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Abstract

Let /C be a class of (universal) algebras of fixed type. /C* denotes
the class obtained by augmenting each member of K, by the ternary
discriminator function (/(x,y, z) = x if x / ?/, ^(x,x,z) = 2:), while
V(/C*) is the closure of /C* under the formation of subalgebras, homo-
morphic images, and arbitrary Cartesian products. For example, the
class of Boolean algebras is definitionally equivalent to V(/C*) where
/C consists of a two-element algebra whose only operations are the two
constants. Any equationally defined class (that is, variety) of algebras
which is equivalent to some V(/C*) is known as a discriminator variety.

Building on recent work of S. Burris, R. McKenzie and M. Vale-
riote, we characterize those locally finite universal classes K, of unary
algebras of finite type for which the first-order theory of V(/C*) is de-
cidable.



1 Introduction

The attempt to determine which classes of models of finite type have a de-
cidable first-order theory has a long and rich history. Recently R. McKenzie
and M. Valeriote [14] have made great progress in the study of equationally
defined classes of algebras (i.e., varieties) which are locally finite, by showing
that such a variety is decidable iff it is the varietal product of three decid-
able locally finite varieties of very special kinds: strongly abelian, affine, and
discriminator. Through the work of Valeriote [18, 14] it is completely under-
stood which locally finite strongly abelian varieties are decidable. Though
the same is not true of affine or discriminator varieties, it is known [3] that
every locally finite affine variety is equivalent (from many points of view, in-
cluding that of decidability) to the variety RM of all unitary left i?-modules
for some (canonically defined) finite ring R with unit. Thus our understand-
ing of decidable locally finite varieties will be complete if we can solve the
following two problems (cf. [4, chapter 14]):

PROBLEM 1: For which finite rings R with unit is RM decidable?

PROBLEM 2: Which locally finite discriminator varieties of finite type are
decidable?

This paper addresses the second problem.
For basic universal algebra the reader is referred to [5, 13]. An algebra

is locally finite if each of its finitely generated subalgebras is finite; a class is
locally finite if every algebra in it is locally finite. The ternary discriminator
on the set A is the function tA : A3 —> A given by

f
= <

c if a = 6
a otherwise.

A discriminator variety is a variety V for which there is a term t(x,y,z) in
the language of V which defines the ternary discriminator on the universe
of every nontrivial subdirectly irreducible member of V. An example of a
locally finite discriminator variety is the variety of Boolean algebras. The
only nontrivial subdirectly irreducible Boolean algebra (up to isomorphism)
is the one whose universe is {0,1}, and every operation on {0,1} is definable
by a Boolean term.
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There is a canonical way to generate discriminator varieties. Let JC be a
class of algebras of type L, let t be a ternary operation symbol not occurring
in L, and let L(£) denote the type L U {i}. If A G K then A* denotes the
L(*)-algebra (A,iA) , and V denotes {A* : A G JC}. Then the variety V(/C')
generated by /C* is a discriminator variety. Conversely, every discriminator
variety is definitionally equivalent to one of the form V(/C*) where JC is an
(essentially uniquely determined) universal class. Thus to solve Problem 2 it
is enough to determine which locally finite universal classes JC of algebras of
finite type are such that V(JC*) is decidable.

If JC is a universal class of algebras, then the structure of the members of
V(/C*) can be described in terms of Boolean products.

Definition 1.1 A Boolean product of a nonempty indexed family (Ax)xex
of algebras is a subdirect product A <sd Uxqx ^x of the family such that for
some Boolean topology on X,

(1) For all a, b G A, the set {x G X : a(x) = b(x)} is clopen;

(2) If a, b G A and N is a clopen set of X, then a\w U

Condition (2) is known as the "patchwork property." We write A <ip

Ylxex Ax if A is a Boolean product of (Ax)xexj ai*d refer to the members
of (Ax)xex as the stalks of A. For a class /C, Ta(JC) denotes the class of all
Boolean products with stalks from JC. Usually when referring to a particu-
lar Boolean product of (Ax)xex we shall assume that a particular Boolean
topology on X is specified.

If A <bp Ylxex Ax then A is a subuniverse of the L(£)-algebra Y\xex A*..
We denote the corresponding subalgebra of Hxex A£ by A(i). Clearly A(i) G
V(/C<). Conversely:

T H E O R E M 1.2 (Bulman-Fleming, Werner [1]) Suppose JC is a universal
class of algebras.

(i) If B G V(/C*) and \B\ > 1, then B S A(i) for some A G Ta()C).

(ii) If moreover B is countable, then the Boolean product A <&p Tlxex Ax

referred to in (i) can be chosen so that the Boolean topology on X has
only countably many clopen sets.



Let K be a class of algebras of finite type L. Th(/C) denotes the set of
all first-order L-sentences true in all members of /C. /C is decidable if Th(/C)
is a recursive set; otherwise JC is undecidable. JC is hereditarily undecidable
if every class K! of L-algebras satisfying JC C JC is undecidable. In this
paper we establish the hereditary undecidability of a class JC by semantically
embedding into JC a hereditarily undecidable class of graphs. The reader
is referred to [3] for an explanation of the method. It suffices to note here
that for any infinite cardinal K the class of all connected graphs with Ac-many
vertices is hereditarily undecidable.

Until 1988, only a few general results about the decidability of discrimi-
nator varieties were known. Tarski [17] showed in the 1940's that the variety
of Boolean algebras is decidable. Ershov [9, 10] extended this result to sev-
eral discriminator varieties not far removed from Boolean algebras. Then in
the early 1970's S. Comer [7, 8] developed some revolutionary sheaf-theoretic
tools which allowed him to prove that for every m > 2 the (discriminator)
variety of rings satisfying xm — x is decidable, and that every finitely gener-
ated variety of monadic algebras is decidable. H. Werner [21, 6] subsequently
extended Comer's methods to show that every finitely generated discrimina-
tor variety of finite type is decidable. Apparently the first known example
of a decidable but not finitely generated discriminator variety is the pure
discriminator variety V(SETS*), shown to be decidable by McKenzie in 1976.
Another example was given in [6].

