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Abstract

General equilibrium models in which economic agents have finite marginal utility from

consumption at the origin lead to financial assets whose prices are continuous but exhibit

singular components. In particular, there is no bona—fide "interest rate" in such models,

although asset prices can be determined by equilibrium considerations (and uniquely, up to the

formation of mutual funds). The singularly continuous processes in question charge precisely

the set of time-points at which some agent "drops out" of the economy, or "comes back" into

it, between intervals of zero—consumption. Not surprisingly, these processes are governed by

local time.
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1. Introduction

A primary objective of consumption-based, capital asset pricing theory has been to

model the relationship between rates of return and aggregate consumption. In continuous—time

models, a number of researchers (e.g., Merton (1973), Breeden (1979, 1986), Cox, Ingersoll &

Ross (1985a,b), Lucas (1978), and Duffie & Zame (1989)) have studied this relationship. Two

key results which emerge from these papers are that, in equilibrium,

(1.1) the rate of return from a riskless asset should be the negative of the growth rate of
the marginal utility for consumption of a representative agent, and

(1.2) the excess (above the risk—free rate) rate of return from a risky asset should be
proportional to the covariance between the price of that asset and the aggregate
consumption, with the constant of proportionality independent of the asset and equal
to the relative index of risk aversion for a representative agent.

Under some regularity conditions, including the strict positivity of optimal consumption

processes, equilibrium prices in continuous—time, capital asset pricing models have been shown

to enjoy these two properties, but the existence of suitable equilibrium prices in a multi—agent

economy has until recently been an open question. Price processes reside in an

infinite-dimensional space, and one method of proving existence of equilibrium in such spaces

is based on a fixed point result of Mas-Colell (1986) (see, e.g., Duffie (1986)). Mas-Colell's

theorem assumes "uniform properness" of utility functions, which in the time—additive case

requires finite marginal utility at the zero level of consumption. On the other hand, the

derivations of statements (1.1) and (1.2) require positivity of consumption at all times, a

situation which is known not to prevail when the marginal utility of zero consumption is finite.

Araujo & Monteiro (1989a,b) have obtained equilibrium without assuming "uniform

properness", but the ramifications of their results for continuous—time, capital asset pricing

theory have yet to be explored.

The present paper concerns the existence of equilibrium and the extent to which (1.1)

and (1.2) hold. The main result is that equilibrium does exist, but if some agents have finite



marginal utility at zero while others do not, then the riskless asset can fail to have a rate of

return in the traditional sense, i.e., there may be no processes r(t) such that the price Po(t) of

the riskless asset satisfies

r*
(1.3) P0(t) = P0(0) exp( r(s)ds).

J0

However, (1.1) holds in a more general sense made precise in Remark 8.3. Likewise, the price

processes of the risky assets may not have rates of return in the traditional sense. However, the

difference between any risky asset and the riskless asset will have a traditional rate of return,

and if we define the "excess rate of return" to be the rate for this difference, then (1.2) will

hold. All these difficulties are caused by the fact that some agents may see their optimal

consumption fall to zero. If assumptions are made to prevent this, then a process r(t)

satisfying (1.3) can be found, and the characterizations (1.1) and (1.2) hold.

Duffie & Zame (1989) were the first to prove the existence of an equilibrium satisfying

(1.1) and (1.2) in a continuous—time, consumption—based, capital asset pricing model. They

assumed infinite marginal utility at zero for every agent and avoided Mas—ColelPs uniform

properness condition by a functional analytic argument. Consequently, the anomaly addressed

by the present work did not arise. Duffie & Zame's model also included a spot price process,

which denominated the consumption good in terms of a "numeraire." Such a process obscures

the difficulty we address here because rates of return for assets denominated in terms of a

numeraire can exist even when their rates denominated in terms of the consumption good fail

to.

Karatzas, Lehoczky & Shreve (1990) established the existence of equilibrium by

reducing the problem to a finite—dimensional fixed point problem. (Some of the results of

Karatzas, et al have been sharpened by Dana & Pontier (1990).) The variables in the

finite-dimensional problem of Karatzas et al are the weights needed to form the appropriate



representative agent, an idea borrowed from Huang (1987). The method does not require any

conditions on marginal utilities at zero, but existence of equilibrium is obtained only if the

model includes a spot price process. (Such a model is referred to as the moneyed model in

Karatzas, et al) In the model without a spot price (the moneyless model), equilibrium is

obtained in Karatzas et al only when all agents have infinite marginal utility at zero.

