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INTRODUCTION. This note is concerned with the sign of the fundamental

eigenfunctions of the eigenvalue problem

(1.1) A2u = Au , in ft ,

(1.2) u = | £ = 0 , on XI,

on a plane domain ft; n denotes the outer normal on 5ft. In [5] it was shown that if ft is the

annulus

De = {(x,y): e2 < x2 + y2 < 1}

then the fundamental eigenfunctions (i.e. those corresponding to the lowest eigenvalue) are not

of one sign when e is small. Indeed when e is sufficiently small (e'1 > 762.36, [3]) the

fundamental eigenfunctions possess diametrical nodal lines and span a two—dimensional

eigenspace.

The proof of this assertion, [5], [3], relies in an essential way on either appeal to tables or

to precise computation for Bessel function values. However the qualitative result, i.e. that the

above underlined statement holds for all sufficiently small positive £, follows by continuity and

without explicit computation from the corresponding assertion for the punctured disk. Even for

the punctured disk the proof of this assertion, [5],[3], although simpler than in the case of the

annulus, still depended on an appeal to the tables. (This appeal is to verify the ordering of the

quantities denoted in §4 by a and % see the last paragraph of §4). The purpose of this note

is to give the details of a proof for the case of the punctured disk that was indicated but not

completed in [3] and which requires neither computation nor appeal to the tables.

In [3] we observed that the result for the punctured disk would follow from the
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inequality

(1.3) 7rxJo(x)Yo(x) < 1 ,

and the well—known ordering of the zeros of Jo(x), Yo(x), Ji(x), Yi(x); cf. (3.2). Below we

prove the (sharp) inequality (1.3) and, for completeness, also the indicated ordering of zeros.

These results follow from the asymptotic formula, [14],

(1.4) l im e ^ x ***> fEE72(Jo(x) + iY0(x)) = 1.
X-KB

and standard comparison methods for second order ordinary differential equations.

One of the first to question whether the fundamental mode of vibration of the clamped

plate was of one sign and the corresponding eigenvalue simple appears to have been A.

Weinstein. Interest in the question was increased by the paper [12] of G. Szego where it was

shown that were the fundamental mode positive in general then among all plates of a given area

the fundamental eigenvalue would be smallest for the circular one. Interestingly, although the

hypothesis is false, it is nevertheless true that the ratio of the fundamental eigenvalue of (1.1),

(1.2) for a general plain domain Q, to that for the circular region of the same area is never less

than .977, Talenti, [13]; the analogous lower bound is also computed for higher dimensions in

[13].

The example under consideration here represents the first counter—example to the

indicated positivity conjecture. A second counter-example is that of a square, for which the

fundamental mode has nodal lines in the corners; numerical evidence for this was provided in

[1] and an analytical proof was given in [2]. In fact the result of [2] applies to any plane region

with piecewise smooth boundary and a right—angle corner in the boundary; the argument

applies for other than just right angles. A result like that in [2] was also proved subsequently



in [10].

We remark finally on the connection between the positivity conjecture under

consideration here and the so—called "Hadamard conjecture" concerning the positivity of the

biharmonic Green's function, (in fact Hadamard, [8], attributes this conjecture to T. Boggio;

see in particular pp. 541-542, t. II, of the Oeuvres); for background on this problem see [6]. As

is well—known from the theory of positive operators, if the Green's function is positive then the

fundamental eigenvalue is simple and the corresponding eigenfunction is of one sign, but the

converse is not true. Hadamard noted almost immediately in the (apparently little—known)

paper [9] that the annulus with small inner radius provided a counter—example to this

conjecture, see also Nakai and Sario [11], for a discussion of this example. Hadamard

reaffirmed in [9] his belief in the validity of the conjecture for convex regions. In [7] it was

shown that infinite strip provides a counter-example to this revised conjecture. Finally we

remark that from the latter counter—example one can exhibit the failure of the conjecture for a

long narrow rectangle or an ellipse of large eccentricity; this can be done using a limiting

argument in conjunction with methods developed by Hadamard in [8]; cf. [4],

2. PRELIMINARIES. One of the preliminaries that must be discussed is the appropriate form

of the boundary conditions for the punctured disk. For this purpose we first make the following

observation. Let ft' denote the region that results when a single point (x0)yo) is deleted from

the region Q. Then [4], H<5'2(ft') (our notation is standard) is of co—dimension one in H<5'2(fi)

and thus whenever u G H^'2(fi) and u(xo,yo) = 0 then u G H ^ f t ' ) . (A simpler argument for

