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Lyapunov Exponents and Stochastic Flows of
Linear and Affine Hereditary Systems:

A Survey1

Salah-Eldin A. Mohammed

§1. The General Problem.

In this article we intend to review known results — and also discuss new ones -

concerning the existence of flows and the characterization of Lyapunov exponents

for trajectories of stochastic linear and affine hereditary systems. Such systems

(also called stochastic functional differential equations) are stochastic differential

equations in which the differential of the state variable x depends on its current

value x(t) at time t as well as its previous values x(s), t—r _£ s < t. We shall be

concerned almost exclusively with the finite history case 0 ̂  r ( OD.

More specifically, consider the stochastic affine hereditary system

m r0
dx(t) = S [ ui(t)(ds)x(t+s)]dZi(t) + dQ(t), t > 0

i = 0 J - r | (I)

x(0) = v , x(s) = ??(s) , - r ( s < 0 . J

The above system lives on a complete filtered probability space

(ft,^, (^t) t\Q, P) satisfying the "usual conditions" (Metivier and Pellaumail [31],

Metivier [30], Dellacherie and Meyer [14]). Vectors in Kn (or (n) are column

vectors, given the Euclidean norm | • |. The noise in (I) is provided by
/ \ Tl

^tMf]—semi—maningaies £*• . IK x ^ -» IK, I = u,i,...,m, v̂ . IK * \i -> IK witn

jointly stationary increments. The memory is prescribed by stationary
adapted measure—valued processes i/., i = 0,...,m, such that each i/.(t.uA is an
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L-matrix—valued measure on [-r,0]. The solution x : [—T,OD) X Q -» Kn is a

measurable (^t) t \Q — adapted process with x|(O,co) x Q having a.a. sample paths

cadlag (viz. right-continuous with left limits). The initial conditionis a (possibly

random) pair (v,7/) G Kn x jf} where & is some Banach space containing all cadlag

paths [-r,0] -* Kn e.g. $ = C([-r,0], Kn), D([-r,0], Kn), L2([-r,0], Kn), or a weighted

L2 space L2((—r,0], Kn) so as to allow for the infinite fading memory case r = GO

(cf. Mizel and Trutzer [32], Coleman and Mizel [9], [10]). In order to observe the

dynamics of (I) it is convenient to define the segment x, G & by

V->*>)(s):=x(t+s,a>)i * > 0 , -T{S{0.

This idea goes back to Krasovskii [24] (pp. 126-175) in the deterministic case :

Q = 0, ^-(t,o;) fixed in (t,o;), and Z.(t) = t, i = 0,1,...,m, a.s. In this case the

existence of solutions and the asymptotic stability of the trajectories x. G & =

C([—r,0], Kn) were studied extensively by J.K. Hale and his school in the sixties

(Hale [19], [20]), Krasovskii [24], El'sgol'tz[17], Bellman and Cooke [6] and others.

The corresponding issues in the case 3> = L2(—r,0], Kn) were studied by Delfour and

Mitter [13] in the finite memory case (cf. also Corduneanu and Lakshmikantham

[11] and the references therein for systems with infinite memory).

For the stochastic hereditary white-noise case (ZQ(t) = t, Zj(t), Q(t)

independent Brownian motions, v-(tyu) fixed), the existence of (^t) t \Q — adapted

solutions and their asymptotic stability were treated by several authors, e.g. K. Ito

and M. Nisio [21], Kushner [25], Mohammed [33], [34], [36], Mizel and Trutzer [32],

Mohammed, Scheutzow and Weizsacker [40], Scheutzow [45], Kolmanovskii and

Nosov [23]. Extensions of the existence results to the case of semimartingale noises

Zj, Q were discussed by Doleans-Dade [15], Metivier and Pellaumail [31], Metivier

[30], Protter [42] and others.

Our present discussion will focus on results concerning almost sure

asymptotic stability of the trajectory (x(t), x t) G % := Kn x S of the stochastic



hereditary system (I). In particular the following issues will be discussed:

(i) Existence of measurable stochastic (semi)—flows I : K ^ D x ^ ? for (I) with

the properties:

(a) If x is the solution of (I) with initial data (v,7y) G %, then

X(t,-,(v,7/)) = (x(t), x t) for all 1 1 0 a.s.

(b) Each map X(t,o;,-) , t G R+, a.a. u G Q, is a continuous affine linear

operator on #.

(ii) A characterization of almost sure Lyapunov exponents

for a given natural norm on the state space #, e.g. if J£ = L2([—r,0], Rn), one

usually takes the Hilbert norm

x L 2 ( ^

on the classical Delfour-Mitter space 8 := M2 := Kn x L2([-r,0], Kn) (Delfour and

Mitter [13]).

(iii) A study of hyperbolicity in (I), viz. the case of non—zero Lyapunov exponents.

This is of interest for two reasons. In the linear case (Q = 0), hyperbolicity leads to

an exponential dichotomy with a flow—invariant saddle—point splitting of £ (see

§3A,B). When Z^t) = t a.s. with v£i,u) fixed, 1 _(i ^ m , Q having stationary

increments and (I) hyperbolic, it turns out that the affine hereditary equation

admits a unique stationary solution (§3,C, Theorem 13).

In the following section we examine the question of the existence of a robust

flow for (I).
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§2. Classification of Stochastic Hereditary Systems. Existence of Flows.

(A) Linear Equations Driven by White Noise:

Consider first the non—delay case r = 0, i/.(t,a;) = A.(t,a>) ^Q-I with

Aj(t,a;), i = 0,1,...,m, stationary n x n matrix—valued processes and 6r^ the

Dirac measure at 0. In this case the state space # may be identified with Rn, and

it is well—known that the trajectories {x(t) : t )_ 0, x(0) = v G Kn} admit a

measurable flow X : K+ x n x Kn -> Rn such that X(t, • ,v) = x(t) for all t ^ 0, a.s.

and X(t,u;,-) is linear (invertible) on Rn for a.a. u G Q and all t }_ 0, (Arnold [1],

Leandre [26], Jacod [22]).

However, when r ) 0 in the hereditary system (I), stochastic flows may no

longer exist. To be more specific we introduce the following classification of

hereditary systems:

Definition:

The hereditary system (I) is said to be regular (with respect to the state

space #) if the family of its trajectories

{(x(t)?xt) : (x(0), xQ) = (y,V) 6 * , t )_ 0}

admits a (Borel R* ® & ® Borel #, Borel $)—measurable version X:R* * Q *&-*<$

such that, for a.a. u G fi and each t }_ 0, the map X(t,o;,-) : ^ -» ̂  is affine

continuous linear. The system (I) is called singular (w.r.t. #) if it is not regular

(w.r.t. g).