In this paper we consider a multi—agent model without a spot price and with no

condition on marginal utilities at zero. For the sake of simplicity, we set up the model in a

pure—exchange economy; it is not difficult to combine this paper with Karatzas, Lehoczky &

Shreve (1990) to obtain analogous results for a production economy. Martingale methods are

used to solve the optimization problems for the individual agents, and so there is no need to

introduce a state vector or otherwise attempt to create Markov processes. This was also the

case in Duffie (1986), Duffie & Zame (1989) and Karatzas, Lehoczky & Shreve (1990), but not

in previous equilibrium papers.

In order to obtain equilibrium, we hypothesize at the outset a riskless asset (called a

bond) whose price is continuous and of bounded variation, but which is not necessarily

absolutely continuous. Thus, there is no "interest rate" which can be used to recover the price

process for this bond. The risky assets (called stocks) also have continuous, bounded variation

price processes. We assume in the main body of the paper that the singularly continuous parts

of the stocks prices match that of the bond price; we show in an appendix (Section 11) that

failure of this condition would allow arbitrage. Following Karatzas, Lehoczky & Shreve (1990),

we reduce the equilibrium problem to a finite—dimensional fixed point problem, whose solution

allows us to define a representative agent utility function. Related to the fact that some agents

can see their optimal consumption fall to zero, this representative agent utility function may

have a discontinuous first derivative. Ito rule computations for such a function introduce

semimartingaJe local times, and these in turn lead to singularly continuous components in the

asset prices. Section 8 provides formulae for the equilibrium asset prices and interprets them in

light of (1.1) and (1.2). Section 9 shows by example that the singularly continuous components



in the asset prices can be nontrivial, even in apparently innocuous situations.

Finally, we note that by allowing asset prices to be possibly discontinuous

semimartmgales, Back (1990) constructs a consumption-based, capital asset pricing model even

more general than ours. In this context and under the assumption of existence of equilibrium,

he obtains a counterpart to (1.2). Our paper presents a rationale for moving at least some

distance from the traditional model (with absolutely continuous asset prices) in the direction of

the one proposed by Back.

2. Agents and Endowment Processes.

We consider an economy consisting of N agents. Each of these agents receives an

exogenous endowment process en = {^n(t); 0 < t < T} which is positive, and progressively

measurable with respect to the filtration {^t}. It will be assumed throughout that {^t} is the

augmentation by null sets of the natural filtration

3f\ = <r(W(s); 0 < s < t), t 6 [0,T]

generated by a d-dimensional Brownian motion W(t) = (Wi(t),...,Wd(t))* on the complete

probability space ( f l ^ P ) . All economic activity takes place on the finite horizon [0,T].

A
 N

The aggregate endowment e(t) = E en(t) will be assumed to be a continuous
n=l

semimartingale of the form

(2.1) = e{0) + f £(s)d£(s) + f e(sMs)ds + [ e(s)p*(s)dW(s).
Jo Jo Jo

Here £ is an {^t}~adapted process with paths which are continuous but singular with respect

to Lebesgue measure and of bounded variation on [0,T], and p, v are bounded,

{^tj-progressively measurable processes with values in Kd and K, respectively. We shall



assume that there are positive, finite constants k < K such that

(2.2) k < e{t) < K , V t E [0,T]

holds almost surely.

In order to establish the uniqueness of equilibrium, we shall also need the condition

(2.3) en(t) > 0 a.s. , V t e [0,T] and n = 1,...,N.

3. Utility Functions

Each agent is endowed with a utility Junction Un : (0,QD) -> R which is of class C3,

strictly increasing and strictly concave, and satisfies U£(<D) = l im U^(c) = 0.
C-+CD

For the uniqueness of equilibrium, we shall also need the condition

(3.1) c H cU^(c) is noncedreasing, V n = 1,...,N.

rU '' (c\
This condition amounts to assuming that — rr/Ki , the Arrow-Pratt measure of relative

unv c /

risk—aversion, is less than or equal to one.