For every n > 1 the class of cylindric algebras of dimension n is a non-
finitely generated discriminator variety, which can easily be shown to be
undecidable if n > 1 [8]. In 1975 M. Rubin [16] showed that the same is true
for dimension 1 (i.e., for monadic algebras). S. Burris subsequently general-
ized Rubin's result by showing [2] that if V is any nontrivial discriminator
variety then V(V*) is undecidable.

Then in 1988 Burris, McKenzie and Valeriote [4] developed some new
and powerful tools to analyse certain locally finite but not finitely generated
discriminator varieties. They were able to generalize McKenzie's result for
V(SETS*) to prove that if JC is a finitely axiomatizable locally finite universal
class of finite type and JC is homogeneous, then V(/Ct) is decidable; and that
if V is a locally finite variety of finite unary type, then V(V*) is decidable iff
V is homogeneous.

In this paper we present some stronger tools and a new notion of "almost
homogeneity" in order to classify those locally finite universal classes JC of



finite unary type for which V(/C*) is decidable. This paper is a natural ex-
tension of the recent work of Burris, McKenzie and Valeriote as well as of
the earlier work of Comer and Werner.

We adopt the following conventions: )Cfin denotes the class of all finite
members of /C. An algebra is n-generated iff it is generated by a subset of
cardinality at most n. A lower segment of a poset P is a subset L of P
such that if a G L and b < a then b G L. If A is an algebra of type L and
aij... an G A, then the quantifier-free n-type of (a i , . . . , an) is the set of all
quantifier-free L-formulas <f>(x\,... ,xn) satisfying A (= <f>(a).

Burris and Valeriote first described their joint work with McKenzie at the
University of Waterloo universal algebra seminar during the Spring 1988 and
Winter 1989 terms, and provided us with an early draft of their manuscript
[4]; we happily acknowledge our debt to them. We also thank Michael Albert,
Burris, Keith Kearnes, McKenzie and Valeriote for several helpful discussions
and comments.

2 A Feferman-Vaught theorem

In this section we prove a Feferman-Vaught-style theorem for Boolean prod-
ucts in which (1) each stalk is homogeneous "modulo a designated finite
subuniverse of bounded size," and (2) the designated finite subuniverses of
the stalks are coordinated in a nice way. This theorem will be used in the
following section.

Definition 2.1

(1) Suppose D is a locally finite algebra and Do is a subuniverse. D is
homogeneous over Do if for all finite subalgebras B, B' of D satisfying
B n Do = B' D Do, every isomorphism a : B = B' satisfying c\BnDQ =
id^nBo can be extended to an automorphism a of D satisfying G\D0 =
idjr>0. D is homogeneous if it is homogeneous over SgD0.

(2) If A is a locally finite algebra and Ao is a subuniverse, then A is locally
homogeneous over Ao if every finite subalgebra D of A is homogeneous
over D n i 0 .

Here are two easy consequences of the previous definition.



Claim 2.2 Suppose A is locally finite, AQ is a subuniverse, and A is locally
homogeneous over Ao.

(i) If A' < A, then A' is locally homogeneous over A! D Ao.

(ii) If A is countable, then A is homogeneous over AQ.

PROOF, (i) is trivial. To prove (ii), suppose B, B' are finite subalgebras of A
with BC\AQ = B'DAo, and suppose a : B = B' satisfies cr\BnA0 = i&BnA0- Let
D = SgA(jBU.B/); then D is finite, so a can be extended to an automorphism
a of D satisfying <7|r>n,4o = ^DnA0- As A is the union of a chain of finite
subalgebras containing D, a can be extended to an automorphism of A fixing
Ao. • I

The next definition describes an artifice which serves only to simplify the
presentation of the Feferman-Vaught theorem.

Definition 2,3 Suppose fC is a locally finite universal class of similar alge-
bras and H is a finite algebra of the same type.

(1) /C/H denotes the class of all A £ /C for which the set Ao = A 0 H is
a common subuniverse of A and H and, if nonempty, Ao inherits the
same operations from A as it does from H.

(2) Suppose A,B £ /C/H. An H-embedding from A to B is an embedding
a : A c—> B which satisfies a(a) = a for all a £ A D H and a(a) £ H

TT

for all a 6 A \ H. In this case write a : A c-» B. An H- isomorphism
is an isomorphism which is an H-embedding in the above sense.

TT

(3) If A,B £ /C/H, write A °-> B to mean there exists an H-embedding
H H

<J : A c-»- B, and A = B to mean there exists an H-isomorphism from
A to B.

The following lemma contains the central property of H-embeddings
which we shall need.

LEMMA 2.4 Suppose JC and H are as described in the previous definition
and A, B, C £ /C/H with B, C Unite and B < A. If A is locally homogeneous

TT TT TT

over ADH, a : B c—> C, and C <—> A, then there exists (3 : C c-> A satisfying
/3 o a = ids.



PROOF. Pick 7 : C £ A and let B' = ya(B) and D = SgA(B U 7C). Note
H

that 7a : B = B'. As D is finite and A is locally homogeneous over A O H,
7a extends to an H-automorphism fi of D. Let /? = /i""1 07 . I

Suppose now that /C is a locally finite universal class of algebras of finite
type for which Thy(/C) (the universal theory of K) is decidable, and H is a
finite algebra of the same type. Weispfennig observed in [20] that because
the type of /C is finite, there are only finitely many n-generated algebras
in K, (up to isomorphism) for each n. As Thy(/C) is decidable, there is an
algorithm which, given n > 0, produces a finite set /Cn of finite members
of JC/H (explicitly constructed in some uniform manner) with the following
properties:

1. Every A G fCn is n-generated;

H
2. For every n-generated B G /C/H there is an A 6 Kn such that B = A;

3. For all A , B G /Cn, if A ^ B then A = B;

4. fCn C /Cn+i for all n > 0.