Unfortunately singular hereditary linear systems do exist, e.g. the

one-dimensional stochastic linear delay equation

d x ( t ) = x ( t - r ) d W ( t ) , t > 0 ,

(x(0),x0) = (v, 7)) i

driven by a Wiener process W and with a positive delay r is singular with respect



to either of the state spaces

8 := {(v,77) : v e R , 7/ G C([-r,0], R) , v = 7/(0)} ~ C([-r,0], R)

or l : = R x L2([-r,0], K). Indeed we have

Theorem 1 (Mohammed [33], [35])

Let 8 2 C([-r,0], R) or R * L2([-r,0], R) and suppose the delay r in (II) is

positive. Suppose Y : [0,r] x f i x ^ R is any (Borel [0,r] ® & a Borel 8, Borel R) -

measurable version of the solution field {x(t): 0 £ t ^ r , (x(0), x0) = (v,7/) G 8} to

(II). Then, for a.a. ue 0 and each t G (0,r], the map Y(t,o;,-) : ^ -* R is locally

unbounded and (hence) non-linear.

The above pathological phenomenon is peculiar to the delay case r ) 0. On

the other hand when r = 0 we have the simple explicit solution

o<t)—it
x(t,o;,v) = ve t ) 0, u G fl, v E R.

This version of the solution is (a.s.) continuous linear in the initial state v G # = R.

The pathology in the delay case r ) 0 is attributed to the Gaussian nature of the

Wiener process W coupled with the infinite—dimensionality of the state space 8.

A proof of Theorem 1 may be found in (Mohammed [33], pp. 144-147) for the case

8 % C([—r,0], R). Essentially the same proof also covers the case

8 = R x L2(-r,0], R ) .

Remarks:

(i) The conclusion of Theorem 1 imposes non—trivial limitations on the

applicability of the general existence theorems for stochastic differential equations

given in (Metivier and Pellaumail [31], Metivier [30], Protter [42], et al.). The

hypotheses in these theorems (e.g. Theorem 6.10, pp. 74-75 in [31]) require that the

random coefficients in the s.d.e. admit a.s. Lipschitz versions



n x g., or

rather than just being random fields

. L2(fi,Rn)

(e.g. as in Mohammed [33], Theorem (2.1), p. 36; cf. also Berger and Mizel [7],

Weizsacker and Winkler [49], Remark (a) p. 274). As an example the

one-dimensional stochastic linear hereditary equation

r°
dx(t) = { x(t+s)dW(s)}dW(t) , t) 0 ,

J-r (III)
(x(0),x0) € g I

with a Wiener process {W(t) : t }_ —r} does not appear to be covered by the

existence theorems in [31], [30], [42]. This is because the coefficient in (III) is a

random field

0
rfo) dW(s)

-r

which does not admit measurable a.s. locally bounded or linear versions

ft

let alone Lipschitz ones! (in case r > 0, 8 K C([-r,0], R), or R x L2([-r,0], R), see

Theorem (8.6) p. 28 in Mohammed [33]).

(ii) The erratic behavior in Theorem 1 above suggests similar difficulties in certain

types of stochastic linear partial differential equations driven by multi—dimensional

white noise (cf. Flandoli and Schaumloffel [18]).
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Recent work by V.J. Mizel and the author shows that the conclusion of

Theorem 1 also holds for the one-dimensional hereditary equation

r°
dx(t) = I x(t+s)dKs)dW(t), t ) 0 •>

(x(O),xo)G IR xL2([-r,0] , K) >

where W is a Wiener process and v is a fixed finite real—valued Borel measure on

[—r,0] satisfying the hypotheses

f0 27rin(f)
supp vc [-r,0) , liminf M e dî (s) | > 0.

n-*oo J-r

On the other hand, (IV) is regular if u has a C1 (or even L2) density with respect

to Lebesgue measure on [—r,0] (Mohammed and Scheutzow [39], Theorem 4.2). An

interesting problem is to classify all finite signed measures v on [-r,0] for which the

hereditary equation (IV) is regular.

Needless to say we do not know a complete characterization of all processes

Z(t) = (Z0(t), Z1{t),...,Zm{i)), and i<t) = (*/Q(t), ^(t), . . .^m(t)) for which the

hereditary system (I) is regular. On the other hand regularity holds for a large class

of linear hereditary systems driven by white noise. Indeed the next result deals with

the case: Q(t) = 0, ZQ(t) = t , Z^t) = W^t), i = 1,2,...,m, are independent

one—dimensional Wiener processes;

N
i/0(t,a/) = S_ H(0,0,...,0, . , 0,..,0) S^y + H(0,0,. . . ,0, . ,0) 6{Qy + h(s)ds

i*̂  place (N+l) s t place

where H : (Kn)N+1 x L2([-r,0], Rn) -• Kn is a fixed continuous linear map,

h : [~r,0] -» R is an nxn-matrix—valued L2 function, ds is Lebesgue measure

on [-r,0];

iA(t,a>) = gj, i = 1,2,...,m, fixed (deterministic) nxn matrices. This case



corresponds to the stochastic linear functional differential system

dx(t)= HCxCt-dj),. ..,x(t-dR), x(t),x t)dt

+ ? g.(x(t)) dW.(t) , t ) 0
i =1

(x(0),x0) = (v,77) G Kn xL2([-r,0],Rn) :=M2

with several finite delays 0 ( dj ( dg ( ... ( d_ _{ r in the drift term and no delays

in the diffusion coefficient Observe that the above equation (V) is defined on the

canonical complete filtered Wiener space (^,<5r,(<5rt)t\Q) P) supporting the

m-dimensional Brownian motion W = (W.,,W0,...,W ). More specifically, ft
-L Zt m

denotes the space of all continuous paths u : R -» Rm with a^O) = 0 given the

compact open topology and the Borel a-algebra <5r. For each t > 0, &> is the

(j-algebra generated by all evaluations {p : u < t} , /? : ft -* Rm ,

pu(u) := v(u) u G R , u € fi ;

and P is Wiener measure on ft.

Theorem 2 (Mohammed [37])

The hereditary system (V) is regular with respect to the state space

$ = M2 := Rn x L2([-r,0], Rn). Indeed there is a Borel measurable version

X : R* x n x M2 -• M2 of the trajectory field {(x(t),xt) : t € R+, (x(0),xQ) =

(v,7/) G M2} with the following properties:

(i) For each (v,7/) G M2; X(t,-,(v,7/)) = (x(t),x t) for all t G R*; a.s.