We shall denote by In the inverse of the function U£; this is a strictly decreasing

mapping of (0,U£(0)) onto (0,oo), and we extend it on all of (O,GD) by setting In(y) = 0 for

y > u;(o).
In this model, agents derive utility by consuming parts of the aggregate commodity

endowment. Because such endowments will typically be random and time—varying, the agents

will find it useful to participate in a market which allows them both to hedge their risk and

smooth out their consumption. A model for such a market is introduced in the next section; its

coefficients will be determined in section 8 by equilibrium considerations, in terms of the

endowment processes and utility functions of the individual agents.



4. A Financial Market with Singular Bond Prices.

This financial market has d + 1 assets; one of them is a pure discount bond, with price

Po(t) at time t which satisfies

(4.1) dPo(t) = Po(t)[r(t)dt + dA(t)] , P0(0) = 1.

The remaining assets are risky stocks, with prices-per-share Pi(t) given by

d
(4.2) dPi(t) = Pi(t)[bi(t)dt + dAi(t) + E ^(t)dWj(t)], 1 < i < d.

j l

The processes r( •), A( •), bi(•), Ai( •) and ay( •) will be referred to collectively as the

coefficients of the model. They are all {^t}-progressively measurable. The processes r( •),

bi(-) and aij(-) are bounded uniformly in (t,<j), the matrix o(t) = {^ij(t)}1<i .<(j satisfies

the strong nondegeneracy condition

(4.3) fo(t)<r*{\)t > « 2 ; V t e [0,T], V t e Rd

almost surely (for some given 6 > 0), and the processes A, Ai have P—almost every path

continuous, of bounded variation on [0,T] (uniformly in u) and singular with respect to

Lebesgue measure, with A(0) = Ai(0) = 0, i = l,...,d.

We shall see in section 10 (Appendix) that we have to assume

(4.4) Ai(t) = A(t); V t G [0,T] , i = l,...,d

almost surely, in order to exclude arbitrage opportunities. This condition will be imposed from

now on.

The so-called "relative risk process"



(4.5) 0(t) = (^t))"1 [b(t) - r(t)l] , 0 < t < T

will be important in the sequel. Let us notice that it is progressively measurable with respect

to {^t} and, thanks to (4.3), bounded.

5. Portfolio and Consumption Policies

Each agent has at his disposal the choice of an Rd—valued portfolio process 7rn(t) =

("•ni(t),...,7rnd(t))*, and of a nonnegative consumption rate process cn(t), 0 < t < T; these

fT
processes are {^t}—progressively measurable, and satisfy {||in(t)||2 + cn(t)}dt < a>, a.s.

J0

For every such pair (7rn,cn), the corresponding wealth process Xn has initial value Xn(0) = 0

and obeys the equation1

d d
dXn(t) = S 7rni(t)[bi(t)dt + dAi(t) + £ <rij(t)dWj(t)]

i l j l

d
+ (Xn(t) - £ 7rni(t))[r(t)dt + dA(t)] + (en(t) - cn(t))dt

i=l

(5-1) d

= Xn(t)[r(t)dt + dA(t)] + (en(t) - cn(t))dt + £ 7rni(t)dGi(t)
i l

-r(t)l)dt

where b(t) 4 (b^), . . ,^^))*' 1 = (!,...,!)* and Gi(t) 4 Aj(t) - A(t) for i = l,...,d.

iThe interpretation here is that 7rni(t) represents the amount invested by the nth agent in the
d

ith stock, at time t, for i = l,...,d; the amount Xn(t) - S 7Ti(t) is invested in the bond.
i l



Let us recall the process 9 of (4.5), and introduce the exponential martingale

(5.2) Z(t) 4 exp[- [ 0*(s)dW(s) -I \ ||0(s)||2ds]; 0 < t < T.
JO Jn

According to the Girsanov theorem,

A f1

(5.3) W(t) = W(t) + 0(s)ds ; 0 < t < T
J0

is then a Brownian motion under the new probability measure P(A) = E[Z(T)1 ], A 6 9 (cf.

Karatzas & Shreve (1988), §3.5). With this notation, and taking (4.4) into account, the

solution of (5.1) is given by

(5.4) /?(t)Xn(t) = f /?(s)(en(s) - cn(s))ds + f /3(s)7r*(s)a(s)dW(s); 0 < t < T,
Jo Jo

where

(5.5) /?(t) = p^t) = exp{- J r(s)ds - A(t)}.

