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Abstract

Optimal fictitious completions of an incomplete financial market are
shown to be associated with exponential martingales (not just local martinga-
les) and, therefore, to "an optimal equivalent martingale measure1'. Results of
independent interest, in the theory of continuous-time martingales, are deriv-
ed as well.

piirshurgb, PA 15213-3890



1. INTRODUCTION

This note is a sequel to our recent article Karatzas, Lehoczky, Shreve &

Xu [3] - hereafter abbreviated KLSX. It answers affirmatively an

interesting, and potentially also important, question raised in that article.

In the course of settling this question of mathematical finance, results of

independent interest in the theory of continuous-time martingales are obtained

as well.

The issue is the following: it is shown in KLSX that the problem of

finding a portfolio which maximizes expected utility from terminal wealth in

an incomplete financial market 3H, is equivalent to finding a fictitious

completion JJl of this market with a certain minimality property, in a suitably
A

parametrized family {3H ; v€K(cr)} of fictitious completions. Now each such

3JI corresponds to an exponential local martingale Z . For the optimal

fictitious completion 3JL , is the associated Z a martingale? It is this
A A

question that is being answered affirmatively in the present note (Theorem

3.2), actually in a slightly more general setting.

We recall in section 2 the basic model of KLSX, and introduce the

necessary notation. Section 3 contains the abovementioned main result, and

section 4 presents its ramifications. Proofs of auxiliary probabilistic

results, some of them of independent interest, are collected in section 5.



2. THE MODEL

Let us recall the setting of KLSX, which is that of an incomplete

financial market JR with m+1 assets. One of them (the "bond"; has price

Pn(t) governed by

(2.1) dPQ(t) = P0(t)r(t)dt , PQ(O)=1 ,

whereas the remaining m "stocks" have prices-per-share P.(t) given by

(2.2) • dP.(t) = P.(t) [ b.(t)dt + £ o\.(t) dW.(t) 1 , i=l,...,m.
1 x L l j = x ^ J J

Here W=(W-,..., W ,)* is an IR - valued Brownian motion, on a complete

probability space (Q,g,P), where 5 is the P-completion of the <r-field

Wgenerated by W. We shall denote by (2L) the filtration generated by W and

augmented by P-null events. The interest rate r(t), the vector of stock

appreciation rates b(t)=(b (t),...,bm(t))* and the volatility matrix cr(t) =

W{o\ ,(t)} are progressively measurable with respect to { 2 . } . It is
1J 1—i—m X

assumed that d^m (the number of sources of uncertainty is at least as large

as the number of stocks available for investment), and that the matrix <r(t)

has full row rank for every (t,w). For simplicity, we shall also suppose that

the processes r(t), b(t) and

(2.3) 8(t) = <r*(t) (cr(t)<r*(t)fX [b(t)-r(t)l]

are bounded (uniformly in (t,o>)), where 1 denotes the m-dimensional vector

wth all components equal to unity. All economic activity is supposed to take

place on a finite horizon [0,T].

For a small investor (whose actions cannot influence the market prices),



a portfolio rule n( •) is an IR - valued, {§ } - adapted process with

rT 2
I |(r*(t)7r(s)| | ds < oo almost surely,

whose components 7r.(t) represent the proportions of the investor's wealth

invested in the corresponding stock i=l,...,m at time t. The wealth

process X ' (•), corresponding to a portfolio rule n{-) and a given

initial capital x>0, is given then by

m m d

(2.4)

^ f t ) U-E w.(t)>r(t)dt + J w.(t)(b.(t)dt+J] <r. .(t)dW.(t)}
L i= i x i = i l 1 j=i XJ J J

= XX>7r(t) [r(t)dt + ir*(t)<r(t)dW0(t)] ; XX>7l(0) = x > 0 ,

where

(2.5) WQ(t) := W(t) + J 8(s)ds , p(t) := expj-J r(s)ds| .

0

The solution to (2.4) is given by

(2.6) j3(t)XX>7l(t) = x-expj J 7r*(sMs)dW0(s) - (1/2) J I |<r*(s)7r(s)| |2ds \

The optimization problem considered in KLSX was the following: for a

given utility function U: (0,oo) - ^ R (of class C , strictly increasing and

strictly concave, with lim t/(x) = 0 and limv^n u'(x) = oo), to find a

portfolio rule n( •) which achieves the supremum in

(2.7) V(x) = sup EU(XX>ir(T)) ,

i.e., which maximixes expected utility from terminal wealth, amongst all

portfolio rules n(-) that satisfy EU*"(XX>7r(T)) < oo (these rules constitute

the class d(x)).