(ii) For each t G R* and {vyrj) G M 2 ; X(t,-;(v,?7)) is &t-measurable and belongs to

(Hi) There is a Borel set QQ C ft of full Wiener measure such that, for all u E ftQ;

the map X(- ,o;,-) : R+ x M2 -̂  M2 is continuous,

(iv) For each t G R* and every u G ftQ, the map X(t ,ov) : M2-> M2 is continuous

linear; for each u G ftQ, the map R+ 3 t H X(t,o;;-) G L(M2) is measurable and
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locally bounded in the uniform operator norm on L(M2).

(v) For each t )_ r and all u) G HQ, the map X(t,cj,-) : M2 -» M2 is compact.

The proof of the above theorem hinges on a variational technique which

reduces the problem to the solution of a random family of classical hereditary

differential systems involving no stochastic integrals. Note also the compactness of

the flow for t ^ r. This fact plays an important role in defining hyperbolicity for

(V) and the associated exponential dichotomies in §3 (A),(B). Observe also that in

(iv) of the above theorem the map [r,oo) -* t H X(t,o;,-) G L(M2) is continuous for all

A non—linear analogue of Theorem 2 also holds under the following

conditions: In (V), take g := CQ-r^lR11), H globally Lipschitz, g. : Kn -* Kn C2

maps satisfying a Frobenius condition

Dgi(v)g;(v) = Dg.(v)g.(v) , 1 {i, j { m , v G Kn ;
J J

(Mohammed [33], Theorem (2.1), Chapter (V), §2, p. 121). This latter result is

proved in [33] using a non—linear variational method originally due to Sussman [47]

and Doss [16] in the non-delay case r = 0.

(B) Linear Equations Driven by Semimartingales:

The regularity w.r.t. M2 of a large class of linear hereditary equations of

the form

dx(t) = {[ KO(ds)x(t+s)}dt+dN(t)[ K(t)(s)x(t+s)ds+L(t)x(t-)
J[-r,0] J-r

t > 0 ( V I )

x(0) = v G Kn, x(s) = 7?(s), -r < s < 0, r }_ 0

has recently been established by Mohammed & Scheutzow [39] under the following

setting:



10

In (VI) all processes are defined on a complete filtered probability space

( Q , ^ ^ ) }p) satisfying the usual conditions. Denote by Jf([-r,0], Rn x n) the

space of all nxn—matrix—valued Borel measures on [—r,0] (or Knxn—valued

functions of bounded variation on [—r,0]). Give Jt([-r,0], Rn x n) the <r-algebra

generated by all evaluations. The space Rn x n of all nxn matrices A = (a..).

is given the Euclidean norm

||A||2 := S af .

The process i / :Rx( l -» «>#([-r,0], Rn x n) is measurable and

Furthermore, for each u e Q and t}^ 0, let I>(t,u;) be the positive measure

Z/(t,o;)(A) := |i/|(t,o;){(A-t) fl [-r,0]} (5)

for all Borel sets A £ [—r,oo), with \u\ the total variation measure of v w.r.t. the

Euclidean norm on Rnxn . For each LO £ £1 suppose the positive measure

(6)

has a density y\o w ^ ^ r e s P e c t t 0 Lebesgue measure on [—r,oo) which is locally
QS

essentially bounded. If

V(X,u)(-):= \ P(u,u,)(.)du, t > 0 , (7)

suppose further that the map
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[O,oo) - L2([-r,0], R)

is continuous on [O,OD) for every u) G ft. It is easy to see that this last condition is

satisfied in the deterministic case &{t,a;) = I/Q, t )_ 0, u G ft, for a fixed

uQ G JC{[-i,Q], Kn x n). The process N : IR x ft -4 Rnxn is an (<5^)t\0-semimartingale

and K : IR x ft -4 C1([-r,0])K
IIXI1) is a measurable (^t^vQ-adapted process w.r.t. the

a—algebra generated by all evaluations on C1^—r,0], Rn x n) . For a.a. u G ft, the

random field K(t,v)(s) is jointly C1 in (t,s) G R+x [-r,0]. The

(^t)t\Q—semimartingale L : K x ft -• Knxn is assumed to admit a representation

L = M + V where M is a continuous (^O+VQ—local martingale and V is an

—adapted process with a.a. paths right continuous and of bounded variation

on compact subsets of R\

We then have

Theorem 3 (Mohammed & Scheutzow [39])

Under the above hypotheses, the hereditary system (VI) is regular w.r.t M^.

In fact its trajectory {(x(t),xt) : t )_ 0; (X(0),XQ) G M2} has a measurable version

X : R+ x ft x M2 -» M2 satisfying assertions (i), (ii), (iv), (v) of Theorem 2 with

ftQ G & a set of full!?-measure. Also for all u G ftQ and every (v,7/) G M2; the path

x ( " )^)(v,77)) : R+ -* M2 is cadlag.

(C) A Class of Affine Equations:

Consider the affine hereditary system

dx(t)={f //(ds)x(t+s)}dt + dQ(t) , t ) 0
Jt->°] } (vii)

x(s) = 7/(s) -r{ s i 0.
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Here Q is an Kn—valued semimartingale on a filtered probability space ( f i ,^ ,

(<Srt)t\Q, P) with the usual conditions, and Q(0) = 0. The memory is driven by a

fixed Rn*n-valued Borel measure \i on [—.r,0]. The initial condition 77 belongs to

the Banach space D([-r,0], Kn) of all cadlag paths [—r,0] -» Rn with the supremum

norm

£
We shall often take 77 to be an ^—measurable random variable with values in

D([-r,0], Rn) which is allowed to anticipate the driving noise Q. (See §3,C).

