

Re ( - R + JR2 - 47 n) /2 = a (2.10)

and make b(t) have the same exponential decay rate as a(t).

REMARK 2.5: The choice 7j need not give a positive value and hence may not be usable. It

is of interest to note that it is always positive for a commonly used class of kernels, namely,



A(t) = f e~Xi <p{X) dX, A(s) = f f^AL dA

If (p(\) > 0 and (p(\) is suitably restricted for A near 0 and <D one can see that this satisfies

our hypotheses. Under these conditions it is easy to see from Schwarz's lemma that both

numerator and denominator in (2.9) are negative.

REMARK 2.6: It is to be emphasized that our procedures use very little detailed information

about a(t). We need only a , a(0), a(0), A(0) in general and a(0) or a if we use choices I

or II. It is not difficult to imagine fairly simple experiments which would determine these

quantities and g.

REMARK 2.7: It will be clear from later calculations that we could take for b a higher order

Pade approximation of a. This would presumably, increase the accuracy but would produce

higher order equations and require a knowledge of more derivatives of a at t = 0.

The question of how well Ui approximates u for all t is a difficult one. (The same

is true in artificial boundary theory). In theorem (5) of the next section we give an estimate for

the error e = u^ — u a in terms of the data. The constant in this estimate, however, depends

on the nature of a and is difficult to compute so the result is not very useful. The numerical

results in Section 4 indicate that the error is very sensitive to 7. We find that the choice (2.9)

yields a very crude result at intermediate times while the choice (2.10) gives quite accurate

results.

We comment on the meaning of L m . The idea is that a (p in L is the Laplace

transform of a function <p determined by the inversion integral:

IT? (2.11)
QD



PROPOSITION 1:

(i) Suppose (p G L.. Then (p(t) = <p + L~~ [$](t) defines a function (p such that:

<p G C ^ V OD), p(0) = tpQ, ftQ) = <pv tft), fa) = 0(t~3) as t

6 L1(0, oo), k < 4. Put a-(t) = t^A(t) and suppose aW e 1^(0, oo) for

(ii) Suppose a 6 C w [0 , oo), a(t) = a + A(t) with a > 0 and

j < 3, k < 2. Then a G Lo with a. = a^(0) j = 0, 1, 2.

This result is not very difficult once one overcomes the notation. We observe first that

= tV~ have transforms ^.(s) = j ! (s+l)""^""the functions ^.(t) = tV~ have transforms ^.(s) = j ! (s+l)""^"" . If <p is in L. we can

rewrite (iii) of Definition 1 as

I = #0 % + ( ^ + #0) ^, (s) + i f (s) = 0 (s 3)

Thus iT^lKt) = e~* (§Q + (#x + fQ)t) + IT1!*]. It foUows that L"1^] e C^^O, oo) with

L [i](0) = §Q, L [i] (0) = i i . Next we observe that the conditions on i yield the following

result after three intergation by parts:

*(t) = (2T)- 1 f+<D e~i7?t I (ir?) diy = - ( 2 x r 1 1 ~ 3 f e 1 ^ # " ' (IT?) (IT?
J—oo ^—00

o

This shows that indeed #(t) = 0(t ). One can perform a similar calculation to estimate i.

This indicates the proof of (i).
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The proof of (ii) is tedious but straightforward. First note that t A(t) G 1^(0, oo)

implies A e C ' ' (F). Next we integrate by parts to obtain,

A(s) = A(0)s""1 + A(0)s~2 + A(0)s~3 + (A(O)s"4 + s""4 f e"8* A^(t)dt)
J0

The quantity in parenthesis is 0(s ) hence this gives (iii) of Definition 1.

A similar calculation starting from A^(s) = e""8 a.(t) dt yields (i v).
JQ J

3. VERIFICATION:

We assume here, without loss of generality, that a(0) = 1. We transform (Ea) by a

device from [8]. Define the function k (t) by
a

W (*) = -*(*) t>0 (31)

Then one can verify that (E ) is equivalent to

u(t) + Lk [u] * (t) + g(u(t)) = «Jf, uQ](t) t > 0 u(0) = uQ
a

# [f, uQ(t)] = f(t) + Lk [f](t) + ka(t) uQ (Ea)
a

This shows that (Ea) is really just (E^ perturbed by a linear memory operator. (See the

comment in Section 5).

