POLYCHROMATIC HAMILTON CYCLES

by
A. M. Frieze
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213
and
Bruce Reed
Dept. of Combinatorics and Optimization
Univearsity of Waterloo
Waterloo, Canada

Research Report No. 91-1062
February 1991

POLYCHROMATIC HAMILTON CYCLES

Alan Frieze
Department of Mathematics, Carnegie-Mellon University, Pittsburgh, U.S.A.*
and
Bruce Reed
Department of Combinatorics and Optimization
University of Waterloo
Waterloo
Canada

November 30,1990

Abstract

The edges of the complete graph K_{n} are coloured so that no colour appears no more than k times, $k=\lceil n / A \ln n\rceil$, for some sufficiently large A. We show that there is always a Hamiltonian cycle in which each edge is a different colour. The proof technique is probabilistic.

[^0]
1 Introduction

Let the edges of the complete graph K_{n} be coloured so that no edge is coloured more than $k=k(n)$ times. We refer to this as a k-bounded colouring. We say that a Hamilton cycle of K_{n} is polychromatic if each edge is of a different colour. We say that the colouring is good if each edge is of a different colour. Clearly the colouring is good if $k=1$ and may not be if $k=n-1$, since then we may colour all edges incident with vertex 1 the same colour. The question we address here then is that of how fast can we allow k to grow and still guarantee that a k-bounded colouring is good.

Hahn and Thomassen [2] were the first people to consider this problem and they showed that k could grow as fast as $n^{1 / 3}$. In unpublished work Rödl and Winkler [4] in 1984 improved this to $n^{1 / 2}$. In this paper we make further progress and prove

Theorem 1 There is an absolute constant A such that if n is sufficiently large and k is at most $\lceil n / A \ln n\rceil$ then any k-bounded colouring is good.

Proof Throughout the proof assume that A is a large constant and n is large.

Let

$$
B=10^{1 / 3} A^{2 / 3} \text { and } D=\frac{4 B^{2}}{A}+20
$$

Let $p=\frac{B \ln n}{n}$ and construct a random graph H as follows:
Step 1: let $G=G_{n, p}=([n], E)$.
(Recall that $G_{n, p}$ is the random graph with vertex set $[n]=\{1,2, \ldots n\}$ in which each possible edge occurs independently with probability p.)

Step 2: let Y denote the set of edges whose colour appears more than once in E.

Let $H=([n], E / Y)$.
Thus no two edges of H are of the same colour. We prove our theorem by showing that

$$
\operatorname{Pr}(H \text { is Hamiltonian })=1-o(1) .
$$

(Big O and little o notation refer to $n \rightarrow \infty$.)
This clearly implies that K_{n} must have at least one polychromatic Hamilton cycle, provided n is sufficiently large. The proof can be broken into two lemmas.

For $v \in[n]$ let d_{v} denote the number of edges in Y which are incident with v.

Lemma $1 \operatorname{Pr}\left(\exists v \in[n]: d_{v} \geq D \ln n\right)=o(1)$

Lemma 2 If starting with $G=G_{n, p}$ we delete an arbitrary set of edges Y to obtain a graph H and in the process no vertex loses more than $D \ln n$ edges then H is almost surely Hamiltonian.

Our Theorem is clearly an immediate consequence of these two lemmas.

2 Proof of Lemma 1

Let $d=d_{1}$ and let $S_{1}, S_{2}, \ldots, S_{m}$ be the partition of the edges of K_{n} incident with vertex 1 into sets of the same colour $i=1,2, \ldots, m$. Let E_{i} be the
set of edges of K_{n} which have colour i. Let $\left|S_{i}\right|=l_{i}$ and $\left|E_{i}\right|=k_{i} \leq k$ for $i=1,2, \ldots, m$.

An edge $e \in S_{i}$ is deleted in Step 2 if either
(a) $E \cap S_{i}=\{e\}$ and $E_{i} / S_{i} \neq \emptyset$
or
(b) $e \in E$ and $\left|E \cap S_{i}\right| \geq 2$.

Let
$D_{x}=\{$ edges incident with vertex 1 which are deleted via case $(\mathrm{x})\}$,
$\mathrm{x}=\mathrm{a}$ or b .
Observe that if $i \neq j$ then the sets $D_{x} \cap S_{i}$ and $D_{x} \cap S_{j}$ are independent (as random sets.)