An essential tool in studying the Lyapunov exponents l i m T log llx, II of
t-»OD

(VII) is the associated homogeneous deterministic linear hereditary system

X * * ) y ( t + s ) } d t , t > 0
r'°] } (VIII)

y 0 = v •

Using the integrated form

y(t) = 7/(0) + [ [ /*(ds)y(u+s)du , t ) 0, (VIII)'
J0 J[-r,0]

we define a strongly continuous semigroup (T(t)) on the space D := D([—r,O],(R ) by

setting T(t)r; := yj 7" , t )_ 0, where y^7" : [—r,oo) -* Rn is the unique solution of

(VIII) with initial path TJ 6 D([-r,0], Rn). Denote by F : [-r.oo) -»Knxn the

fundamental matrix solution of

F(t) = f tfds)F(t+8) , t> 0 ,

} (ix)
, A(s) : =
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where 1,0 G Knxn are the identity and zero nxn matrices respectively. If we

extend Q to all of R by setting Q(s) = 0 for all s £ 0, then the unique trajectory

{x+ . t ^ 0} of the affine hereditary system (VII) is given by

XM(u)= {f (t)ifl(u) + Qt(u)+ ftF(t-s+u)Q(s)ds, a.s., (X)
x l Jo

for t )_ 0, u G J := [-r,0], 77 G D(J,Rn) (Mohammed and Scheutzow [38], Theorem

1). Alternatively, we have

x^)(u)= {T(tM(u)+ [ F(t-s+u)dQ(s) , 110, UG J. (XI)

These integral representations immediately imply that (VII) is regular with a

stochastic flow X:K + xf ixD-»D given by

X(t,a,,7/) = x^X-tU) , 77 G D([-r,0],IRn), t ^ 0 , u G Q.

This flow has the property that each X(t ,av) ' D - ^ D is a continuous affine linear

map.

§3. Lyapunov Exponents. Hyperbolicity.

(A) Linear Equations. White Noise Case.

Let us go back to the setting of §2(A) and reconsider the linear hereditary

system (V), viz.

dx(t) = H(x ( t -d 1 ) , . . . ,x ( t -d N ) ,x ( t ) ,x t )d t

+ | _ i g i ( x ( t ) ) d W i ( t ) , t ) o }

( x ( 0 ) , x 0 ) =(v,77) G M2 := KnxL 2 ([-r,0] ,Kn)
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The existence of a.s. Lyapunov exponents

limilog||(x(t),x t)| |M2
t-»OD

for the above linear hereditary system was studied by Mohammed in [37]. The

approach adopted in [37] is to show that the version X of the flow constructed in

Theorem 2 is a multiplicative linear cocycle over the canonical Brownian shift

^ i x f l - f d on Wiener space:

0{t,u){u) := o<t+u) - u(t) , u,t E R, u) G ft.

One then uses the compactness of X(t,a/,-) : M2 -» M2, t \ r, together with an

infinite-dimensional version of Oseledec's multiplicative ergodic theorem due to

Ruelle ([44], [43]). Indeed we have

Theorem 4 (Mohammed [37])

There is an &-measurable set ft of full P-measure such that

0(t,-)(ft)c ft foraU t)_0 and

(9)

for all u>e (l and t^tg }. 0.

The first step in the proof of the above theorem is to approximate the

Brownian motion W in (V) by smooth processes {W }£=1:

wk
( t ) : = k f E W ( u ) d u , t ) _ 0 , k ) . l ,

J t

and let X : R+ x Q x M2 -* M2 be the stochastic flow of the following retarded

functional differential system with random coefficients:
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dxk(t) = { H ( x
(Vk)

m V V 1 m 9 V J
+ £ _ g i(xk( t)) W k ( t ) - \ S ^ g2(xk(t))}dt, t) 0

(xk(O),xk) = (v,77) G Ma.

It can be shown that if X : K+ x Q x M2 -i M2 is the flow of (V) constructed in

Theorem 2, then

l i m sup ||X (tjo;,-) — X(t,w,-)|| / \ = 0 (10)

for a.a. a; e fi and every 0 ( T < oo (see Theorem 2 in [37]). The above convergence

actually works for all a; in a Borel set (l of full Wiener measure which is invariant

under 0(t, •) for all t }_ 0. The second step in the proof of Theorem 4 is as follows.

We fix u e Cl and use uniqueness of solutions to (V ) in order to obtain the cocycle

k k

property for (X ,0), viz. equation (9) with X replaced by X , k )_ 1. We then

pass to the limit as k -> oo using the convergence in (10).

The a.s. Lyapunov exponents

Hm i l o g ||X(t,o;)(v(a;),7/(a;))||M2 , a.a. u G fi, (V,T?)

of the system (V) are characterized by the following Oseledec multiplicative ergodic

theorem:

Theorem 5 (Mohammed [37])

Let X : K* x fi x M2 -• M2 be the flow of (V) given in Theorem 2. Then there

exist

(a) a Borel set fi* c ft such that P(fl*) = 1 and 0(t, •)(£**) £ fi* for all t )_ 0 ,

(b) a fixed (non-random) sequence of real numbers {A-} 0 0 . ,

(c) a random family {E^u) : i }_ 1, u G £2*} of (closed) finite-codimensional
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subspaces of M2, with the following properties:

(i) If the Lyapunov spectrum {\}™ * is infinite, then X- , * ( A- for all i)_ 1 and

l im A. = -OD; otherwise there is a fixed (non-random) integer N > 1 such
i->oo

that A N = -00 ( A N _ 1 < . . . ( A 2 < A j /

(ii) each map u H E^(U), i ^ 1, is & -measurable into the Grassmannian of M2

(Mam [ I Thieullen [));

(Hi) Ei+1(v) c E{(u) C.C E2(o;) C E^u) = M2, i )_ 1, u G fi*;

(iv) for each i ^ 1, codim E.(a>) is fixed independently of ue ft*;

(v) for each wef i* and (v,7/) 6 E i(o;)\E i + 1(^),

limilog||X(t,o;,(v,77))|| = Aj; (11)
t-»oo

^ Ax = l im ilog||X(t,o;,-)||L/M \ /or a« a; G ft* (Top exponent); (12)

M X(t,a;, • )(E.(d;)) C E.(fl(t.a;)) /or afl a; G fl*; t )_ 0, i ± 1 (Invariance).

For a proof of the above result see [37] §4, pp. 106—122. The argument in

[37] is based on Ruelle's discrete version of Oseledec's multiplicative ergodic

theorem in Hilbert space ([44], Theorem (1.1), p. 248 and Corollary (2.2), p. 253).

The following strong version of Kingman's subadditive ergodic theorem is also used

to construct the shift invariant set ft* appearing in Theorem 5 above.

Theorem 6 (Kingman's Subadditive Ergodic Theorem)

Let f : R* x J] -• R u {-co} be a measurable process on a complete probability

space (Q,&,P) such that

(i) E sup f(u , - )<oo , E sup f ( l - u , - ) ( o o ;
0£ir(l 0_(u^l

(ii) f(t1+t2,(j) { f(tpa/) + f(t2,0(tpa;)) for all t p t 2 }_ 0 and every u G ft.