In further discussions of /C/H in which the decidability of Thy(^C) is given,
we shall assume that the above algorithm is fixed (hence the /Cn's are fixed)
and shall let K^ = [jn<u; )Cn.

The recursiveness of Kn also implies the existence of an effective procedure
which, given n, returns a finite set Tn of terms in # 1 , . . . , xn, with the property
that for all A € £ and all a 6 An, SgA(a) = {tA(a) : t G Tn}. We shall refer
to this family of sets (Tn)n<UJ in the proof of Theorem 2.7.

Now we turn to Boolean products.

Definition 2.5 Let K, be a locally finite universal class of algebras of finite
type, and H a finite algebra of the same type. rgom(/C/H) is the class of
all Boolean products A <6p Ylxex &x in Fa(/C) which satisfy the following
properties:

(1) Ax G /C/H for all x e X;

(2) For all a G A and h € H, the set a""1 (ft) is clopen;



(3) Ax is locally homogeneous over Ax 0 H for all x G X.

Definition 2.6 Let )C and H be as above and such that Thy(£) is decidable,
and suppose A <bp Uxex A* is in rgom(/C/H).

(1) For each B G /Cw let UB = {z G X : B <5> A*}. Note that C/B is an
open subset of X.

(3) X(A)* is the dual Boolean algebra with distinguished family of ideals
indexed by }CU.

Here is the promised Feferman-Vaught theorem.

T H E O R E M 2.7 Suppose K is a locally finite universal class of algebras
of finite type L such that Thy(/C) is decidable, and suppose H is a finite
L-algebra. There is an effective procedure which, given an L(t) sentence <j>,
produces a sentence $ for Boolean algebras with distinguished ideals indexed
by Kw, such that for all A G rgom(/C/H)?

A(i) h <t> <=> X(A)* f= $.

PROOF. The proof is a minor variation of the proof of Claim 3.3 in [4].
Suppose A G /C/H and a G An. By the quantifier-free H-n-type of a in
A we mean some effective specification of the n-pointed algebra (SgA(a); a)
up to H-isomorphism. (More precisely, if B G fC/H and b G B n , then a
and 6 have the same quantifier-free H-n-type in their respective algebras iff

TT

there exists a : SgA(a) °-» B satisfying a{ai) = b{ for i = l , . . . , n . ) For
the specification of the quantifier-free H-n-type of a in A we can take, for
example, the ordered pair

({(tub) € (T+)2 : tf (3) = 4(a)}, {(t,h) eTnxH: tA(a) = h})

where

U {/fa,...,**):*!,...,** €!Tn and
/ 6 L is A;-ary}.



(Tn was defined just before Definition 2.5.)
There are only finitely many quantifier-free H-n-types realized in

and they are all realized in /Cn. Hence there is an effective procedure which,
given n, enumerates all quantifier-free H-n-types p n > i , . . . ,pn,A(n) realized in
/C/H and which, for each (n,i), specifies a member Bn>t G fCn in which pUjt-
is realized.

The notation pn+i,t ^ Pnj means the obvious thing, i.e., if ( a i , . . . ,an+i)
in A has quantifier-free H-(n + l)-type pn+i,i, then ( a i , . . . , an) has type pnj.
Likewise, if <j>(xi,...Jxn) is a quantifier-free formula then pn^ h (j> means
A |= <f)(a) whenever a has type pnj. Note that the predicates "pn+i,t I" Pnj"
and upn,i ^~ <̂>" are recursive.

Now suppose A <bp Uxex A * is in r£om(/C/H) and a G An. By [pn,,-(a)I
we mean the set of those x 6 X for which the quantifier-free H-n-type of
(ai (x) , . . . ,an(#)) in Ax is pn>t-. By condition (2) of Definition 2.5, [pn,t(^)I
is clopen.

Claim 2.8 Suppose A <bp Uxex Ax is in rgom(A:/H) and a G An. Then for
any clopen sets A/i, . . . , Nx(n-\-i) °f X,

i + 1 ) 6 G A

(1)

(2) JVi C |pn,j(«)] for all ij such that pn+hi h pnyj; and

(3) Ni C C/Bn+1, /or a//1 = 1 , . . . , X(n + 1).

PROOF. (=>) is easy to verify.
(<=). Suppose conditions (1) - (3) hold. By virtue of (1), the compactness of
X, and the patchwork property of A, it will suffice to show that for each i =
1 , . . . , A(n+1) and x G N{ there exists b G Ax such that the quantifier-free H-
(n-f-l)-type of (a i (x) , . . . , an(x)9 b) is pn+ifi- Let J5 = SgAx(a!(a;),..., an(x)),
and suppose the type of (a i (x) , . . . , an(x)) is pnj. Let fc be the unique integer
such that Pn+i,t I" Pn,fc; then condition (2) and the fact that Ni PI [pn,j(«)I ^ 0

TT

imply k = j . Hence there exist a : B *-* Bn+i,t- and c G 5n+ijt- such that
) , . . . , aa n (z ) ,c ) has type pn+i |t-.



