POLYCHROMATIC HAMILTON CYCLES

by

A. M. Frieze Department of Mathematics Carnegie Mellon University Pittsburgh, PA 15213

and

Bruce Reed Dept. of Combinatorics and Optimization Univearsity of Waterloo Waterloo, Canada

Research Report No. 91-106

February 1991

510.6 C28R 91-106 University Libraries Jamegie Mellon University Pittsburgh, PA 15213-3890

POLYCHROMATIC HAMILTON CYCLES

Alan Frieze Department of Mathematics, Carnegie-Mellon University, Pittsburgh, U.S.A.*

and

Bruce Reed Department of Combinatorics and Optimization University of Waterloo Waterloo Canada

November 30,1990

Abstract

The edges of the complete graph K_n are coloured so that no colour appears no more than k times, $k = \lceil n/A \ln n \rceil$, for some sufficiently large A. We show that there is always a Hamiltonian cycle in which each edge is a different colour. The proof technique is probabilistic.

*Supported by NSF grant CCR-89000112

1

1 Introduction

Let the edges of the complete graph K_n be coloured so that no edge is coloured more than k = k(n) times. We refer to this as a k-bounded colouring. We say that a Hamilton cycle of K_n is **polychromatic** if each edge is of a different colour. We say that the colouring is **good** if each edge is of a different colour. Clearly the colouring is good if k = 1 and may not be if k = n - 1, since then we may colour all edges incident with vertex 1 the same colour. The question we address here then is that of how fast can we allow k to grow and still guarantee that a k-bounded colouring is good.

Hahn and Thomassen [2] were the first people to consider this problem and they showed that k could grow as fast as $n^{1/3}$. In unpublished work Rödl and Winkler [4] in 1984 improved this to $n^{1/2}$. In this paper we make further progress and prove

Theorem 1 There is an absolute constant A such that if n is sufficiently large and k is at most $\lfloor n/A \ln n \rfloor$ then any k-bounded colouring is good.

Proof Throughout the proof assume that A is a large constant and n is large.

Let

$$B = 10^{1/3} A^{2/3}$$
 and $D = \frac{4B^2}{A} + 20$.

Let $p = \frac{B \ln n}{n}$ and construct a random graph H as follows:

Step 1: let $G = G_{n,p} = ([n], E)$.

(Recall that $G_{n,p}$ is the random graph with vertex set $[n] = \{1, 2, ..., n\}$ in which each possible edge occurs independently with probability p.)

University Libraries Jamegie Mellon University Directorich, PA 15213-3890 Step 2: let Y denote the set of edges whose colour appears more than once in E.

Let H = ([n], E/Y).

Thus no two edges of H are of the same colour. We prove our theorem by showing that

 $\mathbf{Pr}(H \text{ is Hamiltonian }) = 1 - o(1).$

(Big O and little o notation refer to $n \to \infty$.)

This clearly implies that K_n must have at least one polychromatic Hamilton cycle, provided n is sufficiently large. The proof can be broken into two lemmas.

For $v \in [n]$ let d_v denote the number of edges in Y which are incident with v.

Lemma 1 $\Pr(\exists v \in [n] : d_v \ge D \ln n) = o(1)$

Lemma 2 If starting with $G = G_{n,p}$ we delete an arbitrary set of edges Y to obtain a graph H and in the process no vertex loses more than $D \ln n$ edges then H is almost surely Hamiltonian.

Our Theorem is clearly an immediate consequence of these two lemmas.

2 Proof of Lemma 1

Let $d = d_1$ and let S_1, S_2, \ldots, S_m be the partition of the edges of K_n incident with vertex 1 into sets of the same colour $i = 1, 2, \ldots, m$. Let E_i be the set of edges of K_n which have colour *i*. Let $|S_i| = l_i$ and $|E_i| = k_i \leq k$ for i = 1, 2, ..., m.

An edge $e \in S_i$ is deleted in Step 2 if either

(a)
$$E \cap S_i = \{e\}$$
 and $E_i/S_i \neq \emptyset$

or

(b) $e \in E$ and $|E \cap S_i| \ge 2$.

Let

 $D_x = \{ \text{ edges incident with vertex 1 which are deleted via case (x)} \},$

Observe that if $i \neq j$ then the sets $D_x \cap S_i$ and $D_x \cap S_j$ are independent (as random sets.)