Then there exists a set ft G 9 and a measurable f ; ft -» R U {-00} with the

properties:

(a) P(6) = 1, 0(t,-)(6) c 6 for all t }_0 ;

(b) i{(J) = f {0(t,v)) for all ueCl and all t ^ 0 ;
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(c) feLHflAP);

1 ~
lim ^ f(t,o;) = f (u) for every u G ft .
tHDD

/ / 0 is ergodiCj then there exists f* G K U {-QD} and ft G 9 such that

(ay P(S) = l , f l ( t | . ) ( S ) c 6 , t ) _ 0 ;

(6J' f(o;) = f* = l im£f( t ,a / ) for every u G ft.

A proof of Theorem 6 is given in ([37], Lemma 7, pp. 115-117).

The non—random nature of the Lyapunov exponents {̂ ;}™—i °f (V) is a

consequence of the fact that 0 is ergodic. System (V) is said to be hyperbolic if

Aj i 0 for all i \ 1. When (V) is hyperbolic the flow satisfies a stochastic

saddle—point property (or exponential dichotomy) (cf. the deterministic case with

g = C([-r,0],Rn), g. = 0, i = l,...,m, in Hale [20], Theorem 4.1, p. 181).

Theorem 7 (Mohammed [37])

Suppose the hereditary system (V) is hyperbolic. Then there exist

(a) a set ft* G & such that 0(t,-)(ft*) = fi* for all t G R and P(O*) = 1,

(b) a measurable splitting

M2 = V{u) e &{u)) u) G fi*

wita the following properties:

(i) %(u), Gff(uj), u G ft*; are closed linear subspaces of M2, dim U{u) is

finite and fixed independently of u G ft .

(ii) The maps u H %r(a;); a;-» e^(a;) are &-measurable into the Grassmannian of

M2.

(Hi) For each u G ft* and (v,7/) G 2^(a;); f/iere 6^5^ r . = ^ (^v , ; / ) ) 0 and a

positive 6,, independent of(u,v,7]) such that

(iv) For each u G ft* and (v,7/) G G^(O;), there exists r 2 = r2(a;,v,7/) ) 0 and a

positive ^ ; independent of(u}v,ri), such that



(v) For each t ^ 0 and ue Q* ,
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In particular, the restriction X(tyu}-)\^(u) : %C(w) -* %(9(t,uf)) is a linear

homeomorphism onto.

(B) Linear Equations. Semimartingale Noise.

We use the general setting and hypotheses in §2(B). The object of this

section is to extend Theorems 4, 5, 7 to cover the hereditary system (VI) too:

dx(t) = {[ K*)(ds)x(t+s)}dt+dN(t)[ K(t)(s)x(t+s)ds+L(t)x(t-)
J[-r,0] J-r

t > 0 ( y i )

x(0) = v 6 Rn, x(s) = rfa), -r ( s < 0, r }_ 0

In order to develop a multiplicative ergodic theory for (VI) we need the following

set of hypotheses, which are taken from Mohammed and Scheutzow [39]:

Hypotheses (C):

(i) The processes v, K are stationary ergodic in the sense that there is a

measurable ergodic P—preserving flow 0 : R * ft -* ft such that for each t ^ 0,

0(t,-) is (^tj^o)-measurable and
i<t,a/) = v(0,9(t,u)) , t e R, u 6 Q , (13)

K(t,w) = K(0,^(t,a;)) , t e R, u G ft. (14)
(ii) The processes N, L, M have jointly stationary ergodic increments:

N(t+h,cj) - N(t,o;) = N(h,0(t,a;)), t,h G R , u G ft
L(t+h,o;)- L(t,o;) = L(h,^(t,£j)), t,h G R , a; G ft j . (15)
M(t+h,(j) - M(t,a;) = M(h,0(t,a;)), t,h G R , u G ft

Semimartingales satisfying Hypothesis (C)(ii) were studied by J. de Sam Lazaro and

P.A. Meyer [12], Qinlar, Jacod, Protter and Sharpe [8], Protter [41]. It follows from

Hypothesis (C)(ii) that N and L have jointly stationary increments. Conversely,

if N and L have jointly stationary increments, one can arrange for (C)(ii) to hold
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on a suitable probability path space. (See Protter [41], Theorem (2.2), de Sam

Lazaro and Meyer [12], Mohammed and Scheutzow [39].)

In view of Theorem 3 we know that equation (VI) is regular w.r.t. M2 with

a measurable flow X : K+ fJ x M2 -» M2. It will turn out that this flow satisfies

Theorems 4, 5 and 7. This is achieved via a construction in [39] based on the

following consequence of Hypothesis (C)(ii):

Theorem 8 (Mohammed & Scheutzow [39]).

Suppose M satisfies Hypothesis (C)(ii). Then there is an {&t)\\c\~adapted

version ip : R+ x fl -* Rnxn of the solution to the matrix equation

t ) 0

and a set Q^ G & such that

(i)

(it) 0{tr){ai)cai for aU 1^0;

(Hi) y^tj+tg,^) = ^(t2,^(t1,o;)) (p(ivu)) for all t^ tg G R+ and every u G &1 ;

(iv) <p(- ,(J) is continuous for every u G fly

A proof of Theorem 8 is given in [39]. The proof is based on a double approximation

argument whereby (XII) is replaced by the families of s.d.e. Js

= Mk(t) fm(*£(t))dt -^d<M>(t)fm(^(t)), t 6

= odM(l)fm(*>m(t)) - \ d<M>(t)fm(»,in(t))) t e »+

} • (™>m
T ^ mnx n
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where the f : Knxn -» Rnxn are C1"—bounded approximations of the identity map

id : Knxn-4 Knxn such that f (A) = A whenever ||A|| ^m; the Mk are

smooth (^O+vg—adapted mollifiers of M given by

M [(t) := k [ x M(u)du, 11 0,
Jt—ir

and odM(t) denotes Stratonovich differential.

Using results of Mackevicius [27] on Sp—stability of s.d.e.'s, it is shown in ([39],

Theorem (3.1)) that the solutions <pk : R+ x n -» Rnxn of

= Mk( t)pk( t)dt - ^ ), t G

have a subsequence {<p }S/_i which converges a.s. uniformly on compacta to tp.

The multiplicative cocycle property for ((p,0) follows immediately from the

corresponding one for (<p ,^), k7 )_ 1.

Under Hypotheses (C) one gets the cocycle property (9) for (X,0), i.e.

