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Abstract

We discuss the problem of computing the volume of a convex body K in Rn. We review worst-case results
which show that it is hard to deterministically approximate voln K and randomised approximation algorithms
which show that with randomisation one can approximate very nicely. We then provide some applications of
this latter result.
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1 Introduction

The mathematical study of areas and volumes is as old as civilization itself, and has been conducted for both
intellectual and practical reasons. As far back as 2000 B.C., the Egyptians1 had methods for approximating the
areas of fields (for taxation purposes) and the volumes of granaries. The exact study of areas and volumes began
with Euclid2 and was carried to a high art form by Archimedes3. The modern study of this subject began with
the great astronomer Johann Kepler's treatise4 Nova stereometric, doliorum vinariorum, which was written to
help wine merchants measure the capacity of their barrels. Computational efficiency has always been important
in these studies but a formalisation of this concept has only occurred recently. In particular the notion of what
is computationally efficient has been identified with that of polynomial time solvability.

We are concerned here with the problem of computing the volume of a convex body in Rn, where n is assumed
to be relatively large. We present results on the computational complexity of this problem which have been
obtained over the past few years. Many of our results pertain to a general oracle-based model of computation for
problems concerning sets developed by Grotschel, Lovasz and Schrijver [13]. This model is discussed in Section 2.
We note here that classical approaches, using calculus, appear tractable only for bodies with a high degree of
symmetry (or which can be affinely mapped to such a body). We can for example show by these means that the
volume of the unit ball J9(0,1) in Rn is W 2 / r ( l + n/2), or that the volume of a simplex A with with vertices
Po,Pi,.. • ,Pn is given by the "determinant formula"

voln(A) = 1 1 . . . 1
P0 Pi • • • Pn (i)

However, for unsymmetric bodies, the complexity of the integrations grows rapidly with dimension, and quickly
becomes intractable. In Section 3, we formalise this observation, and discuss negative results which show that it is
provably hard for a completely deterministic polynomial time algorithm to calculate, or even closely approximate,
the volume of a convex body.

In stark contrast to these negative results, in Section 4 we describe the randomized polynomial time algorithm of
Dyer, Frieze and Kannan [10], with improvements due to Lovasz and Simonovits [24], Applegate and Kannan [2].
We give some new improvements in this paper. This algorithm allows one, with high probability, to approximate
the volume of a convex body to any required relative error. This algorithm has a number of applications, and
some of these are described in Section 5. Section 6 then examines "how much randomness" is needed for this
algorithm to succeed.

2 The oracle model

A convex body K C Rn could be be given in a number of ways. For example K could be a polyhedron and we
are given a list of its faces, as we would be in the domain of Linear Programming. We could also be given a set
of points in Rn and told that K is its convex hull. We consider this "polyhedral" situation briefly in Section 3.2.

In general, however, K may not be a polyhedron, and it might be difficult (or even impossible) to give a compact
description of it. For example, if K = {(y, z) G Rm+1 : v(y) > z}, where v(y) = max{cx : Ax = t/, x > 0} is the
value function of a linear program (A is an m x n matrix.)

2The Rhind Papyrus (copied ca. 1650 BC by a scribe who claimed it derives from the "middle kingdom" about 2000 - 1800 BC)
consists of a list of problems and solutions, 20 of which relate to areas of fields and volumes of granaries.

2The exact study of volumes of pyramids, cones, spheres and regular solids may be found in Euclid's Elements (ca. 300 BC).
3 Archimedes (ca. 240 BC) developed the method of exhaustion (found in Euclid) into a powerful technique for comparing volumes

and areas of solids and surfaces. Manuscripts:
1. Measurement of the Circle. (Proves 3y^ < TT < 3y ).
2. Quadrature of the Parabola
3. On the Sphere and Cylinder
4. On Spirals
5. On Conoids and Spheroids

4The application of modern infinitesimal ideas begins with Kepler's Nova stereometria doliorum vinariorum (New solid geometry
of wine barrels), 1615.



We want a way of defining convex sets which can handle all these cases. This can be achieved by taking an
"operational" approach to defining K i.e. we assume that information about K can be found by asking an
oracle. This approach is studied in detail by Grotschel, Lovasz and Schrijver [13]. Our model of computation for
convex bodies is taken from [13]. In order to be able to discuss algorithms which are efficient on a large class of
convex bodies, we do not assume any one particular formalism for defining them. For example, we do not want
to restrict ourselves to convex polyhedra given by their faces. However, if the body is not described in detail,
we must still have a way of gaining information about it. This is done by assuming that one has access to an
"oracle". For example we may have access to a strong membership oracle. Given x £ Rn we can "ask" the oracle
whether or not x £ K. The oracle is assumed to answer immediately. Thus the work that the oracle does is
hidden from us, but in most cases of interest it would be a polynomial time computation. For example, if K is
a polyhedron given by its facets, all the oracle needs to do is check whether or not x is on the right side of each
defining hyperplane. The advantage of working with oracles is that the algorithms so defined can be applied in
a variety of settings. Changing the class of convex body being dealt with, only requires changing the oracle (i.e.
a procedure in the algorithm,) and not the algorithm itself. Moreover, an oracle such as this, plus a little more
information, is sufficient to solve a variety of computational problems on K.

With such an oracle, we will need to be given a litle more information. We must assume that there exist positive
r, R £ R and a £ Rn such that

B(a,r)CKCB(a,R) (2)

where B(xip) denotes the ball centred at x with radius p. In this case we say that the oracle is well-guaranteed,
with a, r, R being the guarantee.

Without such a guarantee, one could not be certain of finding even a single point of K in finite time. So, from
now on, we assume that the guarantee is given along with the oracle. We do not lose any important generality
if we assume that r, R £ Q and a £ Qn. Using ( ) to denote the number of bits needed to write down a rational
object, we let V = (r, R, a) and L = V + n. This will be taken as the size (K) of our input oracle. A polynomial
time algorithm is then one which runs in time which is polynomial in (K). Hence we are allowed a number of
calls on our oracle which is polynomial (K). In the cases of interest, it is also true that each such call can be
answered in time which is polynomial in (K), and hence we have a polynomial time algorithm overall. (See [13]
for further details.)

If K is a polyhedron given by its faces, then it is more usual to let the input length be the number of bits needed
to write down the coefficients of these faces. The reader should be able to convince him/herself that if K is
non-empty then in polynomial time one can compute a,r,R as above and the two notions of input length are
polynomially related. Now let us be precise about the other oracles considered in this paper. First there is the
weak membership oracle. Given x £ Qn and positive e £ Q this oracle will answer in one of the following ways:

x £ S(K, e) = {y £ Rn : y £ B{zy e) for some z £ K}

or
x $ S(K, -e) = {y £ Rn : B(y, e) C K}.

Again each call to the oracle is normally assumed to take time which is polynomial in (K) and (e).

We will also have need of a weak separation oracle. Here, given x £ Qn and positive e £ Q this oracle will answer
in one of the following ways:

x £ S(Ky c) = {y £ Rn : y £ B(z, c) for some z £ K}

or
c - y < c • x + e for all y £ S(Ky -e)

where ||c||oo = 1 and c £ Qn is output by the oracle.

One pleasant consequence of the ellipsoid method is that a weak separation oracle can be obtained from a weak
membership oracle in polynomial time (see [13]) and so it is not strictly necessary to consider anything other
than weak membership oracles.

The positive results of this paper will be couched in terms of weak oracles. Thus given a weak membership oracle
for a bounded convex body K we will see that we can approximate its volume to within arbitrary accuracy in
random polynomial time using the algorithm of Dyer, Frieze and Kannan [10].



However some of the negative results can be couched in terms of strong oracles. Thus we must also mention the
strong separation oracle. Here, given # £ Qn the oracle will answer in one of the following ways:

x e K or c • y < c • x for all y G K

where ||c||oo = 1 and c E Qn is output by the oracle. It turns out that even with a strong separation oracle, it is
not possible to deterministically approximate the volume of a convex body "very well" in polynomial time.

3 Hardness proofs

In this section we review some results which imply that computing the volume of a convex body, or even an
approximation to it, is intractable if we restrict ourselves to deterministic computations.

3.1 Oracle model

We say that V is an e-approximation to voln(/iT) if 1/(1 + e) < wo\n{K)/V < (1 4- e), and that volume is e-
approximable if there is a deterministic polynomial time (oracle) algorithm which will produce an e-approximation
for any convex set K.

We begin, historically, with the positive result. Assume that K is well-guaranteed (see Section 2). Grotschel,
Lovasz and Schrijver [13] showed that there is a polynomial time computable affine transformation / : a: •-+ Ax + b
in Rn such that B(0,1) C f(K) C nyjn + l£(0,1). (The "rounding" operation.) Since the Jacobian of / is
simply det(^4), this implies that we can calculate (in deterministic polynomial time) numbers a, ft such that
a < voln(K) < /?, with ft = O(n3n/2a). The reader may easily check that the best we can do in these
circumstances is to put V = \A*/?, giving an (>//?/« — l)-approximation. It follows that volume is O(n3n/4)-
approximable. This may seem rather bad, but Elekes [11] showed that we cannot expect to do much better. His
argument is based on the following

Theorem 1 (Elekes) Let pi,P2, • • • ,Pm be points in the ballB = 2?(0,1) in Rn, and P = conv{pi,P2> • • • ,Pm}-
Then vo\n(P)/vo\n(B) < m/2n.

Proof Let Bi be the ball centre \piy radius \. Note vo\n(Bi) = vo\n(B)/2n. Suppose y £ (J?=i Bi- T n e n

(y — \pi)2 > \ for i = 1,2,.. . ,m. Since p? < 1, we have pt-y < y2 for i = l , 2 , . . . , m . Thus all pi lie in
the half-space H : yx < y2. So P C H, but clearly y £ H, so y £ P. Thus P C ( JLi Bi> a n d therefore

I ( ) < YZi vo\n(Bi) = mvoln(B)/2n. D

Keeping the above notation, it follows that, with any sub-exponential number m(n) of calls to a strong mem-
bership oracle, a deterministic algorithm A will be unable to obtain good approximations. For, suppose K =
K(A) C B is such that the oracle replies that the first m(n) points queried lie in K. Then any K such that
P C K C B is consistent with the oracle, and hence we cannot do better than ft(2n/2/v/m)-approximation.
If m(n) is polynomially bounded, it follows, in particular, that volume is not 2n/2""wlogn-approximable for any
iv = u)(n) —> oo.

Note that it is crucial to this argument that A is deterministic, since K must be a fixed body. For, suppose
A is nondeterministic, and can potentially produce M(n) different query points, if allowed m(n) queries on a
given input. Then it only follows that we cannot do better than Q(2n/M)-approximation. If M is a fast growing
function of n, this bound may be weak. We return to this point in Section 6 below, in the context of randomized
computation.