The size of D_{a}
Clearly

$$
\left|D_{a} \cap S_{i}\right|=0 \text { or } 1, \quad i=1,2, \ldots, m
$$

Also

$$
\begin{aligned}
\operatorname{Pr}\left(\left|D_{a} \cap S_{i}\right|=1\right) & =l_{i} p(1-p)^{l_{i}-1}\left(1-(1-p)^{k_{i}-l_{i}}\right) \\
& \leq l_{i}\left(k_{i}-l_{i}\right) p^{2} \\
& \leq(k-1) l_{i} p^{2}
\end{aligned}
$$

Thus

$$
\mathbf{E}\left(\left|D_{a}\right|\right) \leq(k-1) p^{2} \sum_{i=1}^{m} l_{i}
$$

$$
\begin{aligned}
& =(k-1)(n-1) p^{2} \\
& <\frac{B^{2} \ln n}{A} \\
& =10^{2 / 3} A^{1 / 3} \ln n .
\end{aligned}
$$

Now by Theorem 1 of Hoeffding [1]

$$
\begin{aligned}
\operatorname{Pr}\left(\left|D_{a}\right| \geq \frac{2 B^{2} \ln n}{A}\right) & \leq \exp \left\{-\frac{B^{2} \ln n}{3 A}\right\} \\
& \leq n^{-2}
\end{aligned}
$$

The size of D_{b}
Let $X_{i}=\left|E \cap S_{i}\right|$ and $\delta_{i}=1_{X_{i} \geq 2}$. Thus

$$
\left|D_{b}\right|=\sum_{i=1}^{m} X_{i} \delta_{i} .
$$

Now fix $i \in[m]$. Unfortunately X_{i} and δ_{i} are correlated (positively). So let $Y_{i}\left(=B I N\left(l_{i}, p\right)\right)$ be distributed as X_{i} but be independent of it. Then we claim that

$$
X_{i} \delta_{i} \text { is majorised by }\left(2+Y_{i}\right) \delta_{i}
$$

i.e. for all $u \geq 0$

$$
\begin{equation*}
\operatorname{Pr}\left(X_{i} \delta_{i} \geq u\right) \leq \operatorname{Pr}\left(\left(2+Y_{i}\right) \delta_{i} \geq u\right) \tag{1}
\end{equation*}
$$

To see this we take 2 independent sequences $A_{1}, A_{2}, \ldots A_{l}, B_{1}, B_{2}, \ldots B_{l}, l=l_{i}$ of Bernouilli random variables where each is 1 with probability p and zero with probability $1-p$.

Let

$$
\rho= \begin{cases}\min \left\{r: A_{1}+A_{2}+\ldots+A_{r}=2\right\} & \text { if } A_{1}+A_{2}+\ldots+A_{l} \geq 2 \\ \infty & \text { if } A_{1}+A_{2}+\ldots+A_{l} \leq 1\end{cases}
$$

Let

$$
Z_{1}= \begin{cases}2+B_{\rho+1}+\ldots+B_{l} & \text { if } \rho<\infty \\ 0 & \text { if } \rho=\infty\end{cases}
$$

Z_{1} has the same distribution as $X_{i} \delta_{i}$.
Let

$$
Z_{2}= \begin{cases}2+B_{1}+\ldots+B_{l} & \text { if } \rho<\infty \\ 0 & \text { if } \rho=\infty\end{cases}
$$

Z_{2} has the same distribution as $\left(2+Y_{i}\right) \delta_{i}$ and (1) follows immediately.
Thus $\left|D_{b}\right|$ is majorised by $\sum_{i=1}^{m}\left(2+Y_{i}\right) \delta_{i}$.
Now

$$
\operatorname{Pr}\left(\delta_{i}=1\right) \leq\binom{ l_{i}}{2} p^{2}
$$

and so

$$
\begin{aligned}
\mathbf{E}\left(\sum_{i=1}^{m} \delta_{i}\right) & \leq p^{2} \sum_{i=1}^{m}\binom{l_{i}}{2} \\
& \leq p^{2} \frac{n}{k}\binom{k}{2} \\
& \leq \frac{B^{2}}{2 A} \ln n .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{Pr}\left(\sum_{i=1}^{n} \delta_{i} \geq \frac{B^{2}}{A} \ln n\right) & \leq \exp \left\{-\frac{B^{2}}{6 A \ln n}\right\} \\
& \leq n^{-2}
\end{aligned}
$$