TT

By condition (3), Bn+itt- <-* Ax; thus Lemma 2.4 gives an H-embedding
IT

(3 : Bn+i}; c—> Ax satisfying /3 o a == id#. As H-embeddings preserve
quantifier-free H-types, (ai(x) , . . . , an(x),/?(c)) has type pn+i,t *n A^ as de-
sired. I

Now to prove the theorem, we shall give a recursive procedure which,
given an L(i)-formula (f>{x\y • • • ?

 xn)i produces a formula $ ( ^ i , . . . , X\(n)) in
the first-order language for Boolean algebras with a family (IB)BG£U; °f dis-
tinguished ideals1, such that for all A G r£om(/C/H) and all a G An,

The procedure is:

1. If <t>(xu... ,£n) is atomic, then $(Xi , . ..,X\(n)) is 1 1 = | J

2. If <j) is -i0 and 6 corresponds to 0 , then $ is -»0.

3. If (f> is 0i & 02 and 0,- corresponds to 0t- for i = 1,2, then $ is 0 i & 02.

4. If <̂> is 3x n + i0(^i , . . . ,#n+i) and 0 corresponds to 0
then $(X l 9 . . . ,XA(n)) is

1= U

That the procedure does what was claimed is proved by induction on the
complexity of <j>, using compactness and the patchwork property when (j) is
atomic, and using Claim 2.8 when (f> is of the form 3xn+i0. I

1 Interpreted as unary relations.
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3 Decidability

Definition 3.1 Suppose /Co is a finite set of finite algebras and A is an
algebra of the same type. A maximal JCo-subuniverse of A is a subuniverse
Ao such that (i) either AQ = 0 or Ao is isomorphic to some member of /Co,
and (ii) Ao is maximal (among subuniverses of A ordered by inclusion) with
respect to property (i).

Definition 3.2 Suppose /C is a locally finite universal class of algebras of
finite type. We shall say that JC is almost homogeneous if there is a finite set
/Co of finite members of JC satisfying:

(1) S(£o) C I(£o);

(2) (If the type of /C contains constant symbols): Every O-generated mem-
ber of /C is in I(/Co);

(3) If A G JC and Ao is a maximal /Co-subuniverse of A, then A is locally
homogeneous over Ao.

If K is a locally finite universal class of finite type which is either ho-
mogeneous (i.e., every finite member of /C is homogeneous) or of the form
/C = I(/Co) for some finite set /Co of finite algebras, then /C is almost homoge-
neous. Thus the next theorem is a common generalization of the decidability
results of Burris, McKenzie and Valeriote [4] and of Werner [21, 6].

T H E O R E M 3.3 Suppose K is a locally finite universal class of finite type.
If Thy(/C) is decidable (for example, if JC is finitely axiomatizable) and JC is
almost homogeneous, then V(/C*) is decidable.

It is not hard to show that both the hypotheses and the conclusion of
this theorem are invariant under the transformation of JC which replaces
each constant by a constant unary operation. Therefore we shall prove the
theorem under the additional hypothesis that the type of JC contains no
constant symbols. For the remainder of this section, let JC be a fixed class
satisfying the hypotheses of Theorem 3.3 and this additional hypothesis. We
need the following two lemmas, whose proofs will be deferred to the end of
the section.

11



LEMMA 3.4 There exists a finite algebra H of the same type as /C, such
that for every countable member A of Fa(/C) there exists A' G F£om(/C/H)
having the same underlying Boolean space as A and satisfying A(t) = A'(£).

LEMMA 3.5 There is an effectively computable function from the collec-
tion of finite subsets of Kw to the set of natural numbers, written T »—>• Njr,
with the following property: For each f, and for every A <fep Ylxex ^ x in
F£om(/C/H) for which the Boolean algebra X* of clopen sets of X is count-
able, there is a subalgebra A' < A such that

(i) A' G nom(fC/H);

(ii) U!Q = UB for all B G T;

(iii) A ,̂ is Np-generated for all x £ X.

PROOF OF THEOREM 3.3. Given an L(i)-sentence </>, we wish to decide
whether V(/Ct) \= (f). First compute the Boolean sentence $ as in Theo-
rem 2.7; next let T be the set of indices of ideal symbols occurring in $; then
compute TV = N?\ and finally construct K,N>> & finite set of representatives of
the TV-generated members of /C.

We claim that V(/C<) \= <j> iff V(/C^) |= <f>. Indeed, suppose V(^*) ^ <f>. By
Lowenheim's theorem, (j) is false in some countable C € V(/C*) and, by the
theorem of Bulman-Fleming and Werner [1], if \C\ > 1 then C is isomorphic
to A(t) for some (countable) A <bp Tlxex A.x in Fa(/C) with X* countable.
Then Theorem 2.7 and Lemmas 3.4 and 3.5 produce an algebra A' G V(/CJV)

such that Af(t) \£ <j>, as required.
Now in [6] there is given an algorithm which reduces the decision problem

for V(/Cjv) to the decision problem for Boolean algebras with countably many
distinguished ideals (the latter being decidable by [15]), and this algorithm
is uniform in the "input parameter" /C^. Hence it can be used to decide <f>. I

PROOF OF LEMMA 3.4. Let /Co C K, witness the fact that JC is almost
homogeneous, and let L be the type of /C. For the purposes of this proof
only, we admit the existence of the empty algebra 0[_ of type L, which is
construed to be a subalgebra of every L-algebra. We stipulate that 0|_ G /Co,
but continue to assume that 0j_ ^ JC.

As L contains no constant symbols, it is possible to find a finite (nonempty)
L-algebra H and a collection C of subalgebras of H with these properties:

12



2. For every B G C, C G KQ and embedding a : B *-» C there exists a
D g C and an isomorphism ft : C = D such that B < D and fta(b) = b
for all be B.