Elekes' result was strengthened by Barany and Fiiredi [3], who showed that (even with a strong separation oracle)
volume is not ncn-approximable, for any constant c < | . This result implies that the method of [13] described
above is, in a weak sense, an "almost best possible" deterministic algorithm for this problem. However, recently,
Applegate and Kannan [2] have adapted an idea of Lenstra [22] to produce an algorithm which works even better.
This idea will also be exploited in the algorithm of Section 4. The idea is to start with any right simplex 5 in
the body, and gradually "expand" it. Using the guarantee, we can initially find such a simplex with vertices
{0,ret- (i e H)} . (We will use et for the ith unit vector and e for the vector of all l's throughout.) If we



scale so that S is the standard simplex with vertices {0,e, (i G [n])}, K is contained in B{f),R/r). Thus, by
simple estimations, voln(7f)/voln(S) < (2nR/r)n. Now, for each i = 1,2, . . . ,n , we check whether the region
{x e K : \x{\ > 1 + 1/n2} is empty. This can be done in polynomial time [13] to the required precision. Suppose
not, then for some i, we can find a point yi in this region. Replace e,- by yi as a vertex of S. Clearly the
ratio vo\n(K)/vo\n(S) decreases by a factor at least (1 -f- 1/n2). We now transform S back to the standard
simplex. This leaves the volume ratio unaffected. Clearly this must terminate before k iterations, for any
(1 + 1/n2)* > (2nR/r)n. Thus k = \2n3\n(2nR/r)] iterations will suffice, i.e. "polynomially" many. However,
at termination K is clearly contained in a cube J4(0, 1 + 1/rc2), where A(ay b) is the cube centred at a with side
26. Thus

vo]n(K)/v6ln(S) < n!{2(l + l /n 2 )} n = 0{n\2n) = n<1-°<1»n.

We then approximate wo\n{K) in the obvious way, producing an n^ 2"°(1Wn approximation. It now follows from [3]
that this procedure is (in a certain sense) an "optimal" deterministic approximator. Moreover, since S contains
the cube A(e/(2n)i l/(2n)) so does K. Thus, relocating the origin at e/(2n) and scaling by a factor 2n on all
axes, we see that K will contain A(0,1) and be (strictly) contained in A(0,2(n -f 1)) for any n > 2. We make use
of this in Section 4 below, following Applegate and Kannan [2].

3.2 Polyhedra

Suppose a polyhedron P C Rn is defined as the solution set of a linear inequality system Ax < b. The size of the
input (as remarked in Section 2) is defined by {A) + (6). Here we might hope that the situation regarding volume
computation would be better, but this does not seem to be the case (at least as far as "exact" computation is
concerned). The following was first shown by Dyer and Frieze [9]. Let us use Cn to denote the unit n-cube
[0, l ] n = {0 < x < e}, and H C Rn the half-space {ax < &}, where a, 6 are integral. Consider the polytope
K = Cn H H. Then it is #P-hard to determine the volume of K. The proof is based on the following identity,
which is easily proved using inclusion-exclusion. Let V = {0, l } n = vertCn and, for v G V, write |i;| = ev. Then

vo\n(K) = £ ( - l )Wvol n (A v ) , (3)

where Av = {x > v} 0 H. Now if Av is nonempty, it is a simplex with vertices

v, v + (b-av)ei/ai (i = 1,2,.. .n), (4)

and hence by the determinant formula (1) for the volume of a simplex, (n! nr=i ai)vo\n(Av) = max(0,6 — av)n.
Thus, from (3),

(nlf[ai)vo]n(K) = J ] (~ l ) | v | max(0,6 - at;)". (5)
»=i vev

Now the right side of (5) may be regarded as a polynomial in 6, for all 6 such that V C\ H remains the same.
(This will true be for 6 in successive intervals of width at least 1.) The coefficient of bn in the polynomial is
]T^6ij(—l)'v'. Now, supposing we can compute volume, we can determine this coefficient in polynomial time by
interpolation, using (n -f 1) suitable values of 6. Now let Nk = \{v € H : \v\ = Jb}|, a! = a -f- Me, V = 6 -f Mk
where M > ae > b > 0. Consider the inequality H1 = {afx < b'}. It follows easily that v E # ' iff either \v\ < k,
or |v| = k and v G H. Thus, from (5), b'n will have coefficient Y%Zi i"1)*(") + (-1)*^*- i^rom this we could
compute all Nk (k = l ,2 , . . . ,n ) . However, Y%=iNk = \V D H\ is a. well-known #P-hard quantity, i.e. the
number of solutions to a zero-one knapsack problem. It follows that volume computation must also be #P-hard.

Since a in the above must contain large integers, this still left open the question of strong #P-hardness of the
problem of computing the volume of a polyhedron. This was first shown to be strongly NP-hard by Khachiyan [20],
using the intersection of "order polytopes" with suitable halfspaces. The order polytope is defined as follows.
Let •< be a partial order on the set [n] = {1, 2 , . . . , n}, then the order polytope

P(-<) = {xeCn: Xi < XJ if i < j}.

A permutation of [n] is a linear extension of -< if 7r(i) -< w(i + 1) for i = 1,2,..., n — 1. Given <, let

E{-<) — {TT : 7r is a linear extension of -<},



and let e(-<) = \E(-<)\. Linial [23] (and others) observed that, in fact, n\vo\n(P(-<)) = e(-<). To see this let

SV = {x G Cn : xT(i) < xT(2) < . . . < XTr(n)}'

Then one observes that the the SK intersect in zero volume, and that P(-<) = Ua^C-O^** An application
of (1) shows easily that voln(5T) = 1/n! always, so voln(P(-^)) = e(^)/n!, as required. It was conjectured that
e(-<) was #P-hard, but this issue, though of considerable interest, remained open for some years. Recently,
however, Brightwell and Winkler [6] have finally settled this conjecture in the affirmative. Their proof is a little
too complicated to sketch here, but their result implies, in particular, that polyhedral volume computation is
strongly #P-hard, even for this natural application. We will return to this application in Section 5.2 below.

It is also shown in [9] that the volume of a polyhedron can be computed, to any polynomial number of bits,
using a # P oracle. The construction uses a "dissection into cubes" similar to that used in Section 4 below. A
pre-selected polynomial bound on the number of bits is in fact necessary, as the following considerations imply.
By decomposing into simplices, we can easily show that the volume of a rational polyhedron is a rational p/q
for p, q £ Z. This argument also shows that p and q require only exponentially many bits, but it was asked
in [9] whether polynomially many bits will suffice. The answer to this is negative, and the situation is almost as
bad the above indicates. This may be shown using a simple, but ingenious, construction due to Lawrence [21].
Consider the situation of (3), (4) above, with a = (2 n~\ 2 n ~ 2 , . . . , 2,1) and b > ae = 2n - 1. Now K = Cn and
V Q H. Observe that av is the number whose binary representation is v, so as v runs through V, (1 -f- av) runs
through the integers from 1 to 2n. Suppose now we make the projective transformation / : x H-» X/(1 -f ax) in
Rn. Since projective transformations preserve hyperplanes, the identity corresponding to (3), i.e.

voln(/(Cn)) = £(-l)Mvoln(/(Av)), (6)

is still valid. Note that f(Cn) is the polyhedron Cn = {0 < x < (1 — ax)e). But, from (4), Av = f(Av) has
vertices

v/(l + av), (v + (b-av)ei/ai)/(b+l) (i = 1,2,.. .n). (7)

Letting b —+ oo, (7) simplifies to
v/(l + av), a/oi (i = 1 , 2 , . . .n). (8)

Applying the determinant formula (1) to (8), we find (n! n£=i a»)v°ln(Av) = 1/(1 -f av). Hence, from (3),
inserting the values of the a,-,

2 n

p = (n!2^-1)/2)voln(Cn) = J > l / i , (9)

where the sign is + iff the binary number ,; contains an odd number of one-bits. It is not difficult to see that
the rational number p has an immense denominator. Consider the primes between 2n~1 and 2n. The Prime
Number Theorem implies that, for large n, there are at least 2n~1/(n — 1) such primes. Each of these primes
occurs exactly once as a factor of any .; in the expression for p. It follows easily that every such prime divides
the denominator of p. Thus p's denominator is at least their product, i.e. more than 22** .

A polyhedron may be defined dually as the convex hull of a set of m points pi,P25 • • • ,Pm in Rn. This problem is,
however, no easier. It is shown in [9] that computing volume in this situation is also #P-hard. The examples used
are the "duals" of the polyhedra K described above. It remains open whether this problem is strongly #P-hard.
However, it is true (and easy to prove) that, in this presentation, the volume is a rational of size polynomial in
the input. (See [9] for details.)

4 Randomized volume approximation

In spite of the negative results of Section 3, Dyer, Frieze and Kannan [10] succeeded in devising a randomized
algorithm which can, with high probability, approximate the volume of a convex body as closely as desired in
polynomial time. (This will be made precise later.) The algorithm itself is a fairly simple random walk. The
difficulties lie in the analysis. The analysis of [10] used the idea of "rapidly mixing Markov chain> and exploited
a powerful isoperimetric inequality on the boundary of convex sets due to Berard, Besson and Gallot [5] in order



to prove a crucial property of the random walk. A different isoperimetric inequality was also conjectured in [10],
concerning the "exposed" surface area of volumes in the interior of convex sets, which would improve the time
bound of the algorithm.

Aldous and Diaconis (see, for example, [1]) seem to have originated the investigation of Markov chains which
"mix rapidly" to their limit distribution. A major step forward in their applicability to the analysis of random-
ized algorithms came when Sinclair and Jerrum [30] proved a very useful criterion for rapid mixing, based on
conductance. They have applied this, for example, in [15]. Intuitively, conductance is a measure of "probability
flow" in the chain. More formally, it measures the isoperimetry of a natural weighted digraph underlying the
chain. Good conductance implies rapid mixing. It was precisely to prove good conductance that the inequality
of [5] was required in [10].

Recently, Lovasz and Simonovits [24] generalized the notion of conductance, and gave a sharper proof that this
implies rapid mixing (although in a weaker sense than Sinclair and Jerrum [30]). They also proved the above
conjecture of [10]. (See also Karzanov and Khachiyan [19].) With these improvements, they improved the
analysis of the algorithm and its polynomial time bound. They also simplified the algorithm itself somewhat.
In order to obtain rapid mixing, Dyer, Frieze and Kannan were obliged to smooth the boundary of the convex
set by "inflating" it slightly. Lovasz and Simonovits dispensed with this assumption by showing that the "sharp
corners" of the body cannot do too much harm, provided the walk is started uniformly on some "large enough"
set.

Applegate and Kannan [2] have recently obtained significant improvements in execution time with a different
approach. The main new ingredients are a biassed random walk, and the use of the infinity-norm in the isoperime-
try. Somewhat surprisingly, this overcomes the problem of "sharp corners" in a relatively efficient manner by
allowing the walk to "step outside" the body if it enters such a region. They use this walk to sample from a
non-uniform distribution over a convex body K - see Section 5, and to integrate log-concave functions over K.
They estimate the volume of K by combining these two algorithms. In this paper we see how this biassed random
walk works naturally with the original approach of [10]. We also manage to reduce the running time by a better
method of statistical estimation, and by using uniformity to reduce the walking times.

We will first describe the algorithm, and subsequently develop the various components of its analysis. A key step
in all of the algorithms that have been applied to this problem is that of computing a nearly uniform random
point from a convex body. In Section 4.6 we prove a new result, which is a (sharpened) converse to this. We show
that a polynomial number of calls to any good volume approximator suffices to generate (with high probability)
a uniform point in any convex body.

We may observe that the only polynomial time (randomized) algorithms for the volume approximation problem
seem to be based on the Dyer, Frieze and Kannan approach. For a slightly different approach in a special case,
see [26].