Theorem 4 holds true for the linear hereditary system (VI), (Mohammed &

Scheutzow [39], Theorem (4.2)(vii)). A key point in proving this fact is to observe

that the linear system (VI) is equivalent to the following random family of

hereditary linear integral equations

Z(u){K(u)(O)x(u)-K(u)(-r)x(u-r)
0

^u—r
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[ K(t)(s)x(t+s) ds + f y<t-u,0(u,-))[ Ku)(ds)x(u+s)du
J-r J0 J[-r,0]

+ f ^t-u, 0(u, • ))dV(u)x(u-) (XIII)
Jo

- [* ¥<t-u)0(u).))d[M)N](u) f K(u)(s)x(u+s)ds , t )_ 0,
JO J-r

a.e. te[-r,0),

where Z is a suitably chosen version of V'Hv) dN(u) (Theorem (3.2) in [39])
J0

and [M,N] denotes a version of the Knxn—valued mutual variation of M and N,

viz.

, M = ( 1 1 ^ , N = ( N ^ ^ .: - | = i [Mim,Nmj]

(See Lemma (3.1) in [39]). Observe that the above integral equation has no

stochastic integrals. This fact contributes to the regularity of the hereditary

equation (VI). The cocycle property (9) now follows from the uniqueness of the

solution to (XIII) (see proof of Theorem (4.2) in [39]).

The existence of a discrete non—random Lyapunov spectrum {^}T=i f°r the

hereditary equation (VI) (cf. Theorem 5) is proved via Ruelle—Oseledec

multiplicative ergodic theorem which requires the following integrability property

E sup log* l|X(tp0(t2,Or)llL(M2) < - . (16)

In [39] the above integrability property is established under the following set of

hypotheses on v, K, N, L:



Hypotheses (I):

(i) The random variables

sup

-r£s{ 0
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0 (t (2 r

are all integrable. Here |V| is the total variation of V w.r.t. the

Euclidean norm ||-|| on Rnxn.

(ii) Let N be of the form N = N° + V° where the local (&t)t\rf-

Q Q n Q Q n
N = (N..) # # and the bounded variation process V = (Vj.). . are such

that the random variables

, {[V?J(2r,.)}4 = (S1J O
° (s)|2)4 ,1J

are integrable. Note that A V. .(s) is the jump of

total variation of V.. over [0,2r].

(iii) There is a non-random time IQ ) 0 such that

. at s and j -1 (2r, •) is the

The integrability property (16) is a consequence of
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Elog+sup W t p f l C t g , . ) , ^ ) ) ! <«. (17)

The proof of the latter property involves a lengthy argument based on establishing

the existence of suitable higher order moments for the coefficients on the right hand

side of the random integral equation (XIII). (See Lemmas (5.1), (5.2), (5.3), (5.4),

(5.5), (5.6) in [39]).

Since 6 is ergodic, the multiplicative ergodic theorem (Ruelle [44]) now

gives a fixed discrete set of Lyapunov exponents for the linear system (VI). In fact

we have

Theorem 9 (Mohammed and Scheutzow [39])

Under Hypotheses (C) & (I), the statements of Theorems 5 and 7 hold true

for the linear hereditary system (VI).

Note that the Lyapunov spectrum of (VI) does not change if one uses the

state space % = D([—r,O],IRn) with the supremum norm || • || and drops the

hypothesis of the L2-<X)ntinuity of t H V\ ,>a; ' | [—r,0] (u 6 ft) referred to in §2(B).

(See the remark following Theorem (5.3) in [39]).

(C) Affine Systems. Hyperbolicity and Stationary Solutions.

Here we consider the affine hereditary system (VII) under the setting and

hypotheses of §2(C):

dx(t)={[ ^(ds)x(t+s)}dt + dQ(t) , t ) 0

M } (VII)
x(s) = 7/(s) -r ^ s ^ 0.

In order to study the Lyapunov spectrum of the affine system (VII) we recall

the following classical results of J.K. Hale for the homogeneous (Q = 0)

deterministic system (VIII):
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dy(t)=J / i ( d s ) y ( t + s ) d t , t ) 0 ,
l - r '°J J (VIII)

yQ = 7/GD([-r,0],IRn).

Recall that T(t) : D([-r,O], Rn) -+ D([-r,O], Rn), t }_ 0, is the strongly continuous

semi-group given by the trajectories of (VIII). Consider the complexification

T{(t)(v) := t ( t ) (Re 77) + i T(t)(Im 77) , 77 G D([-r,0], Cn) ,

of T(t) and its restriction T ^ t ) to the space of continuous maps C([—r,0],Cn).

Note that T ( ( t ) is simply the complexification of T(t) := f (t) | C([-r,0],Rn).

Denote by A the infinitesimal generator of the strongly continuous semigroup

Y Then the spectrum, o(A), of A is discrete and consists entirely of

eigenvalues with real parts bounded above. (Hale [20], pp. 168—170). Indeed a(A)

coincides with the complex roots A of the characteristic equation

det[AI - [ eAV(ds)] = 0 (18)

K0]

(Hale [20], pp. 168-170). It follows from the above equation that A e a(A) iff

A G <r(A) ; and for every (3 6 R the sum of the generalized eigenspaces corresponding

to all A's such that Re A )_0 is finite-dimensional ([20], p. 168). If Kn stands

for the space of all n-row vectors, we shall let A* be the formal adjoint of A in

C* := C([0,r],Rn ) with respect to the continuous bilinear form (-,-) : C* * D -* IR,

\
J[-r,

[VfMM0£ f (19)
0]Js

ip € C*, <p G D. Then a(k*) = cr(A) ([20], p. 169). For a given finite set A of

conjugate pairs of eigenvalues of A, denote by E^ (E^) the sum of the

corresponding real generalized eigenspaces of A (A , resp.) corresponding to the
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eigenvalues in A ([38]). Then E. (Et) is a finite-dimensional real subspace of

C(C*, resp.) Pick bases ty}^, {^}*=i of EA, E* such that (fl>Vj) = 6{.,

1 (i, j < d = dim EA = dim E?. Let B = (B..). . be the dxd matrix

representation of A|E* with respect to {^}. . The space D admits a

(T(t)),v 0-invariant topological splitting

where EA := {ip : ip 6 D, {$#) = 0 for all ipe EA} ([38]). If 7) 6 D, we let 77 ,

EAT) denote its projections on EA, EA, respectively. Applying these projections to

both sides of (X) and writing E = EA, E = EA we get

f (t)(7?E) + QE + J F(t^+-)EQ(s)ds

) + QE'+ [l Jn'0

, ?? e D ([38], Theorem 3).