5.1 Remark: The martingale Z of (5.2) satisfies the equation

(5.6) Z(t) = 1 - [ Z(s)0*(s)dW(s).
Jn0

An application of the integration—by—parts formula to the product of /?Xn and Z yields then,

in conjunction with (5.4) and (5.6):



(5.7) C(t)Xn(t)= f C(s)Ms)-cn(s)]ds+ f C(s)[a*(s)7rn(s)-Xn(s)^(s)]*dW(s); 0 < t < T.
JO JO

Here

(5.8) C(t) 4 /?(t)Z(t) ,

and it is easily verified that the equation (5.7) is actually equivalent to (5.4).

D

We assume for the present that the process ( of (5.8) satisfies the condition

(5.9) 0 < 6 < C(t) < A ; V 0 < t < T

almost surely, for some finite constants A > 6 > 0. This assumption will be justified at the

end of Section 7.

5.2 Definition: The portfolio/consumption process pair (7rn,cn) for the n t h agent is called

admissible, if the corresponding wealth process of (5.4) satisfies

~ rT

E( /?(s)en(s)ds
J t

0 , V t € [0,T],

or equivalently (by virtue of the so-called "Bayes rule", p. 193 in Karatzas k Shreve (1988)):

rT

(5.10) C(t)Xn(t) + E( C(sMs)ds | ^ t ) > 0 ; V t € [0,T],
Jt

almost surely.
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In particular, it follows from (5.7)-(5.10) and (2.2) that for an admissible pair (7rn,cn),

the process

ft
C(t)Xn(t) + C(s)(Cn(s) - £n(s))ds ; 0 < t < T

Jo

is a local martingale, bounded from below. It is, therefore, also a supermartingale with initial

value equal to zero, and this implies

o
(5.11) E [ C(s)cn(s)ds < E[C(T)Xn(T) + [ C(s)cn(s)ds] < E [

J o J o J

5.3 Proposition: Let cn be a consumption process which satisfies

T T
(5.12) E [ C(s)cn(s)ds = E f C(s)£n(s)ds.

J n J n

Then there exists a portfolio process 7rn such that the pair (£n>cn) is admissible, and the

corresponding wealth process Xn is given by

~ rT

(5.13) ^t)Xn(t) = E[ ^(S)(cn(s) - £n(s))ds | ̂ t ] ; 0 < t < T.
Jt

Proof: According to (5.12), the P—martingale

T
(5.14) Mn(t) 4 E[ [ /?(s)(cn(s) - s(s))ds | Sft) ; 0 < t < T

J n

has zero expectation; from the fundamental martingale representation theorem, it admits the



11

stochastic integral representation

(5.15) Mn(t) = f /?(s)7r*(sMs)dW(s)

for some portfolio process 7rn (cf. Karatzas k Shreve (1988), Problem 3.4.16 and proof of

Proposition 5.8.6). It follows then, firom (5.4), (5.14) and (5.15), that the wealth process Xn

corresponding to (xn,cn) is given by (5.13), and that it satisfies the admissibility requirement of

Definition 5.2.

D

6. The nth Agent's Optimization Problem.

Each agent's goal is to maximize the expected discounted utility from consumption

rT -/V(s)ds
(6.1) E e ° U(cn(t))ds,

J0

over all admissible pairs (7rn,cn) which satisfy

(6.2) E f e ° U~(cn(t))dt < CD.
Jn

Here p : [0,T] -* R is a given bounded, measurable function. A pair (irU}cn) that achieves the

supremum of (6.1) over such pairs, is called optimal

We can describe the optimal (7rn,cn) in the manner of Karatzas, Lehoczky & Shreve

(1987) and Cox & Huang (1989), as follows: there is a unique positive number yn for which
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rT /V(s)ds rT
(6.3) E C(t)In(ynC(t)e° )dt = E C(t)£n(t)dt.

Jn Jf)

Then the consumption process

/V(s)ds
(6.4) cn(t) 4 In(ynC(t)e ° ); 0 < t < T

satisfies (5.12), and from Proposition 5.3 there exists a portfolio process 7rn such that (7rn,Cn)

is admissible — with associated wealth process given by (5.13).

For any other admissible pair (xn,cn), the elementary consequence of concavity:

Un(In(y)) > Un(c) + y[In(y) - c] ; V y 6 [0,*), c 6 [0,co)

gives (when applied to y = yn C(*0e o aad c = cn(t)), after multiplying by

ft
exp{- Ks)ds} and integrating dt x dP:

Jn

-/V(s)ds rT , t ,
E | e ° Un(cn(t))dt - E e - ^ B ; U B Un(cn(t))dt

0 J0

T T
> 7 n [ E [ C(t)Cn(t)dt-E[ C(t)Cn(t)dt].