It is of interest to display here the time bounds on the various volume algorithms so that we can see the progress
that is being made on the problem. Let K be our convex body in Rn (n > 2), given by a weak membership
oracle. (See Section 2.) Given c and £, with probability (1 - f) we wish to find an e-approximation to vo\n(K).
To avoid unnecessary complication, let us asume e < 1. We require the algorithm to run in time polynomial in
(K), 1/e and log(l/£), i.e. it must be & fully polynomial randomized approximation scheme (FPRAS) [18].

Dyer,Frieze and Kannan [10]

O(n23(log n)56~2(log -)(log -)) convex programs.

Lovasz and Simonovits [24]

0(rc16£~4(log n)8(log — )(log —)) membership tests.

Applegate and Kannan [2]

O(n10e~2(logn)2(log -)2(log -))(loglog -)) membership tests.



This paper

O(n8e~2(log —)(log -)) membership tests.

4.1 The volume algorithm

As discussed in Section 3, K can be "rounded" so that it contains the cube ^4(0,1) and is contained in the cube
A(Q, 2(n + 1)). (The work required to carry out this rounding is dominated by the rest of the algorithm, so we
will choose to ignore it.) Now let 8 = l/(2n), and let C = b(\e -f Zn) be an array of points, regularly spaced at
distance 6, in Rn. We think of each point of C as being at the centre of a small cube of volume 8n (we refer to
these as 6-cubes.) As in [10], we use the £-cubes to approximate K closely enough that random sampling within
cubes suffices to obtain "nearly random" points within K. Our algorithm is a modification of that of [10], using
the ideas of Applegate and Kannan [2].

Let p = 21/", k = [nlg2(n + 1)] and </,• = £ | / / 5 J (* = 0, . . . , t ) (so we are "rounding down to whole 6-cubes").
Now consider the sequence of cubes Ai = A(0, d,-) (i = 0 ,2. . . , k). (Thus Ai is the 4o "ball" of radius d{ around
0.) It follows that AQ C K C Ak. So consider the convex bodies Ki = Ai O K (i = 0,1,2,.. . , Jb). Clearly
Ko = A(0,1) and Kk = K. Also K{ C pKi.x. Thus

p-n = % (*€[*]). (10)

Also it is easy to see that
k

voln(K) = voln(A(0, l))/(JJ a,-), (11)
«=i

where voln(j4(0,1)) = 2n. It will therefore suffice to estimate the a,- closely enough.

Suppose we can generate a point £ £ Ki such that, for all 5 C Ki with (say) voln(5) > ^vo^Ki), we have
Pr(£ E S) very close to voln(S)/voln(Ki). Then, by repeated sampling, we can estimate a,- closely, and hence
voln(/<'). For this, from purely statistical considerations, we need to assume that at- is bounded away from zero.
This is justified by (10).

To estimate the volume, we perform a sequence of random walks on £, divided into phases. For i = 1,2,..., Jb,
phase i consists of a number of random walks, which we will call trials, on C fl Ai. Trial j of phase i starts at
a point Xij of Ai and ends at the point Xitj+\. If -XJJ+I signals the end of phase i (see below), then we enter
phase (i + 1) with Xj+^i = Xij (unless i = fc, in which case we stop). The point A^i is chosen uniformly
on C fl AQ. Its coordinates may be generated straightforwardly using n (independent) integers uniform on [4n].
Starting at Xij, trial j of phase i is a random walk which "moves" at each step from one point of £ to an adjacent
point (i.e. one which differs by 6 in exactly one coordinate). The exact details are now spelled out.

Associated with each y £ £, we have an integer

<j>(y) = min{5 e Z : s > 0 and y/(l + S(s + | ) ) E K). (12)

We keep track of this quantity. Since X\yi G K, <f>(Xiti) = 0. We will show in Section 4.2 below that, if 2/1,2/2
are adjacent in C (i.e. 2/2 — 2/1 = ±£er for some r £ [n]) then ^(2/2) — ^(2/i)| < 1, so at most two membership
tests suffice to determine (̂2/2) given

The .?th trial of phase i then proceeds as follows. Suppose at step ty the walk is at point Xt~\ £ C. We set
XQ = Xij and the following operations comprise step t. With probability | "do nothing", i.e. put Xt = Xt-\>
t <— (t + 1) and end step t. (This is a technical requirement, see Section 4.4.) Otherwise, select a coordinate
direction a £ {±er}, all equally likely with probability l/(2ra). Let X't = Xt_i + 6<r. Test if XJ £ Ai. If not,
do nothing. Otherwise determine <j>(X't). If <j>(X[) > <£(Xt_i), with probability | do nothing. Otherwise put
Xt = X't and end step t, setting <j>(Xt) = <t>{X't). (Note that we require only weak membership tests here, with
tolerance some small fraction of 6. There is sufficient "slack" in our estimates below to allow for this source of
small errors, but we omit further discussion of this issue. See [10] for the details.) We observe that what we have
here is an example of the Metropolis algorithm - see the paper by Diaconis in this volume.



We continue the walk until t = r, where

T = Ti = [29n4c*?ln(227n3e-4)l =

then end trial j of phase i. We now continue with trial (j -f 1) (or commence phase (i -f 1) ) but, before doing so,
we accumulate data for the volume estimate, as follows.

We show later (in Sections 4.4 and 4.5) that

Pr(XT = x) « co2-*<*> (xeCD Ai),

where Co normalises the probabilities over C f) Ai. This distributional information about XT is used to find a
point Cij, approximately uniform on Ki, in the following way.

Let C be the 6-cube with centre XT, and let s = <j>(XT). If s > 0, do nothing. We declare trial j to be an
improper trial and continue with trial (j -f 1). We show in Section 4.2 that s > 0 implies CC\Ki = 0. Otherwise,
if s = 0, C may meet K{ and we choose C = dj uniformly from C. If C £ &ii w e again declare trial j improper.
Otherwise we have a proper trial, and we claim that C is approximately uniformly distributed on K%. We will
justify this claim in Section 4.5 below. Now, if also £ G Ki-i we declare the (proper) trial.;' to be a success. We
continue phase i until a total of

m = r2V/(e24)l = O(n3/(e2di))
proper trials have been observed, and we accumulate the number v\ of successes observed in these trials. Then
we commence phase (i + 1), unless i = k, in which case we terminate and use the accumulated data to calculate
our estimate of voln (

Let /? = 2~18e4n~3. If dij = Pr(Ct|j E i^t-i | Ct,i E #»), we will show in Section 4.5 that for each (proper) trial
in phase i,

|C*t — C*»j| 2i y P — * c 71 ) ^-L^j

conditional on the previous trial ending iue//in a sense made precise in Section 4.5. We show that no trial ends
badly with probability at least ^ .

We will also show in Section 4.5 that each trial is proper with probability at least | provided no trial ends badly.
Thus, under these conditions, the expected number of trials in each phase is less than 5mt- (and it is easy to show
that the actual number will be less than, say, 10rat- with very high probability. If after 10rat- trials we have too
few proper trials then we start again from the beginning.) Let

if
k k

P = J]:at and P = JJd t,
t=i »=i

then, since on > | , it is straightforward to show that

j - l <2"8e. (14)

Now let us form the estimates
Zi = — for t = 1,2,. . . , k

and

z=UZi'
We will use the Chebycheff inequality to show that, if all trials end well,



Combining this with (14), and using the fact that the probability that there is a trial which ends badly is at most
~ , we obtain

So if we take the median, W, of
A=ri21g(2/01=O(log(l/0),

repetitions of the algorithm, then by standard methods (see [16]), we may estimate

as required for use in (11).

Combining our running time estimates, the expected time to compute W is

k k

se-2= O(nse-2 log(n/e)log(l/0),

as claimed. Here we have used

1 = 1 » = 1

since pk < An and (as is easily shown) p — 1 > l/(2n).

To prove (15) we observe that

E(Z) = P

The pairwise independence needed to justify (16) will be established in Section 4.5. Then

<

< P2(exp{(2~7 + 9 x 2~9)e2} - 1)
< 0.02e2P2

and (15) follows from the Chebycheff inequality and E(Z) = P.

To justify the algorithm, we must prove the various assertions made above. We do this in the following sections.
We first establish some essential theoretical results.
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4.2 Convex sets and norms

In this section we prove some preliminary technical results which will be used later. We assume we have any
fixed (symmetric) norm ||z|| for x G Rn. See [29] for general properties. In particular, we denote the tp norm
by \\x\\p for 1 < p < oo. We will denote the "ball" {x : \\x — y\\ < a} by A(y, a). Since any two norms are
equivalent, we note that for any other norm || • ||', there is a constant M1 > 1 such that 1/M' < |H|/||x|| ' < M1'.
For any S C R " , diam (S) will denote the diameter of 5 in the norm || • || and, for S\, S2, dist (Si, 52) the (infimal)
distance between the sets Si, S2.

It is well known that corresponding to || • ||, there is a dual norm || • ||*, such that || • ||** = || • ||, defined by

||s||* = maxax/||a|| = max{ax : ||a|| = 1}. (17)

Now, for any a G Rn, consider the set of hyperlanes H(s) = {ax = s||a||*} orthogonal to a, and half-spaces
H+(s) = {ax < s||a||*}, H~(s) = {ax > s\\a\\*} they define. If K is any convex body, let K(s) = KD His),
K+(s) = K fl H+ (s), K~(s) = K fl H-{s). (We call K(s) a "cross section" of K in "direction" a.) Let
si = infs{K(s) ^ 0}, S2 = sup5{7<'(s) 9̂  0}. Then w — 52 — «i is the wt'AA of X in direction a, and we will write
w- W(K,a). Note that

Lemma 1 diamK = maxa W(K, a).

Proof

d i a m X = max{| |x - y\\ : x,y € K} = max{\\z\\ : z € K - K}

= maxmaxaz/||a||* = maxmaxaz/||a||*
z a a z

= ma,xW(K,a).
a

a
We will also need the following technical result.

Lemma 2 Lei ai, t*2,..., an_i 6e mutually orthogonal. Then for some constant c > 0, depending only on n and
\\.\\, dia,mK(s) < cmax, W(K,ai) for alls.

Proof If a is in the subspace generated by the a»,

W(K(s),a) < W(Kya) = (\\a\\2/\\a\\*)W2(K,a) < M*W2(K,a),

where W2 denotes width in the Euclidean norm and M* is the constant relating || • ||*, || • H2. But W2{K,a) <
y/n — 1 max,- W2(Kiai), since K can clearly be contained in an (infinite) cubical cylinder of side max,- W2(K,ai).
Taking c — M*y/n — 1 and using Lemma 1 now gives the conclusion. •

If K is any convex body in Rn, then we can define a convex function

r(x) = inf{A G R : A > 0 and x/A G K},

the gauge function associated with K. This has all the properties of a norm except symmetry. (See [29].) We
have

L e m m a 3 If K c o n t a i n s t h e u n i t ball A(Q, 1 ) t h e n , f o r any x y y G R n ,

Proof Suppose, without loss, r(x) > r(y). Then y G r{y)K and

* - y € ||* - y||^4(0,1) C ||ar -

Thus x G (r(y) + \\x - y\\)K, i.e. r(x) < r(y) + \\x - y\\. D

11



Corollary 1 If A{Q,1) C K, then r(y) > 1 + a implies A(y, a) n K = 0.

