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Abstract
We consider the parallel greedy algorithm of Coppersmith, Raghavan and Tompa

[CRT] for finding the lexicographically first maximal independent set of a graph. We
prove an il(logn) bound on the expected number if iterations for most edge densities.
This complements the O(logn) bound proved in Calkin and Frieze [CF].

1 Introduction
In this note we consider the problem of finding the lexicographically first maximal indepen-
dent set (LFMIS) in a random graph. Coppersmith, Raghavan and Tompa [CRT] describe
a parallel version of the standard greedy algorithm for this problem:
Suppose we are given a graph G = (V, E), V = [n] = {1,2,.. . , n}. For Z C V we let

F+(Z) = {x g Z : xz e E for some z < x, z € Z},
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and
T"(Z) = {x g Z : xz E E for some z > x, z e Z}.

Note that we have implicitly oriented the edges from low to high.

algorithm PARALLEL GREEDY (G);
begin

GIS <- 0;
until G has no vertices do

begin
let S = {a : T'(a) = 0};
GIS «- GISUS;
remove S U T(S) from G

end
output GIS

end

It is easy to see ([CRT], Lemma 2.1 ) that GIS is the LFMIS. Cook [C] showed that the
problem of computing the LFMIS of a graph is complete for P and so is not in NC unless
NC=P. PARALLEL-GREEDY can be implemented on a CRCW PRAM in 0(1) time per
iteration if one processor is allocate to each edge of G.

Coppersmith, Raghavan and Tompa showed that if T(n,p) denotes the expected number
of iterations r = r(G) when G = GntP then T(rc,p) = 0 ( ^ ° ^ n ) . (Gn,p is the random graph
with vertex set [n] where each edge occurs independently with probability p = p(n).).

They conjectured that T(n,p) = O(logn) and this was proved in Calkin and Frieze [CF].
More precisely they proved

Theorem 1
(a) 3 ^ S ^ ^ T^P) f°r^<P<^ vhere 0 < a < 1 is constant

The hidden constant in (b) is independent of p.

Note that our inequalities are only claimed for n large.
The upper bounds and lower bounds in Theorem 1 are slightly different. It leaves open

the possibility that T(ra,p) = O(lo
lofcn

w) throughout. The aim of this paper is to shed more
light on this problem, and to prove

Theorem 2 Assume 0 < a < 1, a constant.

(b) T{n,p) = O(log n) fora>p> i ,
where the hidden constant in (b) depends on a.

Proof:
(a) Let G = G\ D G2 2 G3 D . . . denote the sequence of graphs produced by each iteration
of the algorithm.
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For v G V(Gt) and t > 1 let a(i, v) = the length of the longest directed path in Gt which
ends at v (a path (t?i, v2 , . . . v*, is directed if v\ < v2 < . . . v*;.)

Clearly, if v G V(Gt+i) then a(t + l,v) < a(f, v) - 2.
Hence

Thus

Pr(r(Gn,p) > fc) < E(# of directed paths of length 2k)

- fey*-1

/ /i \rv\ 2fc-l

<

Hence, with fc0=r(1
2S

= E Pr(r(Gn>p) > fc)

±
*».*•-">••""f

< fc0 + 2n

where A = e(l — cc)/4,

This completes the proof of (a),
(b) This is somewhat more non-trivial.
Let

Vt = V(Gt)
= { vertices remaining at the start of round t}

St = Set S found in round t
= { sources found in round t} ,

Nt = T(St)nVt

= { neighbours of St deleted in round t }.

Suppose i > 2 and At, -B̂ , 1 < t < i — 1 is some disjoint collection of subsets of V. Then we
have St = At, Nt = Bt for 1 < t < i — 1 if and only if



(2a) v G At implies T~(v) C (J^l Bs and Y~{v) n £*-i 7̂  0, 1 < < < » - 1
(when t = 1, drop the second condition)
(2b) veBt implies r~(v) n \J%\ As = 9 and r"(v) 0 At ^ 0, 1 < * < i - 1
and

t-i

veC =V - (J(At U Bt) implies

Suppose now that we choose sets At, Bt, 1 < t < i — 1 satisfying (2) and condition on
the event

S = {St = Au Nt = BuVi = C: 1 < t < i - 1}.