Now let A <hp Yixex Ax be a countable member of Fa(/C). To prove the
lemma, we shall prove the existence of a family of isomorphisms (ax : Ax =
Ax)xex, where each A ,̂ is in /C/H, such that if a : A —> Y\xex A'x

 1S g i y e n by
(aa)(x) = ax(a(:z)) and A' = a(A), then A' G rgom(/C/H); and to do this it
will suffice to find a family of isomorphisms (ax : B x = Ex)xex satisfying

3. E x G C for all x G X;

4. B^ < Ax and Ax is homogeneous over Bx, for all a; G X\

5. {x £ X : a(x) G -Bx and ax(a(x)) = c} is clopen, for all a G A and

Pick an increasing sequence A^ C A^1^ C A^ C • • • of finite subuniverses
of A whose union is A. For each n > 0 and x,y £ X let Ajj.n) = projx(A^);
enumerate A^n^ as {a i , . . . , dk) and let = n be the equivalence relation on X
defined by x =n y iff (ai(x),... ,cik(x)) has the same quantifier-free fc-type
in Ax

n) as (ai(j/),.. . ,a^(y)) has in A ^ . (Equivalently, x =n y iff the map
a(x) H^ a(y) (a G A ^ ) is a well-defined isomorphism from Ax

n) to A ^ . )
Let IIn be the partition of X induced by = n . As there are only finitely many
quantifier-free A;-types realized in /C, each of which is definable by a quantifier-
free formula, IIn consists of finitely many clopen sets. We shall find, for
each n > 0 and N G IIn, algebras C^" , D ^ and E ^ , an isomorphism
4 n ) : D ^ } ^ E&\ and a family of isomorphisms (a<>) : A ^ ^ Cff)xeN

satisfying:

6. D# } < C ^ and E ^ G C;

7. DH is a maximal /Co-subuniverse of C/^ ,

8. ax
n\a{x)) = 4n)(a(j/)) for all a G A™ and x,y e N.

Moreover, these algebras and isomorphisms shall be coordinated so that if
n > m, N G IIn, M G IIm and x e N C M then:

13



9. C&> < c £ \ D ^ < DJ? and E&> < E ^ ;

10. 4TO) C 4") for all i£JV, and rffl C Tj?\

n /̂ ("») p, n(«) _ n(m)

This will be enough, since we can then argue as follows. For each x € X
and n > 0 pick N <E IIn such that x <E JV and define C<w> = CJ^, D<.n> = DJ£\
and Ej>> = E}?. Also define B™ = ( a ^ ) - 1 ^ ^ ) and let a(n) : B ^ S E ^
be given by cr̂ n) = r^n) o a^\B(n). Then by construction:

12. A^> n fiW = B(m) for m < n

and

? < Bi1) < Bi2) <
E(0) < E(l) < E(2)< E <

for each x G X. As each E£n) is in C, which is finite, the above sequences
must eventually stabilize. For each x G X let B x , Ex and ax be the limiting
values of the above sequences. We claim that the family (ax : B x = JZx)xex
satisfies the conditions (3)-(5) stated above. Certainly condition (3) holds.
Since D^ is a maximal /Co-subuniverse of Cx

n\ B^ must be a maximal KQ-
subuniverse of A^n), and hence A^n) is locally homogeneous over B^ (by our
choice of /Co). Thus A£n) is locally homogeneous over Bx for sufficiently large
n, which implies that A^ is locally homogeneous over Bx, proving condition
(4).

What must be verified is condition (5). Let a 6 A b e given and pick
m > 0 such that a € A^m\ It follows from condition (12) that for all x G X,
a(x) G Bx iff a(x) G B^m\ Hence for each c G [}C the set {x G X :
a(#) G 5^ and crx(a(x)) = c} is a union of sets in IIm, so must be clopen.
Hence the family (ax : B x = Ex)a:Gx satisfies conditions (3)-(5) as claimed.

Now we prove the existence of the algebras Cj^ , D ^ , E]^ and isomor-
phisms rj^ \ ax

n} satisfying conditions (6) - (11). The proof is by induction
on n.
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First suppose N G n0 ; pick x0 G N and define c j ? = Ag>. Let D$ be
any maximal /Co-subuni verse of A ^ , and rjy any isomorphism from DJy to

a member EJJ* of C. For each x € N define 4°) : A<.°> £ Ag> by

cg>(a(x)) = a(x0) (a G

This choice of C ^ , D ^ , E^ ' , T^ and (O4°))XGJV certainly satisfies conditions

Next suppose k > 0 and we have appropriate algebras and isomorphisms
defined for all n < fc, satisfying conditions (6)—(11) for all m < n < k. Pick
N G Ilfc+i and M G 11* such that N C M. Fix x0 € N and find an algebra
CN ' and an isomorphism a : Aj^+1) = C ^ + satisfying C ^ < C^ ' and
aL(fc) = aj£>. Then define a^+1) : A^+1) ^ C^+ 1 ) by

<4*+1)(a(a:)) = a(a(a;o)) (a G A(fc+1))

for each x £ N. Next, extend DJ^ to a maximal /Co-subuniverse D^ ' of
CjJ+1) and let Ao = C$ n JOJJ+1). Note that D £ } < Ao < c f f and Ao €
IS(/Co) = I(^Co); hence Ao = D^ by the inductive hypothesis, condition (7).
This verifies condition (11). Finally, pick E $ + 1 ) € C and r^fc+1) : DJJ+1) £
ESJ+1) SO that EJP < EJJ+1) and r jf+ 1 )LW = T $ . (This can be done by our

choice of H and C.) The reader can check that this choice of C^M , D ^ ,
ESJ+1), rjf+1) and (a(f+1))xGN satisfies (6)-(10). I