Proof If x e A(yya) D K, then \\x - y\\ < a and r(x) < 1. Hence r(y) - r(x) > a giving \\x - y|| > a, a
contradiction. Q

We use these results above with the £«, norm. If x G £, then the <S-cube C(z) = yl(#, |<5) in this norm. Also it
is not difficult to see that <j>(x), as defined by (12), satisfies

From this we see l+6(<j>(x)+1) < r(z) < l+<5(<£(*)+1). Any two adjacent points s, y, of £ satisfy ||#-y||oo = *.
From Lemma 3 it now follows that |r(x) — r(y)\ < 6, since A(0,1) C K. Thus we have

giving <j>{x) < <j>{y) -f 1. By symmetry we therefore have \<j>{x) — ^(y)| < 1, as claimed in Section 4.1. Also,
if <£(?/) > 1 for y G £, we have r(y) > 1 -f §6. Thus from Corollary 1 we have C(y) H i^ = 0, as claimed in
Section 4.1.

We will extend the domain of the function <f>(y) from C to Rn by letting </>(x) be the (obvious) upper semicontinu-
ous function which satisfies <j>(x) = </>(y) for x G int C(y), y G C. Thus, in particular, <̂ (x) = max{<^(yi), <j>(y2)} if
2/ij 2/2 are adjacent in £ and x lies on the (n— l)-dimensional face int {C(yi)nC(y2)}. We bound this (extended)
function <p(x) below by the convex function $(x) = (r(x) — 1)/S — 1. If x G C(y)> we have

so <̂ (x) < <£(#) < <̂ (x) + 2.

4.3 The isoperimetric inequality

Here we derive an isoperimetric inequality about convex sets and functions which is the key to proving rapid
convergence of the random walks. Our treatment follows that of Applegate and Kannan [2], and Lovasz and
Simonovits [24], but we give an improvement and generalization of their theorems. We retain the notation of
Section 4.2.

Let A(s) = vo\n-i(K(s)) and V(s) = voln(/<'+(5)), and temporarily assume, without loss, that s\ = 0 and
s2 = w. Note then V(w) — \o\n{K). It is a consequence of the Brunn-Minkowski theorem [7], that A(s)1^n~1^
is a concave function of £ in [0, it;]. Then we have

Lemma 4 (s/w)n < V(s)/V(w) < ns/w.

Proof Since the inequality is independent of the norm used, we will assume the Euclidean norm for convenience.
First we show that if 0 < s < u, A{s)/A(u) > (s/u)n'1. This follows since if s = AO + (1 — A)w, then Brunn-
Minkowski implies

Thus

V(s) > I (u/s)n-1A(s)du = (s/n)A(s)1 (18)

V(w)-V(s) < f (u/s)n-1A(s)du = {wn-sn)/(nsn-1)A(s). (19)
Js
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Dividing (19) by (18) gives V(w)/V(s) < (w/s)n, which is the left hand inequality. By symmetry, this inequality
in turn implies

(V(w) - V{s))/V(w) > {{w - s)/w)n = (1 - s/w)n > 1 - ns/w,

since (1 — x)n > 1 — nx for x E [0,1]. This gives the right hand inequality. D

We say that a real-valued function F(x) defined on the convex set K C Rn is log-concave if lnF(x) is concave on
K. This clearly entails F(x) > 0 on K. With such an F, we will associate a measure \x on the measurable subsets
S of K by /i(5) = / 5 F(x) dx. We will need the following simple lemma asserting the existence of a hyperplane
simultaneously "bisecting the measure" of two arbitrary sets.

Lemma 5 Let Si, 52 Q Rn, measurable, and A a two-dimensional linear subspace of Rn. Tften there exists a
hyperplane H, with normal a £ A, such that the half-spaces H+, H~ determined by H satisfy fi(Si O H+) =
li(Si Cl H-) for i= 1,2.

Proof Let ai,a2 be a basis for A. For each 9 £ [—1,4-1], let &»(#) be such that the hyperplane
(0c*i + (1 — |0|)a2)z = &i(0) bisects the measure of St- for i = 1,2. (If 5,- is disconnected in such a way that the
possible bi form an interval, bi(6) will be its midpoint.) It clearly suffices to show that &i(#o) = ^2(̂ 0) for some
90. If 6i(—1) = 62(—1) we are done, so suppose without loss 6i(—1) > 62(—1). We clearly have 6,(1) = — bi(—1)
for i = 1,2, so 6i(l) < 62(1). But since \i is a continuous measure, it follows easily that h(9) is a continuous
function of 9. The existence of 9Q £ ("~1> 1) n o w follows. O

Remark 1 This is a rather simple case of the so-called "Ham Sandwich Theorem". (See Stone and Tukey [31].)
The proof here is a straightforward generalization of one in [8, p. 318].

We now give the first version of the isoperimetric inequality. Without the constant ^, the following was proved,
for the case F(x) = 1 with Euclidean norm, by Lovasz and Simonovits [24], and, for the case of general F and the
ôo norm, by Applegate and Kannan [2]. We give a further generalization and improvement of their theorems.

Theorem 2 Let K C Rn be a convex body and F a log-concave function defined on intK. Let Si,S2 Q K, and
t<dist(S1,S2) andd> diam(iiQ. IfB = K\(S! U52), then

Proof By considering, if necessary, an increasing sequence of convex bodies tending to K, it is clear that we
may assume without loss F(x) > 0 on K. Thus, for some Mi > 1 we have I/Mi < F(x) < M\ for all x G K. Also
since F is positive log-concave, In F{y) < In F(x)+y(x)(y — x), where y(x) is any subgradient at x. It follows that
there exists a number M2 > 1 such that \n(F(y)/F(x)) < M2II2/ — x\\ for all x, y £ K. Let M = max{Mi, M2}.

Now note that, if fi(B) > ^fi(K) the theorem holds trivially, since d>t. We therefore assume otherwise.

We consider first the case where K is "needle-like", i.e. there exists a direction a such that all cross sections of K
are "small". Specifically, for given 0 < e < t, we require dia,mK(s) < e for all s. If L is the line segment joining
any point of K(si) to any point of K(s2)> let f(s) = F(y) for y E K(s) D L. Now f(s) is log-concave in s, and
we clearly have \\n(F{x)/f{s))\ < Me for any x £ K(s).

Now for f = l , 2 replace 5,- by 5* = \JS{
K(S) : Si n K(s) ^ 0}> *nd B by B = K \ (Si U 52). Since e < ty this

operation is well defined and dist (Si, S2) >i=t-e. Clearly fi(Si) > fi(Si) (i = 1, 2), and n(B) < n(B). Let us
now drop the "hats", bearing in mind that t must eventually be replaced by t — e. The components of Si, £2, B
now correspond to intervals of s. We may assume without loss that the components of Si and S2 alternate
in the increasing s direction, since otherwise we could increase n{S\) and/or //(S2) and decrease fi(B) without
decreasing dist (Si, S2).

We show first that it is sufficient to consider the case when each of Si, S2 contains a single component. By
symmetry, let us assume that Si = K+(ui) and S2 = K~(u2) where (u2 - ux) > t. Call this the "connected
case", and suppose we are not in this case. Consider any component S[ of Si, covering the interval [s',s"].
This meets two (possibly empty) components of B which meet no other Si component. Let S'2 = K+(sf — t),
S'2' = K~(s"+t). Note that S2 C S^US£. Suppose fi(S[) < fi(S'2). Assuming the theorem holds for the connected
case, let us apply it to K' = K+(s") with SJ, S'2 and B1 = K1 \ (S[ U S'2). This implies //(SJ) < %(d/t)ti(B%
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where B1 is a component of B which meets no other component of Si. Similarly if ft(S[) < fi{S2). If one or
other of these holds for every component of Si, adding all the resulting inequalities implies fi(Si) < ^(d/t)fj,(B).
Thus suppose there is a component with both fi(S2) < fJ>(S[) and l*(S2) < ^(S[). Then we can show, similarly
to the above, that p(S'2) < \{d/t)p.{B') and /i(S£) < §(<*/*)/*(£"), where B1', B" are different components of B.
Adding these now implies fi(S2) < \{d/t)ix{B).

Thus it suffices to consider the connected case. If A*(s) = (||a||2/||a||*)j4(s), is the "scaled area" of K(s), we
have

f' f{s)A*{s)ds = («2 - ttOe^'/KM'K) > teM<f{QA\Q, (20)

for some £ G [tii,ti2], by the first mean value theorem for integrals. We will assume without loss that £ = 0,
s\ = —K, s2 = X, so w = W(K,a) = (K + A). By scaling orthogonal to a, we will also assume without loss
that eMef(()A*(() = 1. Now ln/(s) is concave by assumption, and lnA*(s) is log-concave since A*(s)1^n"1^
is concave. Thus G(s) = Me -f ln/(s) + lnA*(s) is concave with G(0) = 0. Let 7 be any subgradient of G
at s = 0. If 7 = 0, then G(s) < 0 for all s. But then it follows that fi(Si) < K and fi(S2) < A. Letting
ft, = min{//(Si),/i(S2)}, we therefore have

(21)

using (20). If 7 ^ 0, assume j > 0, since otherwise we can re-label 5i,52 and use the direction —a. By scaling
in the a direction, we may assume 7 = 1. Then G(s) < s for all s, hence eMef(s)A*(s) < e* for all s, giving

< / e' ds = (1 - e-«),
J —K

/0

so p, < min{(l - e"K), (eA - 1)}. This implies K > - ln(l - ft) and A > ln(l + jx). Thus

\w = |(AC + A) > §(ln(l + ft) - ln(l - /x)) > /i,

where the final inequality may be obtained by series expansion of both terms in the penultimate expression.
Thus (21) holds again, with strict inequality. Recalling that we must replace t by (t — e), and that by Lemma 1
w < d we have proved that in the needle-like case,

min{/i(Si),/i(S2)} < ^eM€p,(B)d/(t - e). (22)

We move to the general case. Suppose there is a convex body K with sets Si,S2 such that the theorem fails.
Then, for some e > 0, (22) fails. Suppose that there exist mutually orthogonal directions a i , . . .,aj such that
maxi<,<j W{K, a,) < e/c where c is the constant of Lemma 2. If j > n — 1, by Lemma 2 the needle-like case
applies and we have a contradiction. Thus suppose j < n — 2 is maximal such that a counter-example can be
found. Let A be a two-dimensional linear subspace orthogonal to the dj. By Lemma 4 there is a hyperplane H
with normal a £ A, ||a||* = 1, which bisects the measure of both S\,S2. We choose H+ to be the half-space such
that fi(B O i l + ) is smaller.

Let us write K' for KC\H+ etc. If the theorem fails for K, Si, S2, then it follows that it must also fail for K'y SJ,
S2. (The diameter can only decrease, and the distance increase, so the same d, t, e will apply.) Note that, since
fi(B) < \p(K), H cuts K into two parts K', K" with fi(K') < n(K") < 3fi(Kf). Since l/M < F(x) < M on Ky

for any measurable S we have voln(S)/M < fi(S) < Mvo\n(S). Hence vo\n(K')/M2 < voln(/iT") < 3M2voln(iT),
and it follows that vo\n(K')} > voln(X)/(l + 3M2). Thus, by Lemma 4, W{K'', a) < pW(K, a) for some constant
p < 1 depending only on M, n.