Jo Jo

But this last term is nonnegative, thanks to (5.11) and (5.12), and the optimality of (7rn,cn)

follows. (By taking cn(t) to be a suitable constant in the above argument, we see that cn(-)

satisfies the requirement (6.2).)
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7. Equilibrium and the "Representative Agent".

We shall say that the financial market of section 4 results in equilibrium, if in the

notation of section 5, we have the following conditions:

(i) Clearing of the commodity market:

N
(7.1) E cn(t) = e(t); 0 < t < T,

n=l

(ii) clearing of the stock markets:

N
(7.2) £ 7rni(t) = 0 ; 0 < t < T , i = l,...,d ,

n=l

(iii) clearing of the bond market

N .
(7.3) E Xn(t) = 0 ; 0 < t < T .

n=l

In this context, cn, 7rn and Xn denote the optimal processes for the n th agent.

7.1 Proposition: The conditions (7.1) — (7.3) lead to the a.s. identity

* N /V(s)ds

(7.4) e ( t )= E In(ynC(t)e° ) ; 0 < t < T,
n=l

where yn is defined by (6.3) for n = 1,...,N.

Conversely, suppose that there exists a financial market for which the process £ of

(5.8) satisfies (7.4) and (6.3), for suitable positive numbers yi,...,yr Then this financial

market results in equilibrium.
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Proof: For the first claim, simply observe that (7.4) follows from (7.1) and (6.4). For the

converse, note that for the financial market in question the optimal consumption processes

{cn}n=i a r e again given by (6.4), and the corresponding wealth processes {Xn}n=i by (5.13).

The condition (7.1) follows directly from (7.4) and (6.4), and leads, in conjunction with (5.13)

N
and (5.14), to (7.3) and £ Mn(t) = 0, respectively. Now this last condition, together with

n=l
(5.15) and the nondegeneracy of a*, gives (7.2).

D

In order to facilitate the search for an equilibrium financial market, let us introduce for

every vector A e (O,OD)H the function

A N

(7.5) U(c;A) = max E AnUn(cn) ; 0 < c < a.
Ci>0 , . . . , c r > 0 n = l

N N"
E cn = c

n = l

It can be seen as in Karatzas, Lehoczky k Shreve (1990), section 10, that the maximum is

achieved at

(7.6) cn = In(^- H(c;A)) ; n = 1,..,N

where H( •; A) is the inverse of the continuous, decreasing function

(7-7) I(y;A)i E In(y/An); 0 < y < . .
n=l

N
Thus U(c;A) = E AnUn(In(H(c;A)/An)), and it follows from this representation that U(-;A)

n=l
is continuous and continuously differentiable on (0,a>) with U'(c;A) = H(c;A), and of class C3
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away from the set

(7.8) j( = (a1?..,aN}, with an 4 I(AnU;(0);A).

We interpret the function U(- ;A) of (7.5) as the utility function of a representative

agent, who assigns weights Ai,...,AN to the individual agents in the economy.

The problem of equilibrium can then be cast as that of determining the "right" way to

assign these weights. Indeed, with the identification A = (Ai,...,A ) = (—,...,—) the equations
« yi yN

(7.4), (6.3) can be written as:

(7.9) C(t) = e ° S V ( e ( t ) ; A ) ; 0 < t < T

(7.10)

= Ef e ° ^'(eWjAJenWdt; n = 1,..,N,
Jo

and constructing equilibrium is equivalent to finding a vector A e (0,a>) which satisfies (7.10).

Once such a vector has been found, the process ( of the corresponding financial market

is given by (7.9) and satisfies the requirement (5.9), thanks to the assumption (2.2) and the

continuity of U' (• ;A). The optimal consumption processes of the individual agents are given

by (6.4) as

(7.11) cn(t;A) 4 In( 1 U'(e(t);A)) ; 0 < t < T, n = 1,...,N
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(see also (7.6)).

8. Characterization of Equilibrium Asset Prices.

We quote from Kaiatzas, Lehoczky k Shieve (1990), Theoiem 11.1, the following

fundamental lesult.