The case of a complete market (with m=d) has the distinctive feature that

"every contingent claim is attainable" ; in other words, for every positive,

Wg - measurable random variable B, there exists a level of initial capital x =

x n > 0 and an associated portfolio rule rc(-) such that A ' (T)=B, a.s. In
D

fact, with the help of the exponential martingale

(2.8) ZQ(t) « expT-J 9*(s)dW(s) - (1/2)J I |9(s)| | 2 dsl ,

the "price of the contingent claim B at time t=0fl is given by the Black &

Scholes - type formula Xg = E[/3(T)ZQ(T)B].

Thanks to this feature, the optimization problem of (2.7) is relatively

straightforward to solve in the complete case: the optimal level of terminal

wealth is given by

(2.9) <;* = I(yo(x)£(T)Zo(T)),

and there exists a portfolio n(-)Gd(x)f which achieves the supremum in (2.7)

and for which

(2.10) X XfU (T) = €Q , a.s.

In (2.9) and in the sequel, I s (u')~ is the inverse of the continuous,

strictly decreasing function u', and V s X is the inverse of the
o o

continuous, strictly decreasing function

(2.11) XQ(y) = Et(T)ZQ(T) I(yp(T)Zo(T))l, 0<y<«

(under the assumption X (y) < co, for all y€(0,oo)).



In an incomplete market (with m<d) the analysis becomes much more

involved: not every contingent claim is attainable, and the problem of (2.7)

is highly non-trivial. In KLSX, our approach to incomplete markets (inspired

in part by He & Pearson [1] and Xu [4]) was to consider a family of

fictitiously completed markets {3H ;i>€K(<r)>, created from 311 by adding to

(2.1), (2.2) the fictitious stocks with prices

(2.12) dP^'(t) = pV"(t) bT'todt + Ep..(t)dW (t) ; k=l,...,d-m.
K lc |_ k j = 1 kj j J

w
Here p(t) is a fixed (d-m)xd matrix-valued process, bounded and {!?.}- progres-

m
sively measurable, with orthonormal rows and <r(t)p (t)sO. The components of

the IR m - valued process b V (t) := p(t)p(t)+r(t)l give the appreciation

d W

rates of these additional stocks in terms of an R - valued, (2L) - progres-

sively measurable process v{ •) which satisfies

2
I | vis) | | ds < oo and <r(tMt) = 0 , f or all O t̂=sT

0

almost surely. We denote by K(<r) the space of such processes. For a given

market completion 9JI , the analogues of (2.3), (2.8) become G (t):=9(t)+v(t)

:= exp T -J (9(s)+v(s))*dW(s) - (l/2)f (| |9(s)| | 2+| |v(s)| |2)dsl,

0 0

and

(2.13)

respectively. Notice that Z (•) is, in general, only a (nonnegative) local

martingale, hence a supermartingale.



3. THE RESULT

The following result was proved in KLSX (Theorem 8.5); it provides a

sufficient condition for attainability in the incomplete market JJI.

W3.1 THEOREM (KLSX) : Suppose that, for a given positive, § T - measurable

random variable B, there exists a process A€K(<r) for which

(3.1) E[£(T)Z (T)B] * E[£(T)Z.(T)B] , for all v€K(<r).
V A

Then there exists a portfolio rule it(-), such that X^CD = B holds almost

surely, with x := E[p(T)Z. (T)B].
A

The purpose of this note is to complement Theorem 3.1 with the following

result.

3.2 THEOREM : In Theorem 3.1, the process ZA-) is a martingale.
A

From Theorem 3.2 we can conclude that the "optimal" fictitious completion

3JL of the original incomplete market 311, corresponding to the process AeK((r)

that satisfies the equivalent conditions discussed in section 4, is associated

with an exponential local martingale Z.(-) as in (2.13) that is actually a

martingale. Thus, one has the so-called "equivalent martingale measure"

PX(A) := E[ZX(TMAI , A € 3 ^ .

We present in this section our approach to Theorem 3.2; this is based on

two "key" probabilistic results, Proposition 3.4 and Theorem 3.5, which are of

independent interest. The proofs of all auxiliary results are collected in



section 5.