this than that given in [4] is suggested by [9]. By Weyl's lemma L2(fi) (for any region Q) is the

orthogonal direct sum of the subspace L^(fi) of L2(fi) that consists of (equivalence classes of)

functions harmonic on Q and AHj'2(ft). L£(Q) is of co-dimension one in L£(Q') and thus

since L2(ft) and L2(ft') are indistinguishable and A: Hd'2(ft) -* L2(Q) is non-singular, the

assertion follows.) Consequently, [3], the proper formulation of the boundary conditions on the



punctured disk, as was already found in [5], is

(2.1) u = | £ = 0, x2 + y2 = 1, and u(0,0) = 0.

and the positive eigenfunction of (1.1), (2.1) (expressed in terms of polar coordinates (r,0)) has

the form

(2.2) tp(ieie) = Cl[Y0(fii) + K0(/xr)] + C2[I0(/ir) - J0(/n)]

where

(2.3) K0(x) = (§) K0(x) ,

and \L is the least positive root of

(2.4) [YoOi) + K0(M)][IS(M) - JJ(M)] - [YJ(M) + K ' 0 M ] [ I 0 ( M ) - JO(M)] = 0 ;

(we use standard notation for the Bessel functions, see e.g [14]). Among the eigenfunctions

with a single diametric nodal line is one which, when expressed in terms of polar coordinates, is

of the form

with v the least positive root of

(2.6) I0(^)JQ(^) + Io(I/)Jo(I/) = °-

(this function is also an eigenfunction of (1.1), (1.2) for Q = D, the unit disk).



We make one final general observation. The positive eigenfunction for the unit disk D

has the form

(2.7) CIJO(TT) + c2lo(rr) ,

where r is the least positive root of

(2.8) Io(r)J5(r)-IJ(r)Jo(r) = O.

Since HQ)2(DO) £ HQ)2(D) and in view of the well—known fact that the least eigenvalue for the

disk is simple and corresponds to a positive eigenfunction it follows that the least positive roots

(j,,i/ of (2.4) and (2.6) lie to the right of the least positive root of (2.8),

(2.9) r < w

Our main result can now be stated as follows.

Theorem 1. Let \L denote the least positive root of (2.4) and lei v denote the least

positive root of (2.6). Then

(2.10) U</L

The eigenvalues that correspond to the eigenfunctions (2.3) and (2.5) respectively are

/z4 and i/4.

3. MAIN LEMMA. The positive roots of

(3.1) Ji(x) = 0, and Yi(x) = 0,



will be denoted by ji,n, yi,n, respectively, and indexed (by n) in increasing order. The main

result of this section is the following.

Lemma. The roots of equations (3.1) satisfy

(3.2) 0 < yo,i < yi,i < jo,i < ji,i < yo,2 < yi,2 < jo,2.

For all x > 0 there holds the inequality

(3.3) 7TxJo(x)Yo(x) < 1.

In view of (3.2) one sees readily from the series expansions at zero that the signs of Jo

and Yo and their derivatives are as indicated in the following table. (Note that the ji,n are the

zeros of JQ and the yi,n are the zeros of YQ.)

Table 1

Jo(x) J 0 ' (x) Y0(x) Yo'(x)

o,yo,i)

We shall defer the proof of this lemma till last and show first how Theorem 1 follows

from it.

4. PROOF OF THEOREM 1. We first write down some properties of the modified Bessel

functions Io(x) and KQ(X); these satisfy



(4.1) O<Io /(x)<Io(x) ,

and

(4.2) 0 <K0(x) <-K 0 ' (x) .

It is clear from (4.1) that the least positive root r of (2.8) lies in the interval (jo,i,ji,i). As

noted in section 2, /i and v both lie to the right of r, hence to the right of jo, i-

A consultation of Table I shows that Jo/(x)/Jo(x) is positive in (jo,iji,i)and decreases

from 0 to —OD as x increases from ji,i to jo, 2- Thus if a is the root of

in (ji,i,jo,2)j then it follows from (4.1) that v lies in the interval (ji,i,a), i.e.

(4.3) v < a.

We next attempt to locate the least positive root /i of (2.4); as we have seen /i > jo,i.