PROOF OF LEMMA 3.5. Let T = { B I , . . . , B A J and suppose each Bt- is
n^-generated. Let Njr = n\ -\ h rik + 1. We claim that this works. Indeed,
suppose A <6P Use* A* is in F£om(/C/H) with X* countable; fix c G A. For
each i = 1 , . . . , k pick a clopen partition of the open set C/B, (this is possible
by the count ability of X*), and further refine this partition (let II,- denote the
refined partition) by requiring that for each N G Hi there exist &i,. . . , bni G A
such that for all x G iV, the set {&i(z)?..., bni(x)} generates a subalgebra of
Aa; H-isomorphic to Bt-. With N fixed and for j = 1 , . . . , nt- define

and put
A = {a^ :l<i<k, NeUi,l<j < n j
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(or A = {c} if T = 0). Finally let A! be the closure under patchwork of
SgA(A). Clearly A' <6p Uxex K where A!x = SgAx({a(x) : a G A}) for
each x G X. By Claim 2.2(i), A^ is locally homogeneous over A'x C\ H, so
A .̂ G rgom(/C/H). This establishes (i). (ii) and (iii) follow immediately from
the construction of A7. I

4 A semantic embedding

Let A = (A,/) be the mono-unary algebra defined by A = { — 1} U UJ and
f(n) = max(n,0), and let K\ be the smallest universal class containing A.
(/Ci was presented in [4] as the simplest class /C for which the decidability
of V(/C*) was unknown.) Let S be the subalgebra of A whose universe is
Lo. Clearly the automorphism group of S is transitive while the element
0 G S is fixed by every automorphism of A. These facts alone are enough
to prove that JCi is not almost homogeneous (exercize, or see the proof of
Theorem 5.3), so the methods of the previous section cannot be applied.

The following lemma contains a semantic embedding which grew out of
our study of 1C\. The lemma is sufficient for the purposes of this paper, and
will likely have further applications. The statement of the lemma is similar in
form to, and was motivated by, Lemma 2.1 in [4]; and though it appears that
neither lemma generalizes the other, ours is an improvement with respect to
two crucial details, explained below.

LEMMA 4.1 Suppose A is an algebra of type L? S is a subalgebra of A, and
fi(x) andr(x) are first-order L-formulas. Define M = fiA\s andT — MDTA\S.

Suppose also that = is an equivalence relation on M such that T is a union
of =-classes, and define

AutM,=S = {a G Aut S : cr(M) = M and for- all a, ft G A,

a = b implies a{a) = cr(6)}.

If:

(1) M contains infinitely many —classes while T contains only finitely
many =-classes;

(2) U{CT(T) : *e AutM=S} = M;
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(3) There is an L-formula ip(z) such that t()A ^ 0 but ipA\s = 0;

then the class SP(A*) is hereditarily undecidable.

Before giving the proof, we wish to compare our lemma with the corre-
sponding lemma in [4]. The chief improvements are2:

• In [4] it is required that T contain at least two =-classes; we require
only one.

• Our assumption (2) replaces the assumption in [4] of the existence of a
complete set of representatives for the —-classes in M, which generates
S and is "independent" in a very strong sense; for example, Aut S must
act n-fold transitively on this set for all n.

It is the first improvement which we exploit in this paper. For an illustration
of the value of the second improvement, see [19].
PROOF. First, note that we can assume that r A C /j,A and hence rA\s = T.
Next, pick a subset F C AutM=S such that {a(T) : a G F} = {cr(T) : a G
AutM,=S} and for ai,<72 G F, cr\{T) = cr2(T) iff o\ = a2- Now we dispose
of the equivalence relation =; its only role is to ensure that the following
conditions are met:

(4) F is infinite;

(5) For all au <r2 G F, M % <rx{T) U a2(T)\

(6) There is a positive integer k such that for all a G F there is a subset
To C a(T) with |T0| = k and such that for all </ G F, To C a'(T) iff

Let AC = |F|. We shall semantically embed into SP(A t) the class of all
graphs of cardinality K in which every vertex belongs to an edge. Let Q =
(V, E) be such a graph. For each v G V and e G E let v* = {v} x us and

2In [4] it is also required that /JL and r have only one free variable, and that that the
relation = be definable in A. On the other hand, [4] does not require our condition (3), and
weakens our assumption (1) to require only that M\T contain infinitely many =-classes.
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e* = {e} x u;, and put V* = I J K : v e V} and £* = U K : e G £ } . Next
define

y = |J{e* x t ; * : u 6 e e £ }

X = FUJS*U{oo}

Define a Boolean algebra of subsets of X as follows. For each x = (e, i) G
E* let

= {x} U {(#, y) : y G v* U w*} where e = {v, i/;}.

For each finite or cofinite subset A of E* define

_ f (Ji^x : * € A} if A is finite
A " ^ ' i r *r : x G A} U {00} if A is cofinite.

Finally, let

Bo = {̂ YA : A is a finite or cofinite subset of E*}

B = {N 0 F : N G Bo and F is a finite subset of Y}.

Clearly B is a Boolean subalgebra of Su(X). In fact, B is a basis for a
compact HausdorfF topology T on X. Thus (X, T) is a Boolean space and
B is its Boolean algebra of clopen sets. Under this topology, Y is precisely
the set of isolated points of X.

For each v G V let

77 = (\ \re* . v G eG TP\\ x v*

Note that each Uv is open (and nonempty, by our assumptions on Q); that
the f/v's partition Y\ and that for e £ E, Uv 0 Ne* = e* x v* if v G e while
C/v fl 7Ve* = 0 otherwise.

We define an algebra in ISP(At) as follows. First pick a bijection be-
tween V and F; denote it by v H-> av. Next, pick an algebra P , a family of
subalgebras (Av)v£V of P , and a family of isomorphisms (av : A = Av)v£V

satisfying:

1. S < Av for all v G V\
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2. orv\s = crv for all v G V;

3. For all v, w £ V with v ^w, AVDAW = S.

Note that nA«\s = Af and r A v | 5 = crv(T) for each v £ Vr.
Finally, define C to be the subalgebra of (P*)x consisting of the contin-

uous functions a : X —> P (where P is given the discrete topology) which
satisfy a{Uv) C Av for all v £ V (and consequently a(X\Y) C 5). Note that
each a £ C is finite-valued, its values lie in U{A> • t; G V} and have clopen
support, and its values lie in S except on a finite subset of Y. Examples
of elements in C are the constant functions cs : X —» {s} for each s G S.
It is easy to verify that C is a Boolean product of algebras (Cx)xeX, where
Cx = At if x G Uv, and Cx = S* if x G X \ Y. Hence C G ISP(A*).