Let us denote by S[O,T] the space of {g } - progressively measurable

processes with values in R that are square-integrable on [0,T] almost surely,

and introduce the subspace

(3.2) K (<r) = fy€S[O,T]; <p(t) € Range (<r (t)) for all Ctet^T, a.s.},

which is the orthogonal complement of

(3.3) K(<r) = {v€S[O,Tl; <r(t)v(t)=O for all O^t^T, a.s.}.

For every #€S[O,T], the process

(3.4) < (t) = expf-f /(s)dW(s) - (1/2)J II ^(s) II 2 dsl,

Wis a local martingale of (3 t ) - With this notation, and from the fact that the

process 9 of (2.3) belongs to K (<r), we can write the local martingale Zy of

(2.13) in the form

(3.5) Z = £ •< , for every v € K(<r).

3.3 PROPOSITION : Under the assumptions of Theorem 3.1, there exists a

process <peK icr) such that the product £ • C is a martingale.

W3.4 PROPOSITION : Consider a continuous, strictly increasing and <gt> -

adapted process {-r(t); O^t^T}, with l i m
t 4 T

 Tft) = °° a n d x(0)=0 almost

surely, and denote by

(3.6) A(s) = inf{t2:0; x(t)>s}, Ô ŝ oo

its inverse. Then the process

(3.7) Mg = WA(s) ; O:ss<«

is an IR - valued martingale with respect to the filtration

with quadratic variations



<MX,Mk> = A(s)-6 .
S lJv

WFurthermore, { g . , J is the augmentation by null sets of the filtration

generated by M, i.e.,

(3.9) 5 s = I

3.5 THEOREM : Let (Q,g,P) be a complete probability space and X a

continuous, IR - valued process defined on [O,co], with continuous sample

paths. Assume that g is the P-completion of the <r-field generated by X, and

denote by {g } the augmentation of the filtration generated by X.

Consider two {g }-adapted, strictly positive processes M i »^ 2 with

continuous sample paths, defined on [0,«]. Suppose that M. = {M.(t),g ;

0^t<oo}, i=l,2 are martingales, and that the product M -M^ is an {g } -

martingale with last element MAm)-MAca) ; i.e.,

(3.10) Mx(t)M2(t) = EfM^ooJM^oa)!^], a.s.

for every t€[0,«]. Then M (co), M (») are last elements for the martingales

M and M?, respectively:

(3.11) M.(t) = E [ M . ( C D ) | ^ ] , a.s.

for every 0^t<«, i=l,2.

In other words, if M and M- are martingales on [0,oo), positive on [0,oo],

and their product M^M is a martingale all the way up to t=«, then M and

M^ have this property as well; neither of them can be "defective11 at infinity.

The above three results can be used to prove Theorem 3.2, as follows.

Proof of Theorem 3.2: Let <p be as in Proposition 3.3, and consider the time-

change

10



1 r1 2 2
(3.12) T(t) := + ( | | f (s ) l r+ | |A(s ) i r )ds , O^

T~* 0

which satisfies the requirements of Proposition 3.4, and let A(-) be its

inverse as in (3.6). Define the processes

(3.13) W(s) := W(A(s)), C (s) := ^(A(s)), Cjs) := CjAfs)); O*s<co.

From Propositions 3.4 and 3.3:

(3.14) «y := ^ *

(3.15)

,C are defined and positive on [0,a>],

and are {© }-martingales on [0,w)

(3.16) C • Ĉ  is a {6 }-martingale on [0,a].

From (3.13)-(3.16) and Theorem 3.5, we obtain that <; is a {© }-martingale on
A S

[0,oo], and thus E[C (T)]=E[C («)]=E[<L (0)]=l. By Girsanov's theorem, the
A A A

process

Wx(t) := W(t) + J A(s)ds, Ost̂ T

0
w

is then an {g }-Brownian motion under the probability measure
P.(A):=E[<.(T)1J , A^ll , and from (3.4) and the orthogonality of 9 and X :

A A A 1

Ce(t) := exp|~-f 8*(s)dWx(s) - (1/2)J | |0(s)| | 2 dsl ,

But 9 is bounded, and thus C« is a P -martingale. We obtain then from (3.5):
& A

E[ZX(T)] = E[Ce(T)-Cx(T)] = E [<Q(T)] = 1 ,

which proves that Z^ is a martingale.