Suppose we iterate this bisection, obtaining a sequence of bodies

where K^m^ = #(m) n K^"1^, containing sets for which the theorem fails. Now K^ clearly converges to a
compact convex set K*. If a(m) is the normal to H^m\ by compactness a(m) has a cluster point a* £ A. By
continuity, taking the limit in 0 < P^(/^m+1),a(m)) < # ( / { W , a ( m ) ) gives 0 < W(K*,a*) < pW(K*,a*).
Thus W(K*,a*) = 0, and hence for some m, W(A'(m),a(m)) < e/c. However, taking aj+1 = a(m), the fact that
j{(™>) is a counter-example to the theorem now gives a contradiction. D
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Remark 2 The method of proof by repeated bisection is due in this context to Lovasz and Simonovits [24], but
is similar to that employed by Payne and Weinberger [28] to bound the second largest eigenvalue of the "free
membrane" problem for a convex domain in Rn. Eigenvalues are, in fact, closely related to conductance. The
approach of Sinclair and Jerrum [30] was based on bounding the second eigenvalue of the transition matrix.

We use this to prove the following isoperimetric inequality.

Theorem 3 Let K C Rn be a convex body, and F log-concave on intK. Let S C K, with f*(S) < ^fi(K),
be such that OS \ dK is a piecewise smooth surface a, with u(x) the Euclidean unit normal to a at x £ a. If
p'(S) = I F(x)\\u(x)\\*dx, then ^{S)/lx

l{S) < Jdiain(/C).

Proof By considering the limit of an appropriate sequence of simplicial approximations, it clearly suffices to
prove the theorem for a a "simplicial surface", i.e. one whose "pieces" are (n — l)-dimensional simplices. For
small t > 0, let B be the closed ^-neighbourhood of such a surface a. Consider a simplicial piece a1 C cr, with
normal u and surface integral a = fa, F(x) dx. The measure of B around a1 is then approximately /ia, where

h = max{uz : \\z\\ = t} = \\u\\U.

Thus the measure of this portion of B is to||t/||* + o(t) and hence, since u is constant on each such <T', fi{B) =
tfi'(S) + o(t). Now, from Theorem 2 with 5i = 5, and S2 = K\(BU5), we have fi(S) < §(diam(/QAM£)>
and the theorem follows by letting t —» 0. D

Remark 3 The inequality in Theorem 3 is "tight". To see this, let K be any circular cylinder with radius very
small relative to it length, F(x) = 1, and S be the region on one side of the mid-section of K.

Corollary 2 Let F(x) be an arbitrary positive function defined on intK, and F(x) be any log-concave function
such that F(x) > F(x) for all x E K. If^ = maxx F(x)/F(x) then, in the notation of Theorem 3, fi(S)/fi/(S) <
|*diam(iir).

Proof Use the result of Theorem 3 for F and the inequalities F(x) < F(x) < VF(x). •

Remark 4 Applegate and Kannan [2] have proved a further weakening of Theorem 3, in terms the maximum
ratio of the function to a bounding concave function on each line in K. (The bounding function may vary from
line to line.) In [2] this is proved by the bisection argument assuming that F satisfies a Lipschitz condition.
However, the condition appears unnecessarily strong to prove an analogue of Theorem 3. Continuity of F is
certainly sufficient, and even this can be dispensed with by employing an approximating sequence of continuous
functions and dominated convergence of the integrals.

4,4 Rapidly mixing Markov chains

In this section we prove some basic results about the convergence of Markov chains. Our treatment is based
on Lovasz and Simonovits' [24] improvement of a theorem of Sinclair and Jerrum [30]. Let CN denote the unit
cube, with vertex set V, as in Section 3. We regard v G F a s a (column) iV-vector. Then v = {i : V{ = 1} gives
the usual bijection between V and all subsets of [N], By abuse of language, we will refer to Sv simply as v, the
meaning always being obvious from the context. Thus for example, \v\ is the cardinality, and v = (e — v) the
complement, oft; in its "set context".

Suppose P is the transition matrix of a finite Markov chain Xt on state space [N], whose distribution at time
t = 0 , l ,2 , . . . i s described by the (row) N-vector pW. Thus

Pe = e, p^e = 1, pW = pV-^P. (23)

(We use only basic facts concerning Markov chains but, if necessary, see [12] for an introduction.)

In our application, observe that the points of C D Ki correspond to the states. Thus any subset of cubes in the
random walk is actually being identified with a vertex of CN here.
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We suppose that we are interested in the "steady state" distribution q = limt_>ooP^ of Xt, given that this exists.
We will write the corresponding random variable as Xoo. It is easy to see that q must be a solution of

qP = q, qe = 1. (24)

Our objective is to sample approximately from the distribution q. We do this by choosing Xo from some initial
distribution p(°), and determining Xt iteratively in accordance with the transition matrix P (using a source of
random bits). We do this for some predetermined finite time r until XT closely enough approximates Xoo. By
this we mean that we require the variation distance be small, i.e. for some 0 < r) <C 1,

1=1

We call r the mixing time of Xt for 77. We will assume that P is such that pa > ^ (i G [N]). For our purposes,
this assumption is unrestrictive, since it is easy to verify that the chain X[ with transition matrix P1 = | ( / + P)
also has limiting distribution q. (I is the N x N identity matrix.) Also X't has mixing time only (roughly) twice
that of Xt, since it amounts to choosing at each step, with probability | , either to do nothing or else to carry
out a step of X t .

Let G be the "underlying digraph" of X% with vertex set N and edge set E = {(i,j) • Pij > 0}. As Xt

"moves" probabilistically around G we imagine its probability distribution pW as a dynamic flow through G in
accordance with (23). Thus, in the time interval (t — l,t), probability / t y = Pi Pij flows from state i to state
j . At (epoch) *, the probability p^} at j is, by (23), the total flow YliLifiP i n t o & during (t - l,t). Thus
YliLifij = X2i=i fjl expresses dynamic conservation of flow. Let fa = limt_+oo / § = <HPij- Then clearly
we have X3t=i A? = ]Ct=i /?»> ^e- s^a^ic conservation of flow. This is the content of the first equation of (24).
In order that probability can flow through the whole of G, we must assume that it is connected (i.e. that Xt is
irreducible). In applications, the validity of this hypothesis must be examined for the Xt concerned. Under these
assumptions, however, we are guaranteed that q exists and is the unique solution of (24). The chain is then said
to be ergodic. (See [12].)

From (25) it follows easily that

-q\ = \ max(pW - q){2v - e) = m a x ^ - q)v. (26)

Note that (pW _ q)v — Pr(A"t £ v) — Pr(-Xoo G v). We will examine the behaviour of max v e v(p^ — q)v as a
function of the limiting probability qv of the sets. The aim will be to show that this function is (approximately)
pointwise decreasing with t, at a rate influenced by the asymptotic speed of probability flow into, and out of,
each set v. To make this idea precise, we digress for a moment.

Sinclair and Jerrum [30] defined the ergodic flow f(v) from v to be the asymptotic total flow out of v. (Equiva-
lently, this is the limiting value of the probability Pr(Xt_i G v and Xt £ v).) Thus, from the definition,

f(v) =

iev j=i

j=i iev jev
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using conservation of flow. Thus the ergodic flow from v is the same as that from its complement v. (This is,
of course, a property of any closed system having conservation of flow.) Sinclair and Jerrum [30] now defined
the conductance of X% as <l> = minv^v{f(v)/qv : qv < | } . This quantity is clearly the limit of min,,^ Pr(Xt £
v | Xt-i £ v) for sets of "small" limiting probability. (We call these "small sets".) Intuitively then, if the
conductance $ is (relatively) large the flows will be high, and Xt cannot remain "trapped" in any small set v for
too long.

Lovasz and Simonovits [24] generalized this definition to //-conductance, which ignores "very small" sets. They
defined

*M = mm{f(v)/(qv - ji) : ;i < qv < §}. (27)

Remark 5 In [30], conductance is only defined for Xt "time reversible". Our definition of/z-conductance does
not agree precisely with that in [24], but is clearly equivalent since f(v) = f(v).

The intuition now is that, if the distribution of Xo is already close to that of Xoo on all very small sets, we
know that this will remain true for all Xt. (This will be shown below). Thus Xt cannot be trapped in any
very small set, and we need only worry about the larger ones. We will use only the notion of conductance (i.e.
0-conductance) here, but we prove the results in this section in the more general setting of /i-conductance.

To avoid a complication in the proof, we will modify the definition (27) slightly. Let gmax = max,- <?,-, and define

*„ = mm{f(v)/(qv - /i) : p < qv < ±(1 + qmnx)}. (28)

The $,, given by (28) is easily seen to be at least (1 — 2/i — qmaLX)/(l — 2/z + gmax) times that given by (27). Thus,
provided, fi is bounded away from \ and #max = o(l), the value from (28) is asymptotic to that from (27). (In
our application here, these assumptions are overwhelmingly true.) Now let us return to our main argument. For
0 < x < 1, we wish to examine the function

zt(x) = max{p(% — x : qv = x}. (29)

Thus zt is the value function of an equality knapsack problem. This is difficult to analyse, since it is only
defined for a finite number of x's, and has few useful properties. Thus we choose to majorize zt by the "linear
programming relaxation" of (29). Therefore define

hAx) = max {p^w - x : qw = x\. (30)
w£CN

We observe that, trivially,
ht(x) < 1 - x for all x £ [0,1]. (31)

Clearly zt{x) < ht(x) at all x for which zt is defined. Also, it is not difficult to see that maxo<ar<i ht(x) =
maxo<x<i zt(x) = \pW — q\, so the relaxation does not do too much harm. Its benefit is that ht(x) is the value
function of a (maximizing) linear program, and hence is (as is easy to prove) a concave function of x on [0,1].
We have ht(0) = ht(l) = 0.

Now, for given x and t, let w be the maximizer in (30). By elementary linear programming theory, w is at
a vertex of the polyhedron CN H {qw = x}. Therefore it lies at the intersection of an edge of CN with the
hyperplane qw = x. Thus there exists A G [0,1) and vertices v^l\v^ G V, with v^ = t/1) + e* for some
k G [N], such that w = (1 — X)v^ -f At/2). So w has only one fractional coordinate u>*. Moreover, we must have
ht(qvM) = p(*)t;(O _ qvW9 (f = l? 2). Otherwise, suppose u/W G CN is such that qwW = qv^\ p(*)v(0 < p(*)u,(0.
Then we can replace v^ in the expression for w by w^ to obtain a feasible solution to the linear program in (30)
with objective function better that p^w — x, a contradiction. Thus ht(x) = (1 — X)ht(qv^) -f Xht(qv^). So
ht is piecewise linear with successive "breakpoints" x = qv^l\ qv(2\ such that v^ C v^ are sets differing in
exactly one element. It follows that there are N — 1 such breakpoints in the interior of [0,1], with successive x
values separated by a (unique) <j,-.

Note that ht(x) = p^t"1\Pw) - x, Pw e CN and q(Pw) = qw = x, using (24). Thus Pw is feasible in the linear
program (30) for ht_i(x), giving immediately ht(x) < ht-\{x). Thus ht certainly decreases with t, but we wish
to quantify the rate at which this occurs. We do this by expressing the flow into w during (t — 1,2), p^w, as
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a convex combination of the flows out of "sets" (points in Cjv) w1 ,w", with qw' = x' < x < x" = qw". This
enables us to bound ht(x) as a convex combination of ht-i(x') and /i t-i(z"). This is made precise in Lemma 6
below. Then, provided x',x" are "far enough away" from x, ht(x) decays exponentially (in a certain sense) with
t. This will be the content of Theorem 4.