The size of D_a

Clearly

$$|D_a \cap S_i| = 0 \text{ or } 1, \quad i = 1, 2, \dots, m.$$

Also

$$\begin{aligned} \mathbf{Pr}(|D_a \cap S_i| = 1) &= l_i p (1-p)^{l_i-1} (1-(1-p)^{k_i-l_i}) \\ &\leq l_i (k_i-l_i) p^2 \\ &\leq (k-1) l_i p^2. \end{aligned}$$

Thus

$$\mathbf{E}(|D_a|) \leq (k-1)p^2 \sum_{i=1}^m l_i$$

$$= (k-1)(n-1)p^{2}$$

$$< \frac{B^{2}\ln n}{A}$$

$$= 10^{2/3}A^{1/3}\ln n.$$

Now by Theorem 1 of Hoeffding [1]

$$\Pr\left(|D_{a}| \geq \frac{2B^{2}\ln n}{A}\right) \leq exp\left\{-\frac{B^{2}\ln n}{3A}\right\}$$
$$\leq n^{-2}.$$

The size of D_b

Let $X_i = |E \cap S_i|$ and $\delta_i = 1_{X_i \ge 2}$. Thus

$$|D_b| = \sum_{i=1}^m X_i \delta_i.$$

Now fix $i \in [m]$. Unfortunately X_i and δ_i are correlated (positively). So let $Y_i (= BIN(l_i, p))$ be distributed as X_i but be independent of it. Then we claim that

 $X_i \delta_i$ is majorised by $(2 + Y_i) \delta_i$

i.e. for all $u \ge 0$

$$\mathbf{Pr}(X_i\delta_i \ge u) \le \mathbf{Pr}((2+Y_i)\delta_i \ge u).$$
(1)

To see this we take 2 independent sequences $A_1, A_2, \ldots A_l, B_1, B_2, \ldots B_l, l = l_i$ of Bernouilli random variables where each is 1 with probability p and zero with probability 1 - p.

Let

$$\rho = \begin{cases} \min\{r : A_1 + A_2 + \ldots + A_r = 2\} & \text{if } A_1 + A_2 + \ldots + A_l \ge 2\\ \infty & \text{if } A_1 + A_2 + \ldots + A_l \le 1 \end{cases}$$

Let

$$Z_1 = \begin{cases} 2 + B_{\rho+1} + \ldots + B_l & \text{if } \rho < \infty \\ 0 & \text{if } \rho = \infty. \end{cases}$$

 Z_1 has the same distribution as $X_i \delta_i$.

Let

$$Z_2 = \begin{cases} 2 + B_1 + \ldots + B_l & \text{if } \rho < \infty \\ 0 & \text{if } \rho = \infty. \end{cases}$$

 Z_2 has the same distribution as $(2 + Y_i)\delta_i$ and (1) follows immediately. Thus $|D_b|$ is majorised by $\sum_{i=1}^{m} (2 + Y_i)\delta_i$.

Now

$$\mathbf{Pr}(\delta_i = 1) \le \binom{l_i}{2} p^2$$

and so

$$\begin{split} \mathbf{E}(\sum_{i=1}^{m} \delta_i) &\leq p^2 \sum_{i=1}^{m} \binom{l_i}{2} \\ &\leq p^2 \frac{n}{k} \binom{k}{2} \\ &\leq \frac{B^2}{2A} \ln n. \end{split}$$

Hence

$$\Pr\left(\sum_{i=1}^{n} \delta_i \geq \frac{B^2}{A} \ln n\right) \leq exp\left\{-\frac{B^2}{6A \ln n}\right\}$$
$$\leq n^{-2}.$$

Consider now the distribution of $\sum_{i=1}^{m} (2 + Y_i) \delta_i$ conditional on $\sum_{i=1}^{m} \delta_i \leq m_0 = \lfloor (B^2 \ln n) / A \rfloor$. This is majorised by

$$\frac{2B^2}{A}\ln n + \sum_{i=1}^{m_0} Z_i$$

where $Z_1, Z_2, \ldots, Z_{m_0}$ are independent binomials BIN(k, p) and so $Z = \sum_{i=1}^{m_0} Z_i = BIN(m_0k, p)$. Thus

$$\mathbf{E}(Z) \leq (1+o(1))\frac{B^2}{A}\ln n \frac{n}{A\ln n} \frac{B\ln n}{n}$$
$$= (1+o(1))\frac{B^3}{A^2}\ln n$$
$$\leq 11\ln n$$

So

$$\begin{aligned} \mathbf{Pr}(Z \ge 20 \ln n) &\le & \exp\left\{-\frac{1}{3}\left(\frac{9}{11}\right)^2 11 \ln n\right\} \\ &= & O(n^{-2}). \end{aligned}$$

Hence

$$\Pr\left(d \ge \frac{2B^2}{A}\ln n + \frac{2B^2}{A}\ln n + 20\ln n\right) = O(n^{-2}).$$

Multiplying by a factor n to account for all vertices gives the lemma.