First we note that, as readily follows from inspection of the series, I0(x) — J0(x) and its

derivative are positive for all positive x while from Table I we have

On the other hand Y0'(x) + Ko'(x) is negative in (jo,i,yi,2) so if (2.4) has a root /i in that

interval then Y0(x) + Ko(x) is negative at x = /JL SO since that function is positive at

x = yo,2,

= 0

must have a root /? with



n<

However

Yp'fs) + Kp'CsK Y 0 ' (S)

Y0(s)+ K0(s) Y ° ^

on (/5,yi,2). Thus, if /x < yi,2, then \i must lie to the right of the root 7 of

that belongs to (yo,2,yi,2)- In any case therefore

(4.5) 7 < /i.

In order to prove (2.10) it suffices, in view of (4.3) and (4.5), to prove that

7 > a.

To this end we use the Wronskian relation

(4.6) ^[Jo(x)Yo '(x) - Jo'(x)Yo(x)] = 1,

Table I and (3.3) to obtain

Jo'(7)>-Jo(7),

which, since 7 e (yo,2,yi,2) £ (ji,i,jo,2), implies that 7 > a.

In fact a consultation of the tables shows that 7 and a differ by not more than 0.02.



The values found in [3] for n and v were

ft = 4.768309396, v = 4.61089980.

5. PROOF OF THE MAIN LEMMA. From [6,§§17.5,17.6] we have the asymptotic formula,

(5.1) l im e~i(x~7r/4)(i5E72 (J0(x) + iY0(x)) = 1.

If we put

(5.2) v(x) = e<*-*lA)FxT2 (J0(x) + iY0(x)),

then v satisfies the differential equation,

(5.3) v" + 2iv' +(2x)"2v = 0.

It readily follows that v is the unique solution to the integral equation

(5.4) v(x) = 1 + | [ V i ( t - X ) " l)(2t)-1v(t)dt,

and that

(5.5) v ' (x)=

From (5.4) it follows that
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(5.6) v(x) = 1 + C^x"1), as x -»«,

and when the latter is substituted in (5.5) we obtain

(5.7) v'(x) = O(x"2), as x-4 OD.

From the differential equation (5.3) we find

(4x2 |v ' I2 + |v | 2 ) 7 = 8 x | v ' | 2 .

From this together with (5.6) and (5.7) we conclude that

(5.8) | v ( x ) | 2 < l , O < x < o o .

It follows from (5.2) that

I m t e ^ - ^ v t x ) ) 2 = 7TXJO(X)YO(X),

and thus (5.8) implies

7TXJO(X)YO(X) < 1, 0 < x < OD,

as was to be proved.

Next we establish the ordering (3.2). First we note that Jo(x) is positive and Yo(x)

negative for small positive x as follows from inspection of their series developments. It follows

from the Wronskian relation (4.6) that Yo(jo,i) > 0 and thus 0 < yo,i < jo,i and hence, by

Sturm's theorem, y0)k < jo,k for all k. From the differential equation it follows that xJ0 ' is

strictly monotone on any interval where Jo does not change sign and similarly xY0 ' is
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monotone on any interval where Yo does not change sign. From this it follows that jo ,i < ji,i

and yo,i < yi,i. Using Rolle's theorem and the above monotonicity assertions we conclude that

joik < jbk and yo,k < yi,k for all k. It remains only to show that for all k, yi,k < jo,k and

ji>k < yo,k+i

A simple computation yields

(5.9) (Jo'(x) + iY0 '(x))/(J0(x) + iYo(x))

Since, as follows from (5.6) and (5.7), | v ' / v | < (2x)-1 when x is large, (5.9) means that the

trajectory in the complex plane described by Jo'(x) + iYo'(x) leads that described by

J0(x) + iY0(x) by an angle of slightly more than TT/2 when x is large. The latter trajectory

crosses the imaginary axis when x = jo,k and crosses the real axis when x = yo,kj the crossings

of the imaginary and real axes by the former trajectory correspond respectively to x = ji,k and

x = yi,k. Thus it readily follows that for large k,

(5.10) yo,k < yi,k < jo,k < ji,k < yo-k*i.

Given that (5.10) holds for large k it readily extends to hold for all k. Indeed since J o '

satisfies the Bessel equation of order 1, it follows from Sturm's theorem that Jo' cannot have

two zeros in [yo,k,yo,k+i] and thus ji,k+i < yo,k- Similarly Yo' cannot have two zeros in

[jo,k*i,joik] and thus yi,k-i < jo,k-i < ji,k-i < yo,k.

Thus we have

0 < yo,k < yi,k < jo>k < ji,k < yo,k+i < yi,k+i < jo,k+i,

for all k > 0, hence (3.2) holds in particular and the proof of the main lemma is complete.
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