Consider now the distribution of $\sum_{i=1}^{m}\left(2+Y_{i}\right) \delta_{i}$ conditional on $\sum_{i=1}^{m} \delta_{i} \leq m_{0}=\left\lfloor\left(B^{2} \ln n\right) / A\right\rfloor$. This is majorised by

$$
\frac{2 B^{2}}{A} \ln n+\sum_{i=1}^{m_{0}} Z_{i}
$$

where $Z_{1}, Z_{2}, \ldots, Z_{m_{0}}$ are independent binomials $B I N(k, p)$ and so $Z=$ $\sum_{i=1}^{m_{0}} Z_{i}=B I N\left(m_{0} k, p\right)$. Thus

$$
\begin{aligned}
\mathbf{E}(Z) & \leq(1+o(1)) \frac{B^{2}}{A} \ln n \frac{n}{A \ln n} \frac{B \ln n}{n} \\
& =(1+o(1)) \frac{B^{3}}{A^{2}} \ln n \\
& \leq 11 \ln n
\end{aligned}
$$

So

$$
\begin{aligned}
\operatorname{Pr}(Z \geq 20 \ln n) & \leq \exp \left\{-\frac{1}{3}\left(\frac{9}{11}\right)^{2} 11 \ln n\right\} \\
& =O\left(n^{-2}\right)
\end{aligned}
$$

Hence

$$
\operatorname{Pr}\left(d \geq \frac{2 B^{2}}{A} \ln n+\frac{2 B^{2}}{A} \ln n+20 \ln n\right)=O\left(n^{-2}\right)
$$

Multiplying by a factor n to account for all vertices gives the lemma.

3 Proof of Lemma 2

We modify the proof of Posá [3] to account for the deletion of edges. So assume now that $G=G_{1} \cup G_{2} \cup G_{3}$ where G_{1} and G_{2} are independent copies of $G_{n, p / 2}$ and where G_{3} is an independent copy of $G_{n, p^{\prime}}$, where p^{\prime} satisfies the equation $1-p=(1-p / 2)^{2}\left(1-p^{\prime}\right)$. G_{3} plays no further role in the analysis.

We first show that G_{1} / Y almost surely contains a Hamilton path. If it doesn't then there exists $i \in[n]$ such that
there exists a longest path of G_{1} / Y which does not go through i
which implies
no longest path of $\Gamma_{i}=\left(G_{1} / Y\right) /\{i\}$ has an end-vertex adjacent to i in G_{1}.
Let this final event be denoted by \mathcal{E}_{i}. Then

$$
\begin{equation*}
\operatorname{Pr}\left(G_{1} / Y \text { has no Hamilton path }\right) \leq n \operatorname{Pr}\left(\mathcal{E}_{n}\right) \tag{2}
\end{equation*}
$$

Let now P be a longest path of Γ_{n} and let x_{0} be one of its end-vertices. Let $E N D$ be the set of end-vertices of longest paths of Γ_{n} which can be obtained from P by a sequence of rotations keeping x_{0} as a fixed end-vertex. (Given a longest path Q with end-vertices x_{0}, y and an edge $y v$ where v is an internal vertex of Q, we obtain a new longest path $Q^{\prime}=x_{0} . . v y . . w$ where w is the neighbour of v on P between v and y. We say that Q^{\prime} is obtained from Q by a rotation.)