Define the d—dimensional stochastic process

(XIV)

y(t) =

with $ :=

Then one gets



Xt = S
=

J
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dY(t) = BY(t)dt + #(0) dQ(t) , t> 0 (XV)

Y(t) = etB(#,77) + [ B e ^ 5 tf(0)Q(s)ds + #(0)Q(t) (21)
J0

(Mohammed and Scheutzow [38], Theorem 6).

By extending the estimate on the complementary subspace in ([20], Theorem

4.1, p. 181) to cover all cadlag initial paths (Mohammed and Scheutzow [38],

Theorem 4), one gets:

Theorem 10

For each 77 G D, A(7?) := l im T- log ||T(t)7/|| exists and the set ofLyapunov
1 v 0D
t-»OD

exponents {\{r}) : 77 G D} of the homogeneous system (VIII) coincides with the set

{Re A : A G 0"(A)} together with possibly - oo.

We now give an Oseledec theorem which characterizes the a.s. Lyapunov

exponents of the affine hereditary system (VII). The proof of the following theorem

may be found in (Mohammed and Scheutzow [38] §4, Scheutzow [46], C13, Theorem

1, p. 160-161).

Theorem 11

Let (3+ ) /?2 ) Po ) ••- be an ordering of the real parts of all eigenvalues in

a(A). Fix m Y 1 and let E = E^ where A = {/y"sl- Define $ ; B, # , E as

before. Let 0 < fim and assume that | Q(t) | = o ( e ^ + ^ * ) for all e > 0 as t -* GO

a.s. Let Y* stand for the d-dimensional process (d = dim E^

Y*(t) = - f Be^" 8 ) 5 *(O)Q(s)ds + *(O)Q(t). (22)

For each 1 ^ j ^ m suppose E. is the sum of generalized subspaces
JJ j

corresponding to the eigenvalues with real parts {/^}# . Assume that Ej is the

complementary subspace to Ej for 1 ̂  j ^ m. Take EQ = {0}. Then, for a.a.
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u G Q, one has

limilog ||x (a;)|| = fi, if xJu) G *Y*(0,w)+E. AE-, I Him, (23)
j t w CD J v/ J J

ITHI log llxjCa;)!̂  i /? if xQ(u) e $ V*(0,a;)+Em. (24)

The key to the proof of the above theorem is to identify the Lyapunov

exponents of the projection {x^ : t ^ 0} with those of {Y(t) : t ^ 0} and then observe

that

Y(t) = etB(Y(0) - Y*(0)) + Y*(t) , t )_ 0.

Sufficient conditions for equality in (24) are given in the following theorem.

Note here that one does not require Q(t) to be zero for t ( 0.

Theorem 12 (Mohammed and Scheutzow [38])

Assume all the conditions and notations of Theorem 11. Suppose also that

|Q( t ) | = o ( e ^ + ^ ' t l ) for some e)0 as £-*-oo a.s. Let E^ be the sum of

generalized eigenspaces of A corresponding to all eigenvalues with real parts greater

than or equal to (3. Define the process Z (t) G (E^) by

Z*(t) = F(t-s + -y* > Q(s)ds + QjE ' , t )0. (25)

Let ueQ be such that l i m ^ l o g i n f n ||Z*(t,o;;v)|| ]_(3 and suppose that

xQ(a;) 6 $ Y*(0,o/) + E^. Then

I
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Remarks

(i) Under the conditions of Theorem 12 the statements (23) and (24) can be

modified by replacing $Y*(0,o>) with T}(UJ) := Z*(0,w) + $Y*(O,w), which is

independent of the choice of m.

(ii) Y* and Z* may also be represented as

Y*(t) = - f B e ^ ) B *(0)(Q(s) - Q(t))ds, t}_ 0 , (26)
J t

Z*(t) = f T(t-s)A(E ) dQ(s). (27)

When Q has stationary increments, these representations imply that Y* and Z*

are stationary processes. In fact Y* is the only stationary solution of the s.o.d.e.

(XV) (Mohammed and Scheutzow [38]).

We now consider the hyperbolic case when Re A / 0 for all Ae <r(A). In

this case, the following result (Mohammed and Scheutzow [38], Theorem 20)

establishes the existence of a unique stationary solution for the affine hereditary

system (VII).

Theorem 13

Suppose that Q is cadlag and has stationary increments. Assume that the

characteristic equation

det(AI - [ eAs /x(ds)) = 0 (18)
0]

has no roots on the imaginary axis; i.e. the homogeneous equation (VIII) has no zero

Lyapunov exponents. Suppose also that

Tm — l o g |Q(t)| ( |ReA| a.s.
| t |
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for all characteristic roots A of (18). Then there is a unique D-valued random

variable r\ such that the trajectory {xj;7" : t )0} of (VII) is a D-valued stationary

process. The random variable r) is measurable with respect to the a-algebra

generated by {Q(t) : t G R}.

If E is the sum of all generalized eigenspaces of A corresponding to all

A G <T(A) with Re A ) 0, then in Theorem 13, the projection 7/(77 ) *s measurable

with respect to the a—algebra generated by Q(t), t ^ 0 (Q(t) , t £ 0, respectively).

(See Mohammed and Scheutzow [38], Theorem 20). Furthermore if Q has

independent increments (e.g. Q is Brownian motion or a Poisson process), then the

projections x>*" , x>*" , t }_ 0, are stationary and independent processes.

We conclude this section by discussing p—th moment Lyapunov exponents

||xM|£ , p ) . ! , (28)
t->oo

of (VII). The following result is proved in ([38], Remark (iii) following Theorem 21)

by looking at the moment exponents of the projections x>*" > x+ > where E is

the sum of the generalized eigenspaces corresponding to all eigenvalues A G a{ A)

with the largest real part /?-.
r

Theorem 14

Let P^ be the top a.s. Lyapunov exponent of (VII) and fix p )_ 1. Assume

that Q(t) G LP(fi,Rn) for all t ^ 0 , |Q(t) | = o(e * * ) a.s. as t -*oo for some

e > 0 and ITmi log E | Q ( t ) | P < p/? r / / Y*(0) is not a.s. constant, then
t*

lim I log E ||xM|£ = lim \ log E \\x{ E
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for all 7/G D .

Under the mild non—degeneracy condition that Y*(0) is not a.s. constant,

the above theorem asserts the existence of only one p—th moment exponent which is

independent of all random (possibly anticipating) initial conditions in D. This

result is in agreement with the affine linear finite—dimensional non—delay case (r =

0) (Arnold, Oeljeklaus and Pardoux [3], Baxendale [5], Arnold, Kliemann and

Oeljeklaus [2]).