Now we shall show how Q can be interpreted in C. In what follows, let
us say that a structure (obtained in some way from Q) is definable in C if
there are first-order L(i)-formulas which interpret the structure in C in the
usual way (see [14] or [3]). In particular, the formulas must not depend on
the particular choice of Q. We shall also use the following standard notation:
if <f>(zi,..., zn) is an L(i)-formula and a i , . . . , an G C, then [^(a)] denotes
the set {x £ X : Cx \= ̂ (a^x),..., an(x))}.

Claim 4.2 B is definable in C.

PROOF. Since C contains two distinct constant functions and is closed under
patchwork, the elements of B (that is, the clopen sets of X) are definable
as 'nonequalizer sets' [a ^ 6], Inclusion and equality of nonequalizer sets
can be defined using the switching term s(xy y,zyw): [a ^ 6] C [c ^ d\ iff
5C(c,<i,a,6) = b. I

Claim 4.3 For every first-order L(t)-formula <j>(x) there is a first-order L(i)-
formula </>*(x) such that for any a in C we have

Y C

Moreover, <f)* is independent of the original graph Q.

PROOF. This was essentially proved in Claim 2.3 of [4]; the definition of <f>*
given there works here as well. The only fact that matters is that Y is the
set of those isolated points x € X satisfying \CX\ > 1. I
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Claim 4.4 The finite subsets ofY are definable in C.

PROOF. We shall show that the finite subsets of Y are precisely the clopen
sets [a 7̂  6] satisfying Y C [a ^ b —> ^(c)] for some c*in C. The claim will
then follow from Claim 4.3.

Suppose first that F is a finite subset of Y. Then F is clopen and so is of
the form [a ^ 6] for some a, b G C. For each x 6 i*1, C^ = A* so by hypothesis
(3) of Lemma 4.1 it is possible to pick cx in Cx such that C^ (= if>(cx). As
{#} is clopen for each x g F , and as (7 is closed under patchwork, it follows
that there exist c in C such that c(x) = cx for all x £ F. Then F C
and hence [a ^ 6 —> ^(c)] = X.

Conversely, suppose F = [a ̂  6] is a clopen set and Y C [a ^ 6 —>
or equivalently, i71 fl K C |^(c)]- Since c(a;) is in S for all x £ X except on
some finite subset of F , hypothesis (3) of Lemma 4.1 implies that [^(c)] d Y
is finite. It follows that F 0 Y is a finite subset of Y. But F is in #; hence
F C F , which proves the claim. I

Note that it follows from the previous claim that the relation N = Nf,
defined on B to mean N' = N © F for some finite subset F of Y\ is definable
in C, as is the subset {N e B : N = Nx iov some x e E*}.

Definition 4.5

(1) R={ainC:YQlfi(a)J}.

(2) For a£R, Os = [r(5)] n Y.

R is definable in C by Claim 4.3. Note that each Os is an open set (since
it is a subset of Y).

Claim 4.6 The following predicates are definable in C (for a, 6, <?i,..., a* 6
R andN e B):

(i) JV C O«.

(ii) a- c N.

(iii) (̂ For ^ e ^ k): OSl n • • • n <?sfc C iV.

(iv) fFor ̂ crf fc;.- oSl n - • • n oSk n w c ot.
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PROOF. TV C Os iff N is a finite subset of Y and N C | r(a)] . The latter
condition is equivalent to Y C [6 7̂  c —> r(a)], where N = [6 ^ c], and this
is definable by Claim 4.3. This proves (i). (ii)-(iv) follow from (i) and the
fact that each O$ is open. I

Definition 4.7 For a G R9 supp(a) = {v G V : a(oo) G ^ ( T ) } .

Claim 4.8 For any a G -R:

(i) supp(a) ^ 0.

(ii) IfvGV and N is a clopen neighborhood of 00 on which a is constant,
then the following are equivalent:

(1) v G supp(a).

(2) 00 G O&C\UV. (Here and elsewhere, W denotes the topological
closure ofW.)

(3) NHUVC Os.

(4) NnUvnOa?to.

PROOF. (i). Define a0 = a(oo). It will suffice, by hypothesis (2) of
Lemma 4.1, to show that a$ G M. Clearly UQ is in S (as Coo = S*). Let
N = {x G X : a{x) = ao}. Â  is a clopen neighborhood of 00, so N n F 7̂  0.
Pick x G i V f i F i a s F C [^(a)] it follows that a0 G //Cx |5 = M (see the
remark before the definition of C), as desired.

(ii). Let N be a clopen neighborhood of 00 on which a is constant. If
v G supp(a), i.e., a(00) G <JV(T) = r A v | 5 , then N 0 Uv C [r(a)J (since
Cx = Aj, for all x G t^); hence N H Uv C O$. On the other hand, if
v £ supp(a) then N f) Uv C\ O$ = 0 by the same reasoning. This proves
the equivalence of (1), (3) and (4). Certainly (2) implies (4). Conversely,
suppose (1) is true, and hence (4) holds for all clopen neighborhoods Nf of 00
on which a is constant. It is easy to see that for every clopen neighborhood
N of 00 there is a clopen subset iV7, also a neighborhood of 00, on which a
is constant. Then (2) follows. I