3 Proof of Lemma 2

We modify the proof of Posá [3] to account for the deletion of edges. So assume now that $G = G_1 \cup G_2 \cup G_3$ where G_1 and G_2 are independent copies of $G_{n,p/2}$ and where G_3 is an independent copy of $G_{n,p'}$, where p' satisfies the equation $1 - p = (1 - p/2)^2(1 - p')$. G_3 plays no further role in the analysis. We first show that G_1/Y almost surely contains a Hamilton path. If it doesn't then there exists $i \in [n]$ such that

there exists a longest path of G_1/Y which does not go through i which implies

no longest path of $\Gamma_i = (G_1/Y)/\{i\}$ has an end-vertex adjacent to i in G_1 . Let this final event be denoted by \mathcal{E}_i . Then

$$\mathbf{Pr}(G_1/Y \text{ has no Hamilton path }) \leq n \mathbf{Pr}(\mathcal{E}_n).$$
 (2)

Let now P be a longest path of Γ_n and let x_0 be one of its end-vertices. Let END be the set of end-vertices of longest paths of Γ_n which can be obtained from P by a sequence of *rotations* keeping x_0 as a fixed end-vertex. (Given a longest path Q with end-vertices x_0, y and an edge yv where v is an internal vertex of Q, we obtain a new longest path $Q' = x_0..vy..w$ where w is the neighbour of v on P between v and y. We say that Q' is obtained from Q by a rotation.)

It follows from Posá [3] that

$$|N(\Gamma_n, END)| < 2|END|, \tag{3}$$

where for a graph Γ and a set $S \subseteq V(\Gamma)$

$$N(\Gamma, S) = \{ w \notin S : \exists v \in S \text{ such that } vw \in E(\Gamma) \}.$$

CLAIM: with probability $1-o(n^{-1})$

$$S \subseteq [n-1], |S| \le \frac{n}{4D \ln n}$$
 implies $|N(G_1/\{n\}, S)| \ge 3D(\ln n)|S|.$

(The proof of this claim is deferred to the end of the proof of the lemma.) Hence in Γ_n we have with probability 1-o (n^{-1})

$$S \subseteq [n-1], |S| \le \frac{n}{4D \ln n}$$
 implies $|N(\Gamma_n, S)| \ge D(\ln n)|S|.$

It follows from (3) that with probability $1-o(n^{-1})$

$$|END| \ge \frac{n}{12}$$

Now consider the edges of G_1 from vertex n to END. They are independent of END and so are distributed as B(|END|, p/2). Thus their expected number is at least $(B \ln n)/24$. Thus if A and hence B is large there will be at least $(B \ln n)/48$ such edges with probability $1 \cdot o(n^{-1})$. But for large A, D < B/48 and so not all of these edges can be included in Y. Thus $Pr(\mathcal{E}_n) = o(n^{-1})$ and (2) implies that G_1/Y almost surely has a Hamilton path.

To finish the proof take a Hamilton path P of G_1 and fix one of its endvertices, x_0 say, and using rotations create a set of end-vertices END of Hamilton paths with one end-vertex x_0 . The above analysis shows that $|END| \geq \frac{n}{12}$ almost surely. Now add the edges of G_2 , which are independent of x_0 and END. Again we can argue that there are almost surely too many $x_0 - END$ edges in G_2 for them all to be included in Y and the lemma follows since the existence of any one not in Y means that H is Hamiltonian.

Proof of CLAIM

If the condition in the claim does not hold then there exist disjoint sets $S, T \subseteq [n-1], s = |S| \leq n/(4D \ln n), t = |T| \leq 3D(\ln n)s \leq 3n/4$ such that each vertex of T is adjacent to at least one vertex in S and no vertex in $[n-1]/(S \cup T)$ is adjacent to any vertex of S.

Fix s,t and let $t_0 = 3sD(\ln n)$ Then the probability of the above event is bounded by

$$\binom{n-1}{s} \binom{n-1}{t} \left(\frac{sp}{2}\right)^t \left(1 - \frac{p}{2}\right)^{s(n-1-s-t)} \leq \left(\frac{ne}{s}\right)^s \left(\frac{ne}{t}\right)^t \left(\frac{sp}{2}\right)^t e^{-snp/10}$$
$$= \left(\frac{ne}{s}\right)^s \left(\frac{e}{t}\right)^t \left(\frac{sB\ln n}{2}\right)^t n^{-sB/10}$$

$$\leq \left(\frac{ne}{s}\right)^{s} \left(\frac{e}{t_{0}}\right)^{t_{0}} \left(\frac{sB\ln n}{2}\right)^{t_{0}} n^{-sB/10}$$
$$= \left(\frac{ne}{s} n^{3D\ln(Be/6D) - B/10}\right)^{s}$$
$$= o(n^{-3})$$

for large A. Now multiply this upper bound by n^2 , which bounds the number of possible s, t, in order to prove the claim.

Finally, we remark that we believe the following

Conjecture: there exists an absolute constant $\epsilon > 0$ such that if $k < \epsilon n$ then any k-bounded colouring of K_n is good.

Hahn and Thomassen made a somewhat stronger conjecture.

References

- [1] W.Höeffding, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 58 (1963) 13-30.
- [2] G.Hahn and C.Thomassen, Path and cycle sub-Ramsey numbers and an edge-colouring conjecture, Discrete Mathematics 62 (1986) 29-33.
- [3] L.Pósa, Hamilton circuits in random graphs, Discrete Mathematics 14 (1976) 359-64.
- [4] P.Winkler, Private Communication.

.