8.1 Theorem: Theie exists a vectoi A e (0,GD)H which satisfies (7.10). Fmtheimoie, if the

endowment processes satisfy (2.3) and all utility functions {U n } n s l obey condition (3.1), this

vectoi is unique up to a multiplicative constant.

D

A /V(s)dS
Considei now the piocess 7;(t) = 0) e ° ; fiom (5.8), (5.5) and (5.6) it follows

that 7] satisfies the stochastic integial equation

(8.1) 77(t) = 1 + f 77(s){M(s) - i ( s ) } d s - [ 7/(s)dA(s) - [ 7/(s)0*(s)dW(s).
JQ JO JO

On the othei hand, (7.9) gives rj(t) = U'(e(t);A); apply the geneialized Ito lule foi convex

functions of semimartingales (e.g. Kaiatzas & Shieve (1988), Chaptei 3, Theoiems 6.22, 7.1

and Pioblem 6.24), to obtain

= U'(e(0);A) + JjU

( ( ) ; ) ( ) ^ ( ) f U - (5(s);AMs)p*(s)dW(s)
o Jo

(8.2)

N
+ S

n = l



17

in conjunction with (2.1), where Lt(a) is the local time at a for the semimartingale e,

accumulated up to time t.

We can identify now various terms in the two semimartingale decompositions (8.1),

(8.2) for the same process 77, to get

(8.3) U'(£(O);A) = 1

(8 4) r(t) = tft) U"
U'(e(t);A)

(8.5) U"
U'(e(t);A)

and

- J0U'(e(s);A) 'tVMW-^ U}(an;A) ^

Condition (8.3) determines uniquely the vector A amongst those which satisfy the

equations (7.10). With A thus determined, (8.4) - (8.6) provide the equilibrium values for

the processes r, 0 and A appearing in the financial market of section 4. The equilibrium

market is thus determined uniquely, up to the formation of mutual funds (in the sense that the

coefficients b, a are not individually determined, but only modulo the process

0(t) = ((j(t))"1[Kt) - r(t)l] that they give rise to).

8.2 Remarks: If U^(0+) = © for every n = 1,...,N and f = 0 in (2.1), then (8.6) gives

A = 0. Formulae (8.4), (8.5) for the equilibrium financial market model agree then with (11.8),

(11.9) of Karatzas, Lehoczky & Shreve (1990). In this case, the process of r of (8.4), (4.1) is a

genuine interest rate.

On the other hand, if U^(0+) < © for some n = 1,...,N, or if the process £ in (2.1) is
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nontrivial, then the resulting process A of (8.6) is nontrivial as well. The resulting bond price

process Po, in the financial market model of section 4, does not have then a bona—fide interest

rate. In the following section we present an example of this situation.

8.3 Remark: In light of (8.2), it is reasonable to define the growth rate of the marginal utility

for consumption of the representative agent to be the stochastic differential

U'(e(t);A) [U" (eW;AMtMt)dt + \

N
+ U" (e(t);A)e(t)d£(t) + E (U" (<*n+;A) - U " (an-;A))dLt(an)].

n=l

This quantity is equal to —(r(t) — /x(t))dt — dA(t). In particular, if there is no discounting

(M = 0),

(8.7)

which is a precise formulation of (1.1). From (8.5), we have

(8.8) b ( t ) - r ( t ) l =

a precise formulation of (1.2) (recall (4.4)).

9. An Example.

Let us consider again the Example of section 11 in Karatzas, Lehoczky & Shreve (1990);

with d = 1, N = 2 and fi = 0, we take U^c) = log c and U2(c) = log(l+c). Then for any

A = (Ai,A2) G (0,OD)2, we have
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(9.1) I(y;A) =

y

- ^ 2 - 1 ; 0 < y < A 2 I

y > A2

, H(c;A) =
; o<c<o(Ay

with a(A) = A1/A2 j and the numbers cn of (7.6) are given by

(9.2) C!(c;A) =
c ; 0 < c < a(Ay

, c2(c;A) =
0 ; 0 < c < a(A)

- i ; c>o(A)

The representative agent utility function U(c;A) = AiUi(ci) + A2U2(c2) becomes then

(9.3) U(c;A) =

log c

log A i ^ A j | + A2log

0 < c < a(A)

K- ; c > a(A)

and we observe

U" (a(A)+;A) - U
\3A2

(9.4)

For the aggregate endowment, we consider the process

e(t) = 1 + exp[W(tAr) - ^ (tAr)2], 0 < t < T with r = inf{t E [0,T]; Wt = 1} A T, which is a

bounded martingale and satisfies

de(t) = e(t) l { t < r } dW(t) , e(0) = 2(9.5)

(i.e., (2.1) with £ = 0, v = 0, p(t) = e(t) l / t < r \ ) , as well as (2.2). For a given number

k e (0,1) which also satisfies
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(9.6) k

we take

(9.7) El{t) 4 k e(t) , e2{t) 4 (l-k)e(t).