11



4. IMPLICATIONS

For the analogue of the optimization problem of (2.7) in the complete

market 9Jt , v€K(<r), the optimal level of terminal wealth becomes

(4.1) ^ = I(yv(x)£(T)Zv(T)),

where V := (X ) is the inverse of the continuous, strictly decreasing

function

(4.2) X^(y) := E ^ D Z ^ m KyjSCnZ^T))], 0<y<« ,

provided this latter is finite (by analogy with (2.9),(2.11)).

Given any process X in K (<r) := {veK[<r); X (y)<« for all 0<y<oo}, the

random variable £. will be the optimal level of terminal wealth for the

problem (2.7) in the original, incomplete market 3Jt , if the corresponding

portfolio (which achieves £ as its terminal wealth) invests in the original
A

m+1 assets only:

(4.3) 3 71 € d(x) s.t. X^CT) = £ j , a.s.

But this portfolio will be admissible in any other fictitious completion 3JT ,

whence the minimality property

(4.4) EU(£*) s EU(^J) , for any vcK^cr) ,

referred to in the introduction.

It was shown in KLSX that the properties (4.3),(4.4) are equivalent to

each other, as well as to the additional properties

(4.5) E U(^(x)p(T)Z,(T)) * E \J(V. (x)/3(T)Z (T)), for all veKA
A A A V 1

(4.6) Elp(T)Z (T)$?l s EtemZ-m^] , for all
V A A A

12



(In (4.5), U(y) := max {U(x)-xy}, 0<y<« is the convex dual of
x>0

the concave function U.)

Furthermore, if there exists a process \eK (<r) satisfying any one of

(4.3)-(4.6), then the portfolio n of (4.3) is optimal for the

incomplete market optimization problem of (2.7).

The existence of such a A (and n) was established in KLSX under

"reasonable" conditions on the utility function U, using convex duality

methods. From (4.6) and Theorem 3.2, it follows that the exponential local

martingale Z., corresponding to this A.€K(cr), is actually a martingale.

13



5. PROOFS

We collect in this section the proofs of Propositions 3.3, 3.4 and

Theorem 3.5.

Proof of Proposition 3.3 : From the proof of Theorem 8.5 in KLSX, we know

that ^ X*'1* 7L is a martingale; here x, n and X are as in the statement of
A

the proof of Theorem 3.1. Now from (2.6),(2.5) and

(3.5) Zx(t) = CjtJ-expF-J 9*(s)dW(s) - (1/2)J II 9(s) II 2 dsl,

we deduce that , with <p := 6-cr*7r, the process x*£ ( t )C( t ) is equal to

<P A
p( t)Xx»«( t)zAt), a martingale.

A Q

Proof of Proposition 3.4 : The first two claims follow by standard arguments

from the Optional Sampling Theorem (cf. [2]; section 3.4, §§ B,C); only (3.9)

needs discussion. Let us start by observing that, because M is a (continuous)

martingale with respect to {6 }, it is a martingale with respect to its own

augmented filtration {g }. By Theorem 3.4.6 of [2], W(t)=M f . is a Brownian

motion with respect to {g , J (as well as relative to the possibly smaller
W

filtration <3 t ». But it is well-known that W has the martingale
W

representation property for its own filtration {g } (cf. [2], pp. 182-184),
and thus by Corollary 4.1 in [5]: {g^} = ^

It follows then that M has the martingale representation property for its

own filtration {gs> (cf. [5], Theorem 2). On the other hand, M is a local

martingale with respect to the possibly larger filtration {© }. By applying

Corollary 4.1 of [5] once more, we deduce {g }={© }.

For the proof of Theorem 3.5, we shall need the following observations

and notation.

14



To begin with, let us assume for concreteness that M (0)=M (0)=l. From

Fatou's lemma it follows easily that M , M? are supermartingales on [O,oo]. Let

us denote by

(5.1) g ° = <r(X(s); Ctes^t), CtetrSoo

the natural (non-augmented) filtration generated by the proces X. Then with

(5.2) g° = <r ( U 3°.),
00 0^t<« z

g is the P-completion of g° , and the filtration {g.} of Theorem 3.5 is just
00 t

the P-augmentation of the filtration {g°}.

Using the martingale property of the process M on [0,«) and the

Kolmogorov consistency theorem, one constructs (as in [2], p. 192) a

probability measure P on § satisfying
00

(5.3) P(B) = E[M.(t)-Lj for any B € 3? , Ost<«.

