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Abstract

The edges of the complete graph Kn are coloured so that no colour
appears no more than k times, k = [n/Alnn], for some sufficiently
large A. We show that there is always a Hamiltonian cycle in which
each edge is a different colour. The proof technique is probabilistic.
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1 Introduction

Let the edges of the complete graph Kn be coloured so that no edge is

coloured more than k = k(n) times. We refer to this as a fc-bounded colour-

ing. We say that a Hamilton cycle of Kn is polychromatic if each edge is

of a different colour. We say that the colouring is good if each edge is of

a different colour. Clearly the colouring is good if k = 1 and may not be

if k = n — 1, since then we may colour all edges incident with vertex 1 the

same colour. The question we address here then is that of how fast can we

allow k to grow and still guarantee that a fc-bounded colouring is good.

Hahn and Thomassen [2] were the first people to consider this problem and

they showed that k could grow as fast as n1/3. In unpublished work Rodl

and Winkler [4] in 1984 improved this to n1/2. In this paper we make further

progress and prove

Theorem 1 There is an absolute constant A such that if n is sufficiently

large and k is at most \n/A\nn] then any k-bounded colouring is good.

Proof Throughout the proof assume that A is a large constant and n is

large.

Let

B = 101/3A2'3 and D = =- + 20.
A

Let p = Bl^n and construct a random graph H as follows:

Step 1: let G = GniP = ([n],E).

(Recall that (?n>p is the random graph with vertex set [n] = {1,2,.. .n} in

which each possible edge occurs independently with probability p.)
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Step 2: let Y denote the set of edges whose colour appears more than once

in E.

Let H = ([n],E/Y).

Thus no two edges of H are of the same colour. We prove our theorem by

showing that

Pr(H is Hamiltonian ) = 1 — o(l).

(Big O and little o notation refer to n —> oo.)

This clearly implies that Kn must have at least one polychromatic Hamilton

cycle, provided n is sufficiently large. The proof can be broken into two

lemmas.

For v G [n] let dv denote the number of edges in Y which are incident with

v.

Lemma 1 Pr(Bv e [n] : dv > Dlnn) = o(l)

L e m m a 2 If starting with G = GUyP we delete an arbitrary set of edges Y to

obtain a graph H and in the process no vertex loses more than D In n edges

then H is almost surely Hamiltonian.

Our Theorem is clearly an immediate consequence of these two lemmas.

2 Proof of Lemma 1

Let d = d1 and let 5i, 52 , . . . , Sm be the partition of the edges of Kn incident

with vertex 1 into sets of the same colour i = 1,2, . . . , r a . Let Ei be the



set of edges of Kn which have colour i. Let \S{\ = /,- and \E{\ = k{ < k for

i = 1,2, . . . ,m.

An edge e € 5t- is deleted in Step 2 if either

(a) E n # = {e} and £</&• ^ 0

or

(b) ee E and l ^ n ^ l > 2.

Let

D^ = { edges incident with vertex 1 which are deleted via case (x)},

x=a or b.

Observe that if i ^ j then the sets Dx 0 Si and Dx n 5j are independent (as

random sets.)

The size of Da

Clearly

\DanSi\ = 0or 1, t = l , 2 , . . . , m .

Also

Thus

1=1



B2\ nn

Now by Theorem 1 of Hoeffding [1]

._ . 2£2 J <
< n~\

The size of Db

Let X,- = |£ n 5,| and Si = lx,>2- Thus

t = l

Now fix i G [m]. Unfortunately X,- and Si are correlated (positively). So let

lt(= BIN(U,p)) be distributed cts Xt- but be independent of it. Then we

claim that

XiSi is majorised by (2 + Yi)Si

i.e. for all u > 0

^t- > ti) < Pr((2 + Yi)6i > u). (1)

To see this we take 2 independent sequences A\^ ̂ 2 , . . . A;? JBI, 52 , . . . J5/, / = U

of Bernouilli random variables where each is 1 with probability p and zero

with probability 1 — p.

Let

{ min{r :
CO

Ax + A2 + ... + Ar = 2} if Ai + A2 + . . . + At > 2
if Ai + A2 + . . . + Ai < 1



Let
_ J 2 + Bp+i + .. • + Bi if p < oo

Zi has the same distribution as X{8i.

Let
f 2 + i?i + . . . + B/ if p < oo

2 ^ 0 if p = oo.