With these choices, the equations (7.9), (7.10) become

(9.8) <(t) = U'(e(t);A)

fT
(9.9) AiT = k E C(t)e(t)dt

J n

T T
(9.10) E [ (A2 - C(t))* dt = (1-k) E f C(tMt)dt.

Jo JO

According to Theorem 8.1, there exists a unique A e (0,CD)2 which satisfies (9.8) - (9.10) and

U'(1;A) = 2. We shall deal henceforth with this A, and denote the corresponding a(A) =

A1/A2 simply by a.

Suppose that e(t) < a, V t € [0,T] almost surely. Then from (9.3), (9.8) we have

C(t) = ^ y and (9.9) gives k = 1, a contradiction. On the other hand, suppose that

e(t) > a, V t 6 [0,T] almost surely; since e(-) reaches values arbitrarily close to one with

positive probability, we must have a < 1. Moreover, £(t) = ^ , +
£ | | u and (9.8), (9.9) give

TA
XTf V = kE f T-jli/rTdt

which, in conjunction with (9.6), yields the contradiction j± = a > 1. It develops from this
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analysis that the process £(•) crosses the level a during the interval [0,T], with positive

probability.

From (8.4) — (8.6) we conclude that the equilibrium coefficients of the financial market

are given by

(9.11) r(t) = -

(9.12) Kt) = [ l { £ ( t ) < Q } + ^ l{e{t)>a}]} l{tiT}

in this case. From the preceding analysis, it develops that the process (9.13) is non—trivial.

According to (6.4) and (9.2), the optimal consumption processes are given by

(9.14) Hi) = e(t) l { £ ( t ) < a } + SOH-iffl l

9.1 Remark: It is perhaps worthwhile to note that {t > 0; e(t) = a}, the set of time-points

charged by the process A of (9.13), coincides with the set of time—points at which switches

from one regime to another occur in the formulae (9.14), (9.15).

This actually holds in some generality; with £ = 0, the process A of (8.6) charges the
N

set U {t > 0; e(t) = an} and is flat away from it. Now for any fixed n € {1,...,N} with
n=l

< OD, {t > 0; e(t) = an} is precisely the set of time-points at which



22

the optimal consumption process for the n t h agent, "switches from positive to zero value, or

vice-versa" (or equivalently: the set of time-points at which the n t h agent "exits from", or

"enters into", the economy). It is precisely at these instances of exit or entry that the

singularly continuous process A makes itself felt. (Of course, when e(-) has a nonzero

diffusion coefficient p, these "switches" are not clean; every point of the set {t > 0; e(t) = an}

is a cluster point, and it is not possible in general to say, at any one of these points, whether

the agent is "exiting" or "entering" the economy.)

10. Appendix.

In this section we show that the condition (4.4), or equivalently

(10.1) Gi = Ai — A has a.a. paths absolutely continuous
with respect to Lebesgue measure, V i = l,...,d ,

is necessary for excluding arbitrage opportunities in the financial market of section 4- The

sufficiency of (10.1) in this regard follows from the inequality (5.11).

Let us start by writing the solution of equation (5.1):

[ /?(0)M0)-cn(0))d0+ E f
0 i=l J0

(10.2)

Jo - Jo
+ f P(0K{e)(b(e)-i{e)i)d0+ f ft0)*t{0)o{e)Avr{0); t > o.

Jo - Jo

For any given function £ : [0,©) -»R of bounded variation, let us denote by £(t) its total

variation on the interval [0,t]. We define
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(10.3) C(t) 4 t + E Fi(t) , Fi(t) 4 Gi(t) + f (bi(0) - r(0))d0 ; t > 0
i = l JO

(10.4) T(s) 4 inf{t > 0; C(t) > s} ; s > 0.

10.1 Lemma: (i) For every fixed s > 0, T(s) is a stopping time of {J^t}; the resulting filtration

(10-5)

satisfies the usual conditions.