It follows from Posá [3] that

$$
\begin{equation*}
\left|N\left(\Gamma_{n}, E N D\right)\right|<2|E N D| \tag{3}
\end{equation*}
$$

where for a graph Γ and a set $S \subseteq V(\Gamma)$

$$
N(\Gamma, S)=\{w \notin S: \exists v \in S \text { such that } v w \in E(\Gamma)\}
$$

CLAIM: with probability $1-\mathrm{o}\left(n^{-1}\right)$

$$
S \subseteq[n-1],|S| \leq \frac{n}{4 D \ln n} \text { implies }\left|N\left(G_{1} /\{n\}, S\right)\right| \geq 3 D(\ln n)|S|
$$

(The proof of this claim is deferred to the end of the proof of the lemma.)
Hence in Γ_{n} we have with probability $1-\mathrm{o}\left(n^{-1}\right)$

$$
S \subseteq[n-1],|S| \leq \frac{n}{4 D \ln n} \text { implies }\left|N\left(\Gamma_{n}, S\right)\right| \geq D(\ln n)|S|
$$

It follows from (3) that with probability $1-\mathrm{o}\left(n^{-1}\right)$

$$
|E N D| \geq \frac{n}{12}
$$

Now consider the edges of G_{1} from vertex n to $E N D$. They are independent of $E N D$ and so are distributed as $B(|E N D|, p / 2)$. Thus their expected number is at least $(B \ln n) / 24$. Thus if A and hence B is large there will be at least $(B \ln n) / 48$ such edges with probability $1-\mathrm{o}\left(n^{-1}\right)$. But for large $A, D<B / 48$ and so not all of these edges can be included in Y. Thus $\operatorname{Pr}\left(\mathcal{E}_{n}\right)=o\left(n^{-1}\right)$ and (2) implies that G_{1} / Y almost surely has a Hamilton path.

To finish the proof take a Hamilton path P of G_{1} and fix one of its endvertices, x_{0} say, and using rotations create a set of end-vertices $E N D$ of Hamilton paths with one end-vertex x_{0}. The above analysis shows that $|E N D| \geq \frac{n}{12}$ almost surely. Now add the edges of G_{2}, which are independent of x_{0} and $E N D$. Again we can argue that there are almost surely too many $x_{0}-E N D$ edges in G_{2} for them all to be included in Y and the lemma follows since the existence of any one not in Y means that H is Hamiltonian.

Proof of CLAIM

If the condition in the claim does not hold then there exist disjoint sets $S, T \subseteq[n-1], s=|S| \leq n /(4 D \ln n), t=|T| \leq 3 D(\ln n) s \leq 3 n / 4$ such that each vertex of T is adjacent to at least one vertex in S and no vertex in $[n-1] /(S \cup T)$ is adjacent to any vertex of S.

Fix s, t and let $t_{0}=3 s D(\ln n)$ Then the probability of the above event is bounded by

$$
\begin{aligned}
\binom{n-1}{s}\binom{n-1}{t}\left(\frac{s p}{2}\right)^{t}\left(1-\frac{p}{2}\right)^{s(n-1-s-t)} & \leq\left(\frac{n e}{s}\right)^{s}\left(\frac{n e}{t}\right)^{t}\left(\frac{s p}{2}\right)^{t} e^{-s n p / 10} \\
& =\left(\frac{n e}{s}\right)^{s}\left(\frac{e}{t}\right)^{t}\left(\frac{s B \ln n}{2}\right)^{t} n^{-s B / 10}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\frac{n e}{s}\right)^{s}\left(\frac{e}{t_{0}}\right)^{t_{0}}\left(\frac{s B \ln n}{2}\right)^{t_{0}} n^{-s B / 10} \\
& =\left(\frac{n e}{s} n^{3 D \ln (B e / 6 D)-B / 10}\right)^{s} \\
& =o\left(n^{-3}\right)
\end{aligned}
$$

for large A. Now multiply this upper bound by n^{2}, which bounds the number of possible s, t, in order to prove the claim.

Finally, we remark that we believe the following
Conjecture: there exists an absolute constant $\epsilon>0$ such that if $k<\epsilon n$ then any k-bounded colouring of K_{n} is good.

Hahn and Thomassen made a somewhat stronger conjecture.

References

[1] W.Höeffding, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 58 (1963) 13-30.
[2] G.Hahn and C.Thomassen, Path and cycle sub-Ramsey numbers and an edge-colouring conjecture, Discrete Mathematics 62 (1986) 29-33.
[3] L.Pósa,Hamilton circuits in random graphs,Discrete Mathematics 14 (1976) 359-64.
[4] P.Winkler, Private Communication.

DEC 182003

[^0]: *Supported by NSF grant CCR-89000112