Note also the following interesting fact in connection with Theorem 14. The

affine hereditary system (VII) may be viewed as a finite—dimensional stochastic

perturbation of the infinitely degenerate deterministic homogeneous system (VIII)

with countably many Lyapunov exponents. However, these finite—dimensional

perturbations provide noise that is generically rich enough to account for a single

moment Lyapunov exponent in the affine system (VII).

Remark:

More work needs to be done in order to characterize p—th moment exponents

for general linear hereditary systems (I) with Q = 0. In the white noise case with

an asymptotically stable linear drift and a small diffusion, estimates on the mean

square moment exponent

IIifIlogE||xt||2
t->oo

may be found in (Mohammed, Scheutzow and Weizsacker [40], Mohammed [34],

[33], Theorems (4.2) & (4.3), pp. 208—222). Similar estimates in a rather special

case with a small discrete delay appear in (Mao [29]).

§4. Examples. Upper Bounds on the Top Exponent.

The examples in this section are all one-dimensional and linear. Regularity

of the equations is established and estimates on the top a.s. Lyapunov exponent Aj

are given. Details of the computations are incorporated in ongoing joint work of the
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author with M. Scheutzow and will appear elsewhere.

Example 1: (A Linear Delay Equation with Poisson Noise)

Consider the one—dimensional linear delay equation

dx(t) = x ( ( t - l ) - ) d N ( t ) , t > 0

} (XVI)
xQ E D = D([-r,0],IR)

The process N(t) £ K is a Poisson process with i.i.d. inter—arrival times {TJ°?=1

which are exponentially distributed with the same parameter fj,. The jumps

00

j} # of N are i.i.d. and independent of all the T^s. Writing

j(t):=sup{j}_0: _

and

N(t) = S ^ Y. ,

it is easy to see that (XVI) can be solved a.s. in steps giving

YjX^E T j - 1 ) - ) a.s. (29)

Observe that {x. : t )_ 0} is a Markov process in the state space D (with the

supremum norm || • || ). Furthermore the above relation implies that (XVI) is

regular in D; i.e. it admits a measurable flow X : R + x Q * D - * D with X(t,av)

continuous linear for all t ^ 0 and a.a. u G ft (cf. the singular equation (II) in

§2(A)).

The a.s. Lyapunov spectrum of (XVI) may be characterized directly (without

appealing to the Oseledec theorem) by interpolating between the sequence of

random times:
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TQ(u):=O ,

k
for all kT^U) := inf{n )_ 1 : £ T. I [n-l,n]

k
r i + 1 ( w ) := i n f ( n > ̂ M : £ T- £ [n-l,n] for all k }_ 1}, i \ 1.

j = l

(For details see Scheutzow [46], pp. 162-166).

Theorem 15 (Scheutzow [46])

Let £ 6 D stand for the constant path £(s) = 1 for all st [—1,0]. Suppose

E log ||X(r1( •),• ;£)|| £ op (possibly = - ooj. 2%en </ie a.s. Lyapunov spectrum

:= lim^log HX^o;^)!! , 1? 6 D , o;efi
t-»oo

of (XVI) is {-i»,A J

limJlog||X(t,w,i?)||o) = { l n ^ TiW>U' .

If N has J /umps m [0,r,] and P (a^ | F t + 1| (^0) = 1 for some positive

a,P, then

E J l o g a , , / EJ log/?

/ / P(YX = -1) ) 0 , then X1 = -w.

The computations underlying the proof of the above theorem also work for
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the one—dimensional hereditary equation

dx(t) = {[ x(t+s) d/x(s)}dN(t) (XVII)
J [ 0 ]

where N is as before and \i is a deterministic finite signed measure on [—r,0] with

support bounded away from zero (Scheutzow [46], pp. 166—167).

Example 2:

The one—dimensional hereditary equation

f°
dx(t) = {z/x(t) + /*x(t-r)}dt+ { x(t+s)a(s)ds}dW(t), t > 0 (XVIII)

J - r

with real constants u7 fi is a special case of (VI) in §2(B). If a : [—r,0] -> IR is a C1

deterministic function, then it follows from Theorem 3 (§2(B)) that (XVIII) is

r°
regular w.r.t. Mo. Observe that the process x(t+s)cr(s)ds has C1 paths in t

z J - r

and so the stochastic differential dW w.r.t. the one—dimensional Brownian motion

W in (XVIII) may be interpreted in the Ito or Stratonovich sense without changing

ihe solution x. Taking (Stratonovich) differentials of the process log p(t),

p(t)2 := x(t)2 + [ x(u)2du , t > 0 ,
J t - r

(30)

and analyzing the resulting expression one gets the following theorem:

Theorem 16 (Mohammed)

In (XVIII) let 8Q be the unique solution of the equation

2(u + 6) + f?e2Sr + 1 = 0. (31)

/ / X^ is the top a.5. Lyapunov exponent of (XVIII) (as given by Theorems 9 &
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5(vi)), then \{.— <5Q.

Details of the proof of the above theorem will appear elsewhere.

Example 3:

Let M be a one-dimensional, sample-continuous square integrable

martingale with stationary ergodic increments. From the ergodic theorem we have

the fixed (non—random) a.s. limit

t-*ao

E.g. if M is standard Brownian motion, then /? = 1. Consider the

one-dimensional hereditary equation

dx(t) = {wc(t) + /jx(t-r)}dt + x(t) dM(t), t > 0. (XIX)

This equation satisfies Hypotheses (C), (I) in §3(B). So (XIX) is regular w.r.t. M2

(Theorem 3). Furthermore an analysis of the process in (30) gives the following

estimate for A..:

Theorem 17 (Mohammed)

In (XIX) define 6Q as in Theorem 16. Then the top a.s. Lyapunov exponent

X, of (XIX) satisfies

The estimate for Aĵ  in the above theorem is clearly not sharp even when

M = W, one—dimensional standard Brownian motion (cf. the non—delay case fj, =

0).

In the special case M = <rW for a fixed real a> the above bound may be

sharpened to
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A t _ ( i n f { «(<*,<$): a > 0, <5 G K>

where

16a2
I + 2i/ + 2<5 + <r2)2.

The proof of this fact was the result of joint discussion involving S.T. Ariaratnam,

L. Arnold, P. Baxendale, H. Crauel, W. Kliemann, N. Sri Namachchivaya, M.

Pinsky and V. Wihstutz. Observe that the above estimate agrees with

1 2

At = v — j a in the non-delay case \i = 0.

It is not clear under what conditions on the parameters v, fi, /3 the

hereditary equation (XIX) becomes hyperbolic.
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