Z2 has the same distribution as (2 + Yi)S{ and (1) follows immediately.

Thus \Db\ is majorised by ££=i(2 + K)^ .

Now

and so

—

Hence

<

Consider now the distribution of ]C*Li(2 + K)^t conditional on

ES=i ft < m0 = [(52 lnn)/AJ. This is majorised by

m0

t = i



where Zi,Z2,...,Zmo are independent binomials BIN(k,p) and so Z =

YTJi Zi = BIN(mok,p). Thus

>, Blnn
Inn —

Alnn n

)

< 11 Inn

So

Pr(Z>201nn) < expj-^f—\ lllnn

Hence

d > — - l n n + — - I n n + 20 Inn) = O(n'2).

Multiplying by a factor n to account for all vertices gives the lemma. •

3 Proof of Lemma 2

We modify the proof of Posa [3] to account for the deletion of edges. So

assume now that G = G\ U G2 U G3 where G\ and G2 are independent copies

of GUfP/2 and where G3 is an independent copy of Gn,p/, where pf satisfies the

equation 1 — p = (1 — p/2)2(l — pf). G3 plays no further role in the analysis.

We first show that G\/Y almost surely contains a Hamilton path. If it

doesn't then there exists i € [n] such that

there exists a longest path of G\jY which does not go through i

which implies



no longest path ofTi = (Gi/Y)/{i} has an end-vertex adjacent to i in G\.

Let this final event be denoted by £t-. Then

Pr(Gi /y has no Hamilton path ) < nPr(£n). (2)

Let now P be a longest path of Fn and let xo be one of its end-vertices. Let

END be the set of end-vertices of longest paths of Fn which can be obtained

from P by a sequence of rotations keeping Xo as a fixed end-vertex. (Given a

longest path Q with end-vertices xo,y and an edge yv where v is an internal

vertex of Q, we obtain a new longest path Q1 = Xo-.vy..w where w is the

neighbour of v on P between v and y. We say that Qf is obtained from Q by

a rotation.)

It follows from Posa [3] that

\N(rn,END)\<2\END\, (3)

where for a graph F and a set S C V(T)

7V(F, S) = {w £ S :3v e S such that vw G E(T)}.

CLAIM: with probability l-o^""1)

SQ[n- 1], |5| < JJ£— implies \N(Gi/{n},S)\ > 3DQnn)\S\.

(The proof of this claim is deferred to the end of the proof of the lemma.)

Hence in Fn we have with probability l-o^"1)

S C [n - 1], \S\ < —-— implies |JV(rn,5)| > D(lnn)\S\.

It follows from (3) that with probability l-o(n"x)

\END\ > ^ .
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Now consider the edges of G\ from vertex n to END. They are independent

of END and so are distributed as B(\END\,p/2). Thus their expected

number is at least (i?lnn)/24. Thus if A and hence B is large there will

be at least (i?lnn)/48 such edges with probability l-o^"1). But for large

A, D < B/48 and so not all of these edges can be included in Y. Thus

Pr(£n) = o(n~1) and (2) implies that G\jY almost surely has a Hamilton

path.

To finish the proof take a Hamilton path P of G\ and fix one of its end-

vertices, xo say, and using rotations create a set of end-vertices END of

Hamilton paths with one end-vertex xo. The above analysis shows that

\END\ > Y| almost surely. Now add the edges of G2, which are independent

of xo and END. Again we can argue that there are almost surely too many

Xo — END edges in (j?2 for them all to be included in Y and the lemma follows

since the existence of any one not in Y means that H is Hamiltonian.

Proof of CLAIM

If the condition in the claim does not hold then there exist disjoint sets

5 , r c [ n - l ] , 5 = \S\ < n/(4Dlnn),t = \T\ < 3D(lnn)s < 3n/4 such that

each vertex of T is adjacent to at least one vertex in S and no vertex in

[n — l]/(5f U T) is adjacent to any vertex of S.

Fix 3,i and let to — 3sD(lnn) Then the probability of the above event is

bounded by

e-snp/l0) M (i n> - r ^'MTHT)'(?y



V

for large A. Now multiply this upper bound by n2, which bounds the number

of possible 5,£, in order to prove the claim. •

Finally, we remark that we believe the following

Conjecture: there exists an absolute constant e > 0 such that if k < en

then any Ar-bounded colouring of Kn is good.

Hahn and Thomassen made a somewhat stronger conjecture.
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