Lemma 6 (Lovasz-Simonovits) Let y(x) = min(x, 1 - x). Then, for x € [/x, 1 - JI],

ht(x) < \ht^{x - 2^fA(y(x) - /z)) + !*,_!(

Proof The function on the right side in the lemma is evidently concave in both intervals [/i, | ] and [|, 1 - /i].
Thus, since ht is also concave, it suffices to prove the inequality at the breakpoints of ht and the point x = ^.
Thus, consider a breakpoint /i < x = qv < | , with ht(x) = p^v - x. (Breakpoints in [|, 1 - /x] are dealt with by
a similar argument.) Intuitively, we wish to express the flow p^v into v as a convex combination of flows from
"small subsets" and "large supersets" of v. Note that we have 0 < 2Pv — v < e, since 0 < t; < e and (2P — I) is
a non-negative matrix since all pa >. | . Hence define

Pv),--t;t-, < = v,-, if»i = l,
(32)

«-t;f-l if«,-=0.

Thus v', v" G CJV and Pv — | (v ' -f- v"). Clearly, v', v" are convex combinations of sets respectively contained in,
or containing, v. Thus, since from (24)

we have achieved our objective of expressing the flow into v as a convex combination of flows from subsets and
supersets v of v. It remains to prove that the v in this representation are large enough, or small enough, in
comparison with v. From (32), since (Pv)i = Yljtv Pij> w e n a v e

q(v" -v)=2^J2«'WJ = 2W = 2/(v)- (33)

Also, using (24) and Pv = \(v' + v"),

q(v - r;;) = q(Pv - v1) = ?(t/' - Pv) = g(v" - v) = 2/(v). (34)

Let z' = gv;, * / ; = gv". Then (34) gives (x - z') = (a?;/ - x) = 2/(v). Thus, from (27), and (34), since x<\y

(x - xf) = {x" -x)> 2*/l(* - p). (35)

Also, since v is a maximizer for ht(x) and Pv = | ( i / + v''),

Let #i = a? — 2$n(x - / i ) , i 2 = x + 2$^(ic — f/). Then we have x = | (x ' + x") = | (x i 4- x2), and (35) implies
x' ^ ^i ^ ^2 < ic'7- For these four #'s, denote /it~i(x;) by /i' etc. Since ht-\ is concave, the whole of the line
segment [(#i, hi), (^2,^2)] lies above [(#', /i'), (x/;, A;/)]. Hence, in particular,

At(*) < | ^ - i ( ^ ) + \ht.rix") < |&,-i(*i) + §fc*-i(*2). (36)

We have still to consider the point x = | . Observe that there must be a breakpoint of ht within |^max of | . Let
this be z+, and suppose that x+ e [|, ^(l + ?max)], the other case being symmetric. Let the previous breakpoint
be x~ < | . By our definition (28), the inequality in (35) will still apply at x+. Thus we can prove (36) for x+.
The linearity of ht in [x~,x+] and the concavity of ht-\ now imply that (36) holds throughout [x",x+] , and
hence at x = | . D
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Clearly Lemma 6 is equivalent to ht(x) < Ht(x) (n < x < 1 - /i), where H0(x) is any function such that
ho(x) < H0(x) for all x E \JI, 1 — fi] and

Ht(x) = - /i)). (37)

We have to solve the recurrence (37). Clearly Ht(x) = C, for any constant C is a solution. To find others, we
use "separation of variables". We look for a solution of the form Ht(x) = g(t)G(y(x)) for x £ [p, 1 — /i]. Then

</(*)/</(' " 1) = (G(y - 2*|4(y - //)) + G(y + 2*^(y - //)))/2G(y)

where y = y(x) E [/z, | ] , (Note y(y(x)) = y(x).) Thus, for some 7, we must have g(t) = yg(t — l), i.e. #(<) = C17*,
for some constant Ci, and

2TG(y) = G(y - 2*/l(y - /i)) + G(y + 2*p(y - p)) (fi < y < §).

The form of this equation suggests trying G(y) = C2(y — /i)a for some constants a, C2. This gives

Assuming that ^^ is small, we have 7 « 1 + 2a(a — 1)^J. We wish to minimize 7 in order to force Ht to decrease
quickly with t. Thus we should take a = ^, giving

7 = i(v/ l - 2$ , + v/1 + 2 ^ ) < 1 - | * » . (38)

The inequality in (38) is proved by noting that, for x G [0,1], y/\ — x < (1 — |a:) and \{y/^- — x -f \ / l + x) =

v/1(1 + \ / l — a?2)- Both are easily proved by squaring. Thus the middle term of (38) is

In view of this discussion, we have justified a bound of the form

th(x) < c+ai - h*i$ l - l * , (39)

for some constants C, Cf, given only that this inequality holds for ho(x) {x € [/i, 1 — //]). Thus we may prove

Theorem 4 (Lovasz-Simonovits) If C = max{/io(x) : x G [ 0 , / i ] l l [ l - /Z, 1]}, anJ C = max/i<a;<i_/i(/io(ic) —
C)/y/y(x), then

ht(x) < C+C'exp(-±$lt) (x e [0, l],t > 0)

Proof The constant C ensures the inequality holds for t = 0 and x<fiovx>l — /i. Then C" ensures that it
holds for # E [/i, 1 — ̂ ] and t = 0. It then holds for all t, using the solution of the recurrence (39). •

We turn now to the application of Theorem 4 to the volume algorithm. The Markov chain Xt we consider is the
phase i, trial j , random walk.

An ergodic Markov chain is time reversible if there exist constants A,- > 0 (i G [N])> not all zero, such that
XiPij = XjPji for all i,j E [AT]. (These are called the detailed balance equations.) Since

N

it follows, by uniqueness, that ^ = ^i
notation) for all x, y E £,

p(x>y) = 0

= -̂

f°T ^ l# € [N]. In our random walks, we have (in obvious

if x,y nonadjacent
if x, y adjacent and
if x, y adjacent and

< < (̂x)
> <f>(x)
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Where </>(x) is as defined in Section 4.1 and discussed in Section 4.2. If we take X(x) = 2"^x\ the only cases to
be checked are if x, y are adjacent. It is then easy to verify that

X(x)p(x, y) = \{y)p{y, x) = i -2" "»{«*).«>)} = -U"**), (40)

for any z £ int {C(#) fl C{y)}. The conductance

for some t; E V. Let 5 = \Jx€v C(x), with bounding surface a. Note that cr is a union of (n — 1)-dimensional
6-cube faces, with ||iz||i = ||ti||So = 1 at all points at which u is defined. If we put F(x) = X(x) = 2~<f>(x\ and
F(x) = 2~*W, where <j>{x) is as defined in Section 4.2, we have

jF(x) < F(x) < F(x),

and F is log-concave, since r(x) is convex. Letting fi be the measure induced by F, we apply Corollary 2 with
the norm ôo and \P = 4. If $, is the conductance of any phase i random walk, we then have

9 = = =

* q(v) 6nqv 4n /i(5) An'
since <£(•) = max{<^(#), <j>(y)} on int {C(a?) fl C(y)} by definition. Thus

for i= 1,2,. . . , k.

4.5 The random walk

In this section we conclude the analysis of the random walks employed in the algorithm. For convenience, let us
assume that a point £ is generated in the final 6-cube at the end of every walk, and we always check whether C is in
K{. Thus, if the random walk is run "long enough", the (extended) function F(x) = 2™^*) is the (unnormalised)
probability density function of £ . We call F(x) the "weight function".

We observe that each walk has one of three mutually exclusive outcomes :

(#1) C i Ki> a n improper trial.

(E2) C€Ki\Ki-U
 a failure.

(E3) C £ Ki-i, a success.

We generate C, and observe one of the outcomes Ej,j = 1,2,3. Let us denote the observed outcome by E.
Denote the final (i.e. t = r) and limiting distributions of the random walk by pj and qj for j £ [N] similarly to
Section 4.4, and let

(Observe that this is independent of t.) We will use primes to denote the probabilities conditional on E. Thus,
if pE = Pr(C G E) = pz, and we write qE = qz > 0 for its asymptotic value,

Pj = PJZJ/PE, q'j

We say that E is a good set and the outcome is good if
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We now proceed inductively. We assume that the outcome of a trial is good and its final distribution is close to
its steady state i.e.

hT(x) < 2"6y/fty/min(z, 1 - *) (* € [0,1]). (42)

This is certainly true initially. Let us show next that, when the walk is close to its asymptotic distribution, the
probability of E\ will not be too high. Now

<j>{x) = r(r(y) - l)/S - §1 > \(r(x) - 1)/S\ - 1,

for some y G £, using Lemma 3. Thus F(x) < 2~j if r(x) > (1 + Sj). Thus, if ^ = E2U ESj the definition of
r(x) implies

F(x)dx/ f F(x)dx,
i\Ki JKi

F{x)dx/ f F(x)dx,
JKi

i=o

giving Pr(JE'i) < |y. So, given (42) the probability of a proper trial is at least | , aswe claimed in Section 4.1.

Now let E},ad be the event that any trial ends badly. We will show below that Pr(£ € Ej) < 1.5/? if E'j is bad.
Since at most two of the Ej are bad and the expected number of trials is less than 5m,-,

using di > p~(%~x\ as may be easily proved. Thus, since p > l/(2n),

as claimed in Section 4.1.

Note next that since ZJ € [0,1],

\pE-qE\ = \ E ( P i - 9i)ziI < hr(9B) < 2~6y/fiqB~. (43)

Thus if E is a bad set {qE < /?), we certainly have PE < 1.5/?, as claimed above. Also for a good set (qE > /?) we
have

J P £ ; — ^£?J \ JTidLKtlT(X) < Z €71 ' .

Since g^ < | , a straightforward calculation now validates the claim made in (13) in the analysis of Section 4.1,
i.e.
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Now assuming that E is good let h'(x) be the function defined in (30), but conditional on < G E. Thus

h!{x) = max{p'iu : q'w = x} — ar

= x} - x

using (42), (43) and qE > p.

We now consider HQ{X) in the subsequent trial. Let us denote this by h*(x), and the asymptotic distribution by
q*. The initial probability distribution is pf on the event E, with asymptotic probability q^. Note that q*E > ^/?.
This follows as the total weight may increase at most 14 between phases (the weight corresponding to points in
K can double at most and Pr(£i) < | shows there is at most another 12 from points outside K.) In the following
Q = [0,1]^ and Q = [0,1]N where N is the number of states in the phase that has just ended and N > N is the
number of states in the phase which is just starting. Observe that p'j^q'j = 0 for j > N. Let pn\q" denote the
N-vectors obtained by deleting the last (N — N) components of p;, q1. Now

h*(x) =• max{p'iy : q*w = x} — x
wen

— p'w — x, say

= p"w — x, say

< ma,x{p"w : q"w = q"w} — x
w£fl

= maxlp^u; : q"w = x"} — x)
w£Cl

where w is the truncation of w to its first N components, and

N N

Thus

h*(x) < h'(x") + x"-x

<

< p

The trivial inequality (31), h*(x) < 1 — x, now implies that

h*(x) < 2/3" 2 >/min(x, 1 - z),

and thus we take (with /i = 0) C = 0, C = 2/?~ 2 in Theorem 4. Thus we need only run the random walk until

i.e. r > 2$r2ln(5x26//?)
or r > 29n4d2ln(227n3e"4),
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using (41). We have included an extra factor of 8/5 to allow for the discrepancy in the definitions of conductance
between (27) and (28) in Section 4.4. This is generous, since <jmax < l/(4n)n < 2~6 (the initial distribution for
n = 2), and thus the factor

9max) < 1.1.