It can be shown (see proofs below) that

(5.4) P « P , on 3°
00

(5.5) P(A) a P(A):= E[M(»MJ , for any Ae§° .

A oo

In particular, (5.4) shows that P has a unique extension, also denoted by P,

to g. From (5.5) we obtain that

(5.5/ EU~) * E(£)

holds for any positive, g - measurable random variable £ (where E and E de-
note expectations with respect to P and P, respectively).

Proof of Theorem 3.5 : We would like to show that the two measures P, P of

(5.3), (5.5) actually agree on g; from this would follow EM]L(oo)=P(Q)=P(Q)=l,

whence M would be a martingale on [0,oo]. The same method would prove that M

is also a martingale on [0,oo],

15



To this end, and in view of (5.5), it suffices to exhibit a positive, 3 -

measurable random variable f), such that E(F)) - £(*))• It turns out that

f) = M?(oo) is the right choice. Indeed, using successively the assumption

(3.10), the definition in (5.5), property (5.5)', Fatou's lemma, (5.3), and

(3.10) again, we get

1 = E[M1(oo)M2(oo)] = EM2(oo) < EM2(«) < liminf EM2(t) = Iim E[Mj[(t)M2(t)] = 1 ,
t-oo t-oo

and thus EM f̂oo) = EM (̂oo) = 1, as promised. a

Proof of (5.4) : Take a P-null set A€3 and a double sequence
00

of events in the field U 3? which generates 3° » such that

00 00

(5.6) A Q B := U A . , £ P(A . ) * 2~n, for all n*l.n t , nk , , nkk=l k=l

K
For every K^l we obtain, for a suitable 5 = 5^ in (0,oo) and B „ := U A , :

K nK . 1 nk

(5.7) 2~n * P(B^) ^ P( U A , ) = E[ (MJS))"1 1_ ] ^ E[ (MJoo))"1 1 ].
n k=l n k X BnK l BnK

We have used the fact that, under the probability measure P, the process 1/M

is a martingale on [0,oo) and a supermartingale on [O,oo], Now let K tend to

infinity in (5.7) to obtain, by monotone convergence and in conjunction with

(5.6):

E I" (M^oo))"1 i A 1 < E [ (M^OO))"1 1 B 1 ^ 2^n, for all n^l.

Because M (oo) is a.s. positive and finite, this last relation shows P(A)=0. •

Proof of (5.5) : If A belongs to g£ for some t€(0,«), then (5.5) is just the

supermartingale property of M, on [O,oo]. Now take an arbitrary A^° ; for
1 00

16



 



every e>0 there exists a sequence {A } in U 3. such that A £ U A,
nn- l „ _ t k = 1 K

00 ^ ^

and £ p(AiJ ~ P^A) + G- i r ° r a ny integer N^l, we have from the above obser-
k=l

m r -i

vation, with C := U A, (l̂ m ôo) : E Mt(oo)-1 < P(CXT) .
m k=l L N J

Letting N increase to infinity, we obtain:

^ 00 ^

E[M.(»)-1.] s EtMJoo)-!- ] s P(C ) £ E P(A, ) s P(A) + e.
1 A 1 C« " k=l

But this holds for every e>0, and (5.5) follows.

6. ACKNOWLEDGEMENT

We are indebted to Chris Rogers for a helpful discussion, which

strengthened our confidence in the validity of the equality (3.9).

17



elloi

III
7. REFERENCES 3 fii4fl2 D13bfl

[1] HE, H. & PEARSON, N. (1989) Consumption and portfolio policies with

incomplete markets and short-sale constraints. Working paper,

University of California, Berkeley.

[2] KARATZAS, I. & SHREVE, S.E. (1988) Brownian Motion and Stochastic Calcu-

lus. Springer-Verlag, New York.

[3] KARATZAS, I., LEHOCZKY, J.P., SHREVE, S.E. & XU, G.L. (1989) Martingale

and duality methods for utility maximization in an incomplete

market. SIAM Journal on Control S Optimization, to appear.

[4] XU, G.L. (1990) A Duality Method for Optimal Consumption and Investment

under Short-selling Constraints. Doctoral Dissertation, Department

of Mathematics, Carnegie-Mellon University.

[5] YOR, M. (1979) Sur V etude des martingales continues extremales.

Stochastics 2 , 191-196.

18