The following result is the key to our proof.
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LEMMA 1: Suppose & is as in theorem 2 and p + q = 1 . Then:

(i) ka € C ^ V CD), ka(0) = -a(0)

(ii) ka(t) = ka(D + Ka(t) where

^(0, «,) n Lq(0, a,) , J" (J* |K a (r) |dr)q dt < «,

(iii) If a^ > 0, k° =0, Ka(0) = a"l -10, Ka(0) a

If z = 0 k" =
J OD a

- 1

T
(iv) For any T, J (u(t), Lk [u](t))Hdt > 0

PROOF: From (3.1) one finds for the transform sa(s) k (s) = —sa(s) + 1 or k (s) =
a ci

(s ^(s))"1-!. We have a e Lo. If a > 0 sa(s) cannot vanish in T and kQ e C^3^(F). If

a^ = 0 we have ka(s) = A(0)""1s~1 + Ka (s) where Ka e C^3^(r). Since a e L2 we can use

the expansion (iii) of Definition 1 for a to obtain,

ka(s) = k ^ 1 + kxs 2 + 0(s 3 ) , kQ = -a(0)

This yields (iii) of Definition 1 for ka and (i v) of that definition ka is inherited from (i v) for

a. Thus kn G t . and we can apply Proposition 1 to conclude k e C [0, oo), ko(0) = —a(0).
a 1 d d
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From (A2) we have

-rj In k (i 9) == (Re a(i 9))/[(In a(i r,))2 + (9 Re a(i r,))2] > 0

Conclusion (i v) of Lemma 1 then follows from a result in [7].

We use Lemma 1 to decompose #a as f [f, uQ] = #a [f, uQ] + # a [f, uQ]

where,
rCD -i pCD

iw [f u 1 = k00 (n 4- F(r)dr) = AfOi û 4- Frrldr)
Jo **o

if ao = 0, fm = 0, (3.2)

*a[ f ' ^ W = F ^) " ka f F ( r ) d r + Lk l^W + ka(t)u0
J t a

^

i Jf, uft] = (1 + Ka(0)) f = f /a
a L 0 J v a v y / OD oo' CD

if a = 0 (3.3)
CD

afc «0](t) = F(t) + LK [F](t) + Ka(t)uQ

a

PROOF OF THEOREM 3.2:

We use (3.2) and (3.3) to rewrite equation (2.2) and (2.3) as

(3.4)
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In view of condition (G) and the fact that k00 > 0 for a = 0 we see that the operators on the

left sides are monotone and coercive and the existence of unique solutions is a standard result.

We now subtract (3.4) from (EJ . We put w(t) = u(t) - u^ and G(w) =

g(w+u ) — g(u ). We obtain then,
C O ' ^ x C D '

w(t) + Lk [u]'(t) + G(w(t)) = Jjf, uQ] : = : fjf, uQ] -
a

(3.5)

We note that condition (G) implies <G(w), w> > m ||w||^. Thus if we multiply (3.5) by u(t)

and integrate from 0 to T we can use (i v) of Lemma 1 to argue that there is a c > o such that

for any T > 0

II w hjQ,T! : H) + 'I w HL (0, T : V) * c HI u0 ""Uo, fe + HJatf' U0^ L (0, T : V ) t

From Lemma 1 we have K (t) = 0 (t ) and this together with (F2) shows that

Jjf, u0] G L (0, OD : V'). Thus (3.6) shows that there is a constant C[fQ, uQ] such that for

any T > 0

w HLJO, T : H) + II w llLp(0, T : V) ̂

If we assume that we have a solution then (3.7) yields the estimates (2.4). We can

also use (3.7) to establish the existence of a solution.

The argument is almost the same as for (E^) (see [6]) and we merely sketch it. We

choose a family Vn of finite dimensional subspaces of V which approximate V as n —» a>.
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Then for a fixed T > 0 we find a sequence

wn 6 C ^ ([0, T) : Vn) such that for any v11 6 Vn,

For these the estimate (3.6) holds with a constant independent of n and T. It follows that

the wn exist and that they are bounded in L ((0, T) : H) and in L ((0,T) : V). Then we can

extract a subsequence un which converges to u weakly in L ((0, T) : H) and weak star in

L ((0, T) : H). Since L is linear one can then use standard monotone operator theory to

argue that u is a generalized solution.