We can now see that (16) is justified. Basically we need to consider quantities Pv(E'\E") where E' ,E" are good
events and E" refers to an earlier trial than E'. We can assume that at the trial corresponding to E" (42) holds.
Our inductive argument then implies that assuming Ef,ad does not occur the probability of E1 will be within the
correct error bounds because of (42).

This concludes the analysis of the algorithm.

4.6 Generating uniform points

We have seen how a generator of "almost uniform" points in an arbitrary convex body can be used to estimate
volume. Here we will prove a stronger converse to this, that a volume estimator can be used to determine, with
high probability, a uniformly generated point in a convex body. (The probability of failure is directly related to
the probability that the volume estimator fails.) The development here has a similar flavour to, though is not
derivable from, results of Jerrum, Valiant and Vazirani [16]. We will gloss over most of the issues of accuracy of
computation, leaving the interested reader to supply these.

Let e = l/(6n) and m = 60n2, say. We consider a general dimension d (2 < d < n). We will use the same
terminology and notation as in Section 4.3. Choose the lowest numbered coordinate direction, and determine the
Euclidean width w of K in this direction. We assume, for convenience, that the area function A(s) is defined for

We know, from Brunn-Minkowski, that A(s)1^n"1^ is a concave function of s in [0,w]. Thus, in particular,
A(s) is unimodal, i.e. for some s*, A(s) is nondecreasing in [0,5*] and nonincreasing in [s*,u;]. We will write
A* = A(s*). We have

Lemma 7 7/0 < s < s*, (s/s*)n(A*s*/n) < V(s) < A*s.

Proof From the proof of Lemma 4, for 0 < s < u, we haveA(s)/A(u) > (s/u)""1. But V(s) — /Q
5 A(y) dy, so

the result follows from this and A(s) < A*, on putting u = s* and integrating between 0 and s. •

Corollary 3 A*w/n < voln(K) < A*w.

Proof The right hand inequality is immediate. For the left hand, from Lemma 7, V(s*) > A*s*/n. By
symmetry, V(w) — V(s*) > A*(w — s*)/n. The result follows by adding. •

Now let us divide the width of the body into m "strips" of size 6 = w/m. Write Ai = A(iS) , V{ = /A^.^ A(s) ds,

We begin by obtaining some easy estimates which form the basis of the method. Assume without loss that
s* e [(k - 1)8, kS) with k > \m. Then the {A{} form a nondecreasing sequence for 0 < i < (k - 1), and a
nonincreasing sequence for k < i < m. Then, by Corollary 3, V > A*w/d. Thus A* < dV/w = dV/(m6).
Therefore

A*6 < dV/m < nV/m = eF/10 (44)

Let A(s) be an e-approximation to A(s), with probability at least (1— £), i.e. (with this probability) A(s)/(l+c) <
A(s) < (1 + e)A(s). Write i,- = A(i6), and let Ht = (1 + e)3max{i i_i, i ,}.

Lemma 8 If s £ [(i - 1)6, iS\, then A(s) < Hi.

Proof If i ± k, then

A(s) < (1 + e)A(s) < (l +
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If s G p - 1)6, k6], A(s) < (1 + e)A*. Also, using Corollary 7

4*-i > {{k-l)6/s*)d-lA*
> ((k - \)/k)d~lA*
> (1 - 2/m)d-1A* since ife > \m,

> (1 - l/(30n2))M* since m = 60n2,
> (1 - e/(5n))M* for n > 1,
> A*/(I + e) since e < 1.

Thus .4* < (1 + e)Ajt_i, and therefore

A(s) < (1 + e ) 2 ^ . ! < (1 + e)3i*_x < (1 + e fmaxf i t . ! , ^} = Hk.

Thus, if V" = 5 YT=i #«•> w e h a v e

A<+A*) (45)
«=o

Also
m m

V1 > 6(1 + 6)2^max{A^1)^.} > 6(1 + efC^A* - A*), (46)
»=i *=o

Using elementary area estimates

fc — l m— 1 m

F < (5(J] Ai + A* + ^ ^i) < 6(J2 A* + A*) (47)
t = l »=Jb * = 0

and

k-2 m

ib —1 m - 1

Ai-2A*) (48)
t=0

From (46) and (47),
V < V7(l + e)2 + 26A* < 77(1 + e)2 4- cV/5,

using (44), so 7 7 7 > (1 - c/5)(l + e)2 > (1 + e). From (45) and (48),

V < (1 + e)4(7 + 3tfi4*) < (1 + e)57,

using (44), so 7 7 7 < (1 + ef, i.e.
e ) < 7 7 7 < ( l + e)5. (49)
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We may now turn to the algorithm itself. We select a strip i G [m] from the probability distribution i/»7CCjLi Hj).
Within the chosen strip we select a point uniformly, i.e. s G [(i - 1)6,18] with density 1/8. With probability
A(s)/Hi, we "accept" s and proceed recursively to dimension (d — 1) and the cross-section at s. When d — 1
we generate uniformly on [0,w]. The generated point (s i , s 2 , • • ->sn) G if, where we use subscript d to refer to
quantities at dimension d, is now accepted with a final probability

1

V

Note that q can be calculated within the algorithm. Now,

? —
1

eVn

(H-

(14

Vnf[

e

Vd A(s{

n

11̂  "̂

vn n
S 1 cinirp *• — 1 l(f\rt\

Also

- eVn (1 + e)5 Mf 1 + el
eVn (1 + e)5 M ; (1 + 0 A{sd)

1 1 1
e(l-fe)5 - c(l + 1/12)5 5

The overall (improper) density of the selected point is

A ^ a Hid A(sd) _
^ll"T" ~~JF7

«J=1 Vd d = i

1 n

i.e. uniform. The overall probability of acceptance is clearly

dSd = -TT7 > -Tj Tg" > - .

Thus each "trial" of determining a point has a constant probability of success. We can make this as high as we
wish by repeating the procedure. We use at most 60n2 • n = 60n3 calls to the volume approximator. Thus the
overall error probability will be at most 60n3f, if the approximator fails with probability £.

Finally, we observe that if K is well guaranteed, then all the sections which we might wish to approximate can
easily be shown to be well guaranteed also. Thus our approximator can be restricted to work only for well
guaranteed bodies, as we would obviously require. Thus this is no real restriction. (Provided, of course, the body
K from which we wish to sample is itself well guaranteed.)

5 Applications

5.1 Integration

We describe algorithms for integrating non-negative functions over a well-guaranteed convex body K. We assume
non-negativity since we can only approximate and so we cannot deal with integrals which evaluate to zero. It
may of course be entirely satisfactory to integrate the positive and negative parts of the function separately.
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5.1.1 Concave functions

Integration of a non-negative function / : Rn —» R over a convex body K can be expressed as a volume
computation by:

fdx =voln+1(Kf)
JxeK

where
Kf = {(x,z)eRn+1:O<z<f(x)}.

Now if / is concave then Kf is convex and so we can compute fxeK fdx as accurately as required by the algorithm
of Section 4. The time taken depends on the guarantee that we make for Kf. This will depend on how large /
can become on K and also on its average value

We assume from hereon that
fmax = max{/(x) :xeK}<X1=eLl

and

We feel that £1, £2 and (K) are good measures of the size of the problem here. We need a parameter (L2) which
accounts for / being very small on K.

If the guarantees for K are a, r, R then observe that (i) Kf C B(a, R+Xi) and (ii) f(x) >p = rf/2(R -f r) for
x G B(aj r/2) (this follows from / < fmax and the non-negativity of / .) It follows that Kf is well guaranteed by
((a, />/2), / O / 2 ( 1 4 - ( T ^ ) 2 ) ^ 1 / ' 2 , - R + ^ I ) - Thus we can compute the integral of/ over K in time which is polynomial
in (K))Li,L2.

5.1.2 Mildly varying functions

Here we consider a pseudo-polynomial time algorithm i.e. one which is polynomial in the parameters L, Ai, A2

but which is valid for general integrable functions. We see from (50) that it is only necessary to get a good
approximation for / in order to get a good approximation for the integral. We use the equation

/ = [XlPT(f(x)>t)dt (51)
Jo

where the probability in (51) is for x chosen uniformly from K. Now let

and
in = Pr(/(s) > ih) for i = 0,1,..., N.

Then we have
N-l

/=£*
«=0

where

It = / Pr(/(«) > t)dt.
Jih

Furthermore
hfti+i < Ii < hw{ for i = 0 , 1 , . . . , 7 V — 1,
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and so

where

So

Si

So <f

= h

= h

<Si

N-l

t = i

N-l

»=0

Thus

We have now reduced our problem to one of finding a good estimate for So and hence for TT,-, i = 1,2,..., JV — 1.
Assume that we wish our estimate for So to be within e/3 with probability at least 6. This will yield an
e-approximation for / when e is small. We let

AM
M = r2160AiA2c-3ln(—)1

and choose points #i , #2> •••> X M uniformly at random from K. Let V{ = |{,; : f(xj) > ih}\ and TT,- = -^ for
i = 1 , 2 , . . . , AT— 1. Observe that the i/, are binomially distributed and we will use standard tail estimates of the
binomial distribution without comment (see e.g. Bollobas [4].) We consider two cases.

Case 1: rr,- < 5 5 ^

For this case we observe that if 7 = 6 j ^ then

- 2 W

This enables us to assume that if fo = min{i : 7rt- < 20A
g

iAa } then

ni ~ 6AXA2

The probability of this not holding being at most 6/2.

Case 2: ?rf- > 2QA
e
 A

For this case we observe that

Pr(|*<-*|>^) <

f o r 2 ̂  zo-

This enables us to assume that

The probability of this not holding being at most 8/2.

t-7T»| < — for i < z0.
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Now our estimate for / will be So = h Y^Li* *•• K follows from the above that with probability at least 1-6

N-l
\So — So| < h } \ \7Tj — 7Tj\

t = l

*=»o

+
6 6A2

5.1.3 Quasi-concave functions

It is possible to improve the preceding analysis in the case where / is quasi-concave i.e. the sets {x : f(x) > a}
are convex for all a G R. We will need to assume that / satisfies a (semi-) Lipschitz condition

Our algorithm includes a factor which is polynomial in L3 = ln(As), which can be taken to be positive. This is
reasonable for if / grows extremely rapidly at some point then a small region may contribute disproportionately
to the integral and so require extra effort. Note that the algorithm will be polynomial in the log of the Lipschitz
constant. Next let

N = Pn(™)l + 1,

M =

Let L = 1 + max{Li, L2, £3} and A = eL.

It will be convenient later to assume that we know a* 6 K such that f(a*) = Ai and that L\ > 1. this can be
justified as follows: we use the Ellipsoid algorithm to find a* £ K such that

voln({* g K : f(x) > /(q*)» ± _2L

- 10VOln(lf) - 10

and then replace f(x) by min{/(z), /(a*)}. The loss in the computation of / is at most —/ and can be absorbed
in our approximation error. We can then if necessary scale to make L\ > 1.

By making a change of varable t = eu in (51) we have

/ = f l Pr(/(x) > e«)eudu,
J — OO

= I+J.