It is important to establish the conditional distribution of the sets Tj'fo) = T~(v) D Vi,
v G Vu i > 2. For v G VJ let i^ = [v - 1] n (V- U £,-i) and rv = |i^|.
Claim 1
(i) The sets Tj(v), v G Vi are stochastically independent,
(ii) Tj(y) is a random subset of R%

v chosen through rv Bernoulli trials conditioned on the
occurence of at least one success, i. e.
(4) P r ( | I 7 ( t > ) | = * ) = ftV(l - P ) r ° - k / ( l ~ (1 - P ) r " ) , l < k < r v
and each ^-subset is equally likely.
Proof (of Claim)

To prove (i) simply observe that condition (3) on v G C only involves edges directed into
v, and that the conditions in (2) only involve edges directed into V — C.

Now consider (ii). v G V2 if and only if Ft
r(t;) ^ 0 and Tf(v)nSi = 0 and these conditions

are equivalent to (ii). We can now proceed inductively. Fix v G Vi. If v $ Si U Ni then we
learn (a) T^(v) n Vt ^ 0, then (ii) T?(v) fl 5,- = 0 and so finally that

Thus (4) continues to hold.
End of proof (of claim).

We now continue with the proof of our Theorem. Choose /?, a < (3 < 1. Now choose
i < T = |-(i-^iogn-| a n d a s s u m e t h a t vj = {a?! < x2 < . . . < xs}. Partition V- into X2, X2, Y
where Xi = {xux2,... a:a}, a = ("logn/p], X2 = {xa+1,xa+2,.. . ^ 6 } , 6 = f(logn)2/p], and
Y is the rest of Vi. We will show that a good proportion of Y is likely to remain in VJ+i,
when V£ is large enough so that the above partition is actually possible.

Observe first that the proof of Claim 1 implies that if r = |i?t-_i D [XJ — 1]| then
(5) Pr(:r = Xj € Si) = (1 - (1 -p ) ' ) ( l - ^

(At least one success is required in the r trials corresponding to i?,-_i D [xy — 1] and no further
successes.)
So if At = {Si D (X2 U Y) = 0} then
(6) ^

Let



It follows from Claim l(ii) that if y 6 Y then

< n-(l-o(l))logn

and so
(7) Pr(£ t) < n-(

1-°<Mlo*n.
Note that (6), (7) can be taken as true even if Y = 0.

Let us now consider the size of Si. Let 6j = 1 if Xj € Si and Sj = 0 otherwise. It follows
from Claim l(i) that #i, #2>..., Ss are independent random variables. Also

E(\Si\) =

<

< I.
P

Note that we have Pr(5j = 1) < (1 — pY"1 regardless of the history of the algorithm to
this point. It follows that |5i | + l^ l + . . . + |S,-| is dominated by the sum of independent
random variables each of which is the sum of a large number of independent 0-1 random
variables. It follows from Theorem 1 of Hoeffding [H] that if

then

( o (l-a)logn/2p

TT-^H—)(l-a)logn/

(Hoeffding proves that if Zi, Z 2 , . . . , Zm are independent random variables with 0 < Zj < 1,
j = 1,2,.. . , m and E(ZX + Z2 + h Zm) = m/x then

We use this inequality with my, = -1 and ^m// = ' a\ ° •)
Notethat Cr C CT_i C • • • C Cx and

(8) Pr(CT) < n - ( i



Consider the size of Y C\ K'+i- Using Claim l(ii) we see that, given Ai PI B{, the edges
joining X\ to Y are unconditioned. So, by another use of [H],

p)'5-' | A" Oft,
since if y G Y then Pr(y G Vi+l \ Ai n ft, |S,|) = (1 -
Now let

{
Then we have
(10) Pr(A+i) < Pr(A n Bf- n d n A) + Pr(A+i I A- n 5,- n d n A).
Now if d fl Dt- occurs then

> n ( l _ 2 _ Y (1_p)(l_o,)logn/2p

\ (log") /

and \Y\ >
Now, since C,-, T>i refer to the history of the algorithm prior to the construction of Y D
we may again argue as in (9) that

Pr(P i + i | Ai n ft ft d Pi £>,) < exp < - -

Thus, from (6), (7), (8), (10) and the above

and so

since ^1 = 0.

Thus Vi(Dr) = o(l). Combining this with Pr(CT) = 1 - o(l) we see that

Pr(VT = 0) = o ( l )

and this proves part (b) of the Theorem. D
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