PROOF OF THEOREM 3.3: We observe first that the quantity R in (2.5) is positive. It

follows that, if 7 > 0, B e CW(T) and B will be in Lm for any m. It is the transform of B(t)

an exponentially decaying function. An easy calculation gives (2.6).2 Moreover we have,

Re B(i r,) = (7 A(0) (7 - ?2) + R?2) ((7 - V2f +

= (7
2 A(0) - a(0h2) ((7 - V2)2 + R V r 1 > 0

2The formula (2.9) is obtained by equating the coefficient of s is the expansion for B to
8(0).
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REMARK 3.1: An easy calculation shows that if a = 0 , R. always has the simple form,

Kb(t) = me"0*, a = 7 A(0)/A(0), M = - [(A(0)/A(0)2) + A(O)-1] (3.9)

PROOF OF THEOREM 4: The statement is rather vague. Let us explain what it means in

the case a = 0. We proceed formally. We transform (E,), divide by s and multiply by

(s + Rs + 7) to obtain,

s2u(s) + Rsu(s) + TU(S) + A(0) sg(u)(s) + 7 A(0) g(u)(s)

= sF(s) + RF(s) + 7 j { S ) + suQ + RuQ + ^ 0 (3.10)

Now for any smooth function *(t) we have s^(s) = x + x{®) and s *(s) = \ + sx(0) + ^(0).

We use these to rewrite (3.10) in the form,

Ru(s) + 7u(s) + A(0) g(u) (s) + 7 A(0) g(u)(s)

= (F(0) - u(0) - A(0) g(uQ) + k*) + R F(s) + ^ M + 2^L. (3.11)

(The term SuQ + RuQ is canceled by terms from the left). If the equation holds at t = 0 the

term in parenthesis is zero and (3.11) translated back to the time domain yields

ii(t) + Ru(t) + 7 u(t ) + A(0) g(u(t))' + 7 A(0) g(u(t))

ft
= F(t) + RF(t) + 7 F(r) dr + uQ

(3.12)
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u(0) = uQ 4(0) = F(0) - A(0) g (uQ)

For the above calculation to make sense we need the following additional assumptions:

u0 G V > 6(u) differentiable

u e c ( 2 \ (0 , «D) : V ) fl C^QO, (D) : V ) fl C^^O, OD) : V) (3.13)

If (3.13) holds then u is a solution of (E,) if and only if u is a solution of (3.13).

The same type of argument can be applied when a = 0 but is a little more
CO

complicated. The resulting differential equation is third order and has the form

ii + Rii + 7u + a(0) g(u) + (a^ R + 7 A(0)) g(u) + 7 g(u)

= f + R f + 7

u(0) = uQ , 4(0) = f(0) - a(0) g(uQ) (3.14)

ii(0) = f(0) - a(O)g^(uo)[u(O) - 4(0) g(uQ)]

For this to be equivalent to (E^) one needs g to be twice differentiable and for u to have

more smoothness.

We can use (E^) and (E£) to obtain a little more information about the error in our

approximation. Let ua and u^ be the solutions of (E ) and (E,) and put e = u, — u . For a
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fixed a and 7 let us define a quantity 0 by,
a 7

- II K b - Ka HL2(0, . ) + II K b " Ka 1^(0, . ) + • *b " *a \(0, •)

Then we have the following result.

THEOREM 5: There exists a constant C depending only on the data f,Ug such that

, «,: H) + II e llr,p(0, » : v) ̂

PROOF: Put H(e,t) = g(e + u (t)) - g(uo(t)). Then if we subtract (E' ) from (E/) we
a a a D

obtain,

e(t) + Lb[e]*(t) + H(e(t),t) = fb[f, mQ] - #Jf, uQ]

a

From (3.2) and (3.3) we have,

E(t) = (Kb(t) - Ka(t)) uQ + | (Kb(t-r) - Ka(W))P(r)dr

o (Ka(t-r) - Ka(t-r))(ua(r) - u j d r (3.18)
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We observe that (G) yields < H(e, t), e > > m || e ||p for any t. Thus we can repeat our

earlier energy estimate. This will bound e in terms of || E ||-r /Q . y / y (3.18) together

with our earlier estimates for u — u in terms of the data yields (3.16).

The estimate (3.16) requires a knowledge of 6 and this is difficult to achieve. It

depends on 7 but it also depends in a very complicated way, on the frequency spectrum of a.

4. A NUMERICAL EXAMPLE:

We consider (Ea) on V = H = V' = R with

g(u) = u + u3, a(t) = e * + e * cos 2t. (4.1)

One can verify that all the conditions are satisfied. Here we can integrate (E ) to obtain an

integral equation which we write, with a new meaning for f, as

ft
u(t) + a(t-r) g(u(r))dr = f(t) t > 0 (4.2)

J0

We considered this equation first for f(t) = 1 and solved it by a simple scheme. Let ti = kh h

= 0, 1, Then we approximate the integral in (4.2) by the trapezoid rule to obtain a set of

approximate values Ut of u(ti). The equations are:

uk+i + 1 a(°) g(\+i) = % ) - 1 ^k+i) «(*) " h I ^ k + r * ) s(uj)'k - ° ( 4 3 )

9
One can show that this is an 0(h ) scheme. We solved it with a small enough h to get

essentially an exact solution.