Here

= / Pr(/(x) > eu)eudu,
J-oooo

-NL
eudu

— oo

= e~NL

<- To'
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Then

J = / ' Pr(/(x) > e")e"du,
J-NL
2 M - 1

£
»=o

where
J,. = jyi pT(f(x) > eu)euduy

a n d
Mnr if z < M

M 11 * / iv±

Now define TT,- = Pr(/(z) > eUi) and h{ = tii+i - tx* for i = 0,1, . . . ,2M- 1. Then

Now let

2 M - 1

t=0

2 M - 1

5X = J2 hitUt+1*i-
i=0

Then clearly
So < J <Si.

But
T M

So > exv{-—}(S1-hoe
u>*0)

M

> (i _ _ ) / .

(The second inequality uses TT0 < l^" 1 < j ^ / e e / 1 0 < f/ and h0 < ^ . )

But / > So and so we need only estimate So. Equivalently we need to estimate the 7r,-. Suppose we can compute
7T,- such that

Ifj- - 1| < | for .' = 0,1 2Jlf - 1.

(We will see shortly that we have fixed things so that 7T2M-I is sufficiently large.) Under these circumstances if

2M-1

6 0 = 2L> hie

then

and we are done. Observe next that

where
#, = {* e JiT : /(*)> e u j .

29



Now the Ki are convex sets and it remains only to discuss their guarantees. Since K{ C K for each i, we have
no worries about the outer ball. It is the inner ball of K2M-I that we need to deal with.

Now letting at = (1 - t)a* + ta for 0 < t < 1 we find that K contains the ball B(atipt) where pt = ^ . Then if

r= - e x p { L i ~ L 3 - —}

(we can make Lz large enough so that 0 < r < 1)

then x G B(aT,pT) implies

f(a*)-f(x) < eL>^

and so K2M-1 2 B{aT)pT) and we have a guarantee of (aT,pTi2R) for each /<,-. Thus we can approximate / in
time polynomial in L and j .

It should be observed that Applegate and Kannan [2] have a more efficient integration algorithm for log-concave
functions.

5.2 Counting linear extensions

We noted in Section 3.2 that determining the number of linear extensions of a partial order can be reduced to
volume computation (and so it can be approximated by the methods of Section 4). The volume approximation
algorithm of Dyer, Frieze and Kannan applied (in the notation of Section 3.2) to P(-<) gave the first (random)
polynomial time approximation algorithm for estimating e(-<). However, Karzanov and Khachiyan [19] have
recently given an improvement to the algorithm for this application which is more natural, and which we will
now outline. Observe first that it suffices to be able to generate an (almost) random linear extension of -*<. For
an incomparable pair i,j under -<, let pij denote the proportion of linear extensions TT with ^~1(i) < 7r~1(j).
It is known, Kahn and Saks [17], that for some i,j we have min{pij,pjti} > fj. Thus by repeated sampling
we will be able to determine, for some i , j , a close approximation to the proportion of linear extensions with
Tr""1 '̂) < K~l(j) - choose the i,j for which the estimate gives the largest minimum. We then add % -< j to the
partial order and proceed inductively until the order becomes a permutation and then our estimate is the product
of the inverses of the proportions that we have found. This requires us to generate O(n log n) linear extensions.

To generate a random linear extension we do a random walk on E(-<). At a given extension w we do nothing
with probability | , otherwise we choose a random integer i between 1 and (n — 1). If ?r(i) -ft w(i 4- 1) then we
get a new permutation w' by interchanging 7r(2#) and ir(i +1). Let us say that in these circumstances TT, 7r' are
adjacent. The steady state of this walk is uniform over linear extensions and so the main interest now is in the
conductance $ of this chain which is

min

where
b(X) = |{(TT, TT') : 7T G X, TT' & X are adjacent}|.

So let X C E(-<) satisfy \X\ < e(<)/2. Let Sx = (J*ex S* a n d A* b e t n e (n ~ l)-dimensional volume of
the common boundary of Sx and SE(-^)/X- NOW a straightforward calculation (using a two-dimensional rotation
followed by an application of (1)) shows that each simplicial face of this boundary has (n — l)-dimensional volume
\/2/(n — 1)!. In the notation of Theorem 3, with F(x) = 1 and the t^ norm, we see that the unit normal u to
any face of the common boundary has ||u||* = y/2. Thus fi'(Sx) = y/2Ax> Applying the theorem we obtain

- n!

since diam(/f)=l here.Thus
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and so
<3> >

" 2 n ( n - 1 ) '
and we can generate a random linear extension in polynomial time. Note that this estimate is better by a factor
of y/n than that given in [19]. (This order of improvement was, in fact, conjectured in [19].) Applying similar
arguments to those in Section 4 we see that we can estimate e(-<) to within e, with probability at least (1 — £)
in O(n66-2( logn)2 log(n/e)log(l /0) time.

5.3 Mathematical Programming

We can use our algorithm to provide random polynomial time algorithms for approximating the expected value
of some stochastic programming problems. Consider first computing the expected value of v(b) when b =
(&i, 62,.. .bm) is chosen uniformly from a convex body K C Rm and

v(b) = max f(x)

subject to gi(x) < &,• (a = 1,2,. . . , m)

To estimate Ev(6) we need to estimate fbeK v and divide it by an estimate of the volume of K. We thus have to
consider under what circumstances the results of Section 4 can be applied. If / is concave and <7i, #2? • • • > <7m are
all convex then v is concave and we can estimate Ev efficiently if we know that v is uniformly bounded below for
b € K.

Observe also that we will be able to estimate Pr(t;(6) > t) by randomly sampling b and computing v(b), provided
this probability is large enough.

Of particular interest is the case of PERT networks where the 6» represent (random) durations of the various
activities and / represents the completion time of the project. The results here represent a significant improve-
ment, at least in theory, over the traditional heuristic method of assuming one critical path and applying a normal
approximation. As another application consider computing the expected value of <f>(c) when c = (ci, C2,.. . cn) is
chosen uniformly from some convex body K C Rn and

<f>(c) = min ex

subject to gi{x) <bi (i = 1,2,.. . , m)

Now <f>(c), being the supremum of linear functions, is concave and we will be able to estimate the expectation of
<j) when (j) can be computed efficiently. The same remark holds for computing Pr(<£(c) > i).

As a final example here, suppose that we have a linear program

min ex

subject to Ax = b

x > 0.

Suppose that (6, c) is chosen uniformly from some convex body in R m + n . Suppose that B is a basis matrix (i.e.
an m x m non-singular submatrix of A). Sensitivity analysis might require us to estimate the probability that B
is the optimal basis. This can be done efficiently since it amounts to computing volm + n( /^o p t ) /volm + n( /^) where
Kopt is the convex set

Kn{Cj ycsB-1^ :j= l , 2 , . . . , n } n { £ - 1 6 > 0 } .

(Here we are using common notation: cij is column.;' of A and CB is the vector of basic costs.)

5.4 Learning a halfspace

This problem was brought to our attention by Manfred Warmuth who suggested that volume computatation
might be useful in solving the problem. The method described here is due to the authors and Ravi Kannan. We
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describe here the application of good volume estimation to a problem in learning theory. Student X is trying to
learn an inequality

The unknowns are Wj > 0, (j = 0 ,1 , . . . , n) and X's aim is to be able to answer questions of the form "What is
the sign of x G Rn relative to this inequality ?" Here sign(x, ir) = + if £"=i *jxj ^ ^o, and - otherwise. There
is a teacher Y who provides X with an infinite sequence of examples z^\t = 1,2, Given an example z^\ X
must make a guess at sign(zW, it) and then Y will reveal whether or not X's guess is correct or not.

We assume that there is an L > 2 such that *(*) G Q = {0,1 , . . . , L-l}n. Integrality is not a major assumption and
non-negativity can be assumed, at the cost of doubling the number of varables, if X treats arbitrary components
as the difference of two non-negative components. The problem we have to solve is to design a strategy for X
which minimises the total number of errors made. If there is no bound on component size then, even for ra=2, Y
can construct a hyperplane in response to any answers which is consistent with X being wrong every time.

We define an equivalence relation ~ on Rn+1 by

TTW ~ TT(2) if sign(x, ?r(1)) = sign(z, TT(2)) for all xEfi .

X cannot hope to compute TT exactly and instead aims to find TT' ~ w. Moreover we will see that it is advantageous
for X to assume ir satisfies

n

] P TT'JXJ ̂  TT'O for all x G ft. (52)

i=i

There is always a small perturbation it of TT, W ~ 7r, that satisfies (52). We can also assume that 0 < Tj < 1, j =
0 ,1 , . . . , n since scaling does not affect signs. For x £ Q let ax = (#, — 1) and Hx be the hyperplane (in TT space)
{7r G Rn+1 : ax • w = 0}. These hyperplanes partition Rn+1 into an arrangement of open cones. Consider the
partition S\, S^,... that these cones induce of Cn+i = [0, l ] n + 1 . Note that if two vectors TT, TT' lie in the same 5,-
then 7T ̂  7rx. If ?r satisfies (52) then it lies in an Si of dimension n + 1 and volume at least v — (nL)~~n .
It follows from these remarks that the following algorithm never makes more than O(n2(log n + log L)) mistakes:

Keep a polytope P within whose interior w is known to lie; initially P = Cn+i;
for* = 1,2,... do
begin

let P+ = {w : 7T • z > 0} and P_ = {TT : w • z < 0};
compute voln(P+), voln(P_);
answer w G P+ if this larger volume, otherwise P_;
if you are wrong, having chosen P+ say, then P := P_

end

Each mistake halves the volume of P, which starts at 1. On the other hand, voln+i(P) > v and the result follows.
Although we cannot compute volumes exactly, a ^-approximation will guarantee that the volume of P reduces
by | , say, which suffices. Also we have a probabilistic error in our computation. To keep the overall probability
of error down to £ say, we need only keep the error probability for each computation down to £/\og4j3(l/i/).

This analysis improves the the number of errors required by a factor of n from the method proposed by Maass
andTuran [25].

6 The number of random bits

We have already seen in Section 3.1 that a deterministic algorithm cannot guarantee a good approximation to
volume in the oracle model. We return now to our remarks about nondeterministic computation, using the
notation of Section 3.1. We assume we are interested in e-approximation, with e = 0(n a) for some a € R, i.e.
polynomial approximation. As usual, we have a convex body K C Rn described by an oracle as in Section 2.
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Suppose that we have a randomised algorithm which makes at most m(n) calls on the oracle for a polynomial m,
and that it uses at most b = n — w log2 n random bits, where w = co(n) —• oo. Then M(n) < 2bm(n). Thus the
relative error of approximations from this algorithm cannot be guaranteed to be better than (2n~6/m(n))1/2 >
n

w /4 for large n. So we cannot poly normally approximate with much less than n (truly) random bits.

On the other hand, a result of Nisan [27] shows that only O(n(logn)2) truly random bits are actually necessary.
This is rather surprising, but it follows from the fact we need only O(nlogn) space to maintain the random walk
and accumulate the required information to make our estimate. (We need not, of course, worry about the space
needed by the oracle.) Nisan's result states that, in an algorithm using space S and R random bits, the random
bits can be supplied by a pseudorandom generator which uses only O(Slog(R/S) truly random bits. One then
observes from Section 4 that in our case, for polynomial approximations, R is polynomially bounded in n.
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