(ii) Almost every path of the process {T(s); s > 0} is absolutely continuous with respect

to Lebesgue measure and is strictly increasing.

(iii) For every i = l,...,d, almost every path of the process {Fi(s) = Fi(T(s)); s > 0} is

absolutely continuous with respect to Lebesgue measure.

Proof: For (i), cf. Karatzas & Shreve (1988), Exercise 3.4.4 and Problem 3.4.5. For (ii) and

(iii), we have from (10.3) almost surely: C(t2) - C(ti) > max(t2 - ti, Fi(t2) - Fi(ti)),

V 0 < ti < t2. Therefore, for given 0 < Si < s2:

s2 - Bl = C(T(s2)) - C(T(Sl)) > max(T(s2) - T ( ^ f Fi(T(s2)) -

The conclusions on absolute continuity follow now easily from this.

Consequently, we can write

(10.6) T(s) = f T ^ d i / , Fi(s) = f t\{y)&v
Jn Jo
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where T ' , F\ are {ps}~progressively measurable, locally integrable processes.

On the other hand, the processes /?(s) 4 /?(T(s)), X(s) = Xn(T(s)), e(s) = en(T(s)), c(s)

4 cn(T(s)), 5r(s) 4 *n(T(s)), b(s) 4 b(T(s)), r(s) 4 r(T(s)), o(s) 4 <r(T(s)), M(s) 4 W(T(s))

are all {j?s}—progressively measurable. In terms of them, we have the following time-changed

version of equation (10.2):

#(s)X(s) = f #(i/)(e(i/)-c(*/))T'(i/)di/+ S [ 0^)%^)?^)^
JO i=l J0

(10.7)

p3(i/)5rV)a(i/)dM(z/) ; s > 0.
Jn'o

The process {M(s), p s ; s > 0} is a martingale on (Q,&,?) with quadratic variation

T(s); therefore, there exists a Brownian motion B on this space (possibly extended, to

accommodate an independent, one—dimensional Brownian motion process), such that

(10.8) M(s) = f Jl"(i/) d B » ; s > 0
J0

(Karatzas & Shreve (1988), Theorem 3.4.2).

Let us take now c(s) = o, 5ri(s) 4 k sgn(F<(s)) • lir'(s)=z0V S- ^' ^or S 0 m e

constant k > 0. The process 5ri is bounded and {ps}—progressively measurable, and thus the

process 7rni(t) = 5ri(C(t)) is bounded and {^"t}-progressively measurable. If Xn is the wealth

process corresponding to consumption cn = 0 and portfolio xn = (rni,...,irnd)* as above, the

time-changed version X(s) = Xn(T(s)) is given, thanks to (10.7) and (10.8), by

(10.9) fts)X(s) = JS j9(i/)f(i,)T'(i/)di/ + k JS 0(u) S
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Now suppose that we have, for some i = l,...,d: meas{s > 0; F^s,**;) £ 0 and

T'(s,u/) = 0} > 0, for every u in some event of positive probability (here and below, "meas"

stands for "Lebesgue measure"). Then by selecting k > 0 sufficiently large, we can make

X(-) a.s. nonnegative, and arbitrarily large with positive probability. In order to exclude this

"arbitrage possibility", we must have

(10.10) meas{s > 0; F^s,^) t 0 and T'(s,o;) = 0} = 0; Vwtfi*' i = l,...,d

for some event Q* with P(fi*) = 1.

10.2 Lemma: (10.10) implies (10.1).

Proof: Fix v 6 Q* and e > 0; then there is a 6 > 0 such that

m
£ [Cac(t j ,o>) — Cac(tj,o;)] < £, for every finite collection of non-overlapping intervals

j=l
m

{(tj,t<)}|=1 in [0,T] with S (t< - tj) < 6. (Here and in the sequel, the superscript "ac"

denotes the absolutely continuous part.) Then for every i = l,...,d, the quantity

m m
S |Fi(t<,«) —Fi(tj,w)| = S

3=1 j=

m

(thanks to (10.10)) can be made arbitrarily small, because it amounts to integrating the
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integrable function F<(-,a>) over a set with Lebesgue measure

m r ^ l *» i > ^ m

m rt^ m

Thus the function Fi(-,a;) is absolutely continuous with respect to Lebesgue measure,

and by (10.3) the same is true for the function Gi(- ,u;), for every i = l,...,d.

D
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