The formula (4.3) shows the numerical problem with (E ). The sum on the right
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must be computed at each step and the number of terms in it increases with k. On infinite

dimensional spaces this presents a major problem.

For our special problem we find R = 0.6 7 + 1 and the associated differential equation

is,

ii(t) + Ru(t) + 7u(t) + g'(u(t)) u(t) + I 7g(u(t)) = 7

u(0) = 1 u(0) = -a(0) g(l) = -4

The steady state limit is given by 1.2g(u ) = 1.

Our first attempt was to choose 7 according to formula (2.9), that is 7 = 5 . The

results are plotted in Figure la. We see, as the theory indicates that short and long time

behavior is fairly good but there are significant errors for intermediate t values. We then

tried 7^ from (2.10) and the results are given in Fig l.b. We see a significant improvement.

The results presented in Fig 2. are even more intriguing. One can show, under our

hypotheses, that if the forcing term f(t) tends to an u periodic limit then so will the solution.

There is however no prior reason why the periodic limits for (E ) and (Er) should be the same

unless u is very small. We solved (E ) and (E,) with f(t) = cos 5t on the right side. The

results are plotted in Fig. 2a and b for 7 = 5 and 5/3. For the second choice the exact and

approximate solutions are nearly indistinguishable.

We have tried other examples with similar results but, as yet, do not have a very good

explanation.

APPLICATIONS AND EXTENSIONS

Feedback Control Suppose one has a linear hereditary input -output device that is

u(t) = L [Z](t). One has a system in which there is an external input tp and the state variablea
Z is controlled by u according to the rule Z(t) = <p(t) - g(u(t)). Then one has
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(5.1)

Differentiation leads to (E ) with f(t) = (L M"(t). In circut problems one would expect a
a a

to be exponentially decreasing so that in this case we want a = 0.

One Dimensional Heat Flow Suppose one has one dimensional heat flow in a rod with x

position and t time. Let u, e, q,f denote temperature, internal energy heat flux and heat

supply. If the bar occupies

0 < x < L the balance of energy is,

et(x,t) = -<rx(x,t) + f(x,t) (5.2)

Suppose the bar is homogeneous and assume that e is proportional to

u, e(x,t) = cu(x,t) c > 0. A non—hereditary model would be to assume that a(x,t) =

tp(u (x,t)). (5.2) is then a parabolic problem if ^ ' ( 0 > 0.

One can obtain a hereditary model by assuming

a(x,t) = -ai> (ux(x,t)) - L^(ux(x, .)] (5.3)

A special case occurs if \{i) = HO- Then one can take a(t) = a(t) + /?(t) and (5.3)

inserted into (5.2) yields (E&). One needs boundary conditions, say u(0,t) = u(L,t) =0.

Suppose for instance that i){() = - (r + s ( ) £, r, s > 0. Then we take H = L2(0,L),

V = Wj (0,L) and

rL
< g [u], v > = - i> (u (x,t))v(x) dx

Jn x
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Our condition (G) is then satisfied.

Note that one can get two essentially different models by making a(t) = a + A(t) with

a > 0 or a = 0 .
GO GO

EXTENSIONS:

For applications in feedback control it would be desirable to have the theory on Rn

with a(t) a family of matrices. We can extend our dissipation theory almost unchanged if a

is replaced by a family of symmetric linear operators. We can also give a formal extension of

the approximate kernel b. What is difficult is to check the dissipativity of b. Currently we

can do this only if the a(t) all commute. For control theory this may not be realistic. It will,

however, be true for the systems on Rn arising when one applies GalerMn methods to (5.2)

with scalar function a.

For the heat flow model it would be physically more realistic to have different

nonlinearities ip and # in (5.3). We could still make our formal approximation for b but we

cannot use the inversion device of Section three so the theory is incomplete.

If one removes the derivative on La[g(u)] in (E ) one obtains the equation,

*(t) + Ljg(u)](t) = f(t) (5.4)

This equation is studied in [8]. When a G L (0,<D) it is a model for heat flow in materials with

memory with finite propagation speed. When a(t) = a + A(t), A e L. (0,oo) it is a special

model of viscoelastidty [10]. For both cases we can present a formal approximation theory but

there remain serious answered questions.
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