Claim 4.9 The ultrafilter Uoo of clopen neighborhoods of 00 is definable in
C.
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PROOF. The definition is: N G U^ iff there exists a G R such that O<t C N.
(The latter condition is definable in C by (ii) of Claim 4.6.) It follows from
Claim 4.8 that if Oz C N then oo G ~O~z C N. Conversely, if oo G N then
N D NA for some cofinite subset A of E*. Consider (e,i) G £"* \ A where
e = {t;,w}. By condition (5) at the beginning of the proof of Lemma 4.1,
M £ <rv(T) U crw(T). Pick a(Cfi) e M \ (<7v(r) U <rw(T)) = M\ (TA» U r A " ) ,
and note that for all x G N(e,i) H Y, a(e?t) G //C:E \ rCx (as Cx is either A*
or A^). Since the constant maps cs (s G S) are in C, each iV(e,i) is clopen,
and C is closed under patchwork, there is a tuple a in C such that for each
(e,z) G £* \ A, a(x) = 3(Cft-) for all x G #(C|t-), and a(x) G M for all a: G NA.
It follows that a G i? and (9̂ t C JVA C Â  as desired. I

Definition 4.10 Let k be fixed as in condition (6) at the beginning of the
proof of Lemma 4.1. For a1 ? . . . , ak G i?,

suppA.(a i,..., ak) = supp(ai) n • • • n supp(ajt).

Claim 4.11

(i) For every v £ V there exists a\,..., ak G R such that supp fc(ai,..., ak) =

(ii) The following predicates are definable in C (with a,-, 6,- G

(1) suppj.(ai, . . . , ak) C

(2) supp j b(ai, . . . , ak) =

(3) supp^.(ai,..., cik) = {^} for some v G V.

PROOF, (i). By condition (6) at the beginning of the proof of Lemma 4.1,
there exist 5 i , . . . , ak G CFV{T) such that for all w £V, {a i , . . . , ak} C cr^(T)
iff ?/; = ?;. Consider the corresponding tuples of constant maps c^,..., c^k in
C As csi(x) = Si G M C /iCa: for all a: G Y, it follows that c*. G i? for each
z. It is now easy to check that supp^c^ , . . . ,c^fc) = {v}.

(ii). By (i) it will be enough to prove that, for ai , . . . ,aj t ,6 G i?, the
predicate "supp^a i , . . . , ak) C supp(6)" is definable in C. We claim that
supp*(ai, . . . , ak) C supp(6) iff (9^ n • • • fl OSk n N C Op for some N G Uoo.
(The latter predicate is definable in C by Claims 4.6(iv) and 4.9.) Indeed,
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suppose first that suppA.(ai,... , a*) C supp(6). Pick N G Uoo on which
each Ui and b is constant, and let x G O^ PI • • • fl (9^ fl N. Let v G V be
such that x G t/v. Then iV n Uv C\ Oai + 0 for each z, so by Claim 4.8(ii),
t; G supp fc(ai,... ,5^). Hence v G supp(fe), so by again by Claim 4.8(ii),
N nUv C Os and hence x G Op This proves O^ fl • • • D Ozk D N C O?.
Conversely, assume that this inclusion holds for some N G Uoo. We may
replace TV by a smaller clopen set if necessary so that each a* and b is constant
oniV. If v G s u p p ^ a i , . . . , ^ ) then by Claim 4.8(ii), 7VnJ7v C O^H--HOsk.
It follows from our assumption that N n Uv C Cj, and hence v G supp(6).
This proves supp f c(ai,.. . , a^) C supp(6). I

Claim 4.12 Suppose supp jb(ai,..., a^) = {v} and suppA.(6i,..., bk)
/ v ^ w. Then {v,w} G JB iff for all c i , . . . ,c]t ,di , . . . , C?A? G

i , . . . , 4 ) = {?;} and ^

Oft n • - • n o 4

PROOF. First suppose {t;, w} = e € E and c i , . . . , c^, c?i,..., dk are given as
above. Pick a cofinite subset A of E* such that each C{ and d{ is constant on
A 4̂. By Claim 4.8(ii), we have

NAOUV C Oft n • • • n O 4 and

NAnuw c o^n-.-no^.

Since A is cofinite, there is an i G w such that (e,i) G A. Then (e,i) G
iVyi PI C/y fl iV^ n Uw, which proves one direction of the claim.

Conversely, suppose {v,w} £ E. In the proof of Claim 4.11(i) it was
shown that it is possible to pick tuples of constant maps ci, d{ G R such that
suppA.(ci,..., Cfc) = {v} and suppfc(cfi,..., dk) = {^}- Since these maps are
constant on X, Claim 4.8(ii) implies

Oft n • • • n Osh = Uv and

Ojin — n o ^ = «/«,.

But {v, w;} ^ E implies Uv f) Uw f) E* = 0, as desired. I
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Claim 4.13 The predicate

oSl n • • • n
is definable in C.

PROOF. OSl n • • • n OSk n Oix PI - • • n Oih n E* 7̂  0 iff there is an JV = 7VX

for some x e E* such that both N n O^ n- • • n O 4 and JV n (9^ n • • • n O{h

are infinite. Now N n C?̂  fl • • • PI O4 is infinite iff there does not exist an
Ni=N such that JVi fl Os1 D • • • fl C?^ = 0; and this last clause is definable
in C by Claim 4.6(iii). I

Now we can complete the proof of Lemma 4.1. We have shown that there
exist L(i)-formulas Vert(fu . . . , xk), Eq(xi, . . . , £ * , & , . . . , yk) and Edge(^x , . . . ,
£k, y i , . . . , J4), which are independent of the choice of Q and which assert the
following in C:

x, . . . ,£*) <=> xu . . . , xk € i? and supp^z i , . . . , xk) = {v}

for some v E V;

i , . . . ,xfc) and Vert(yi, . . . ,

and supp jb(xi,..., xk) =

..,Jjb) and Vert(yi,... ,yk)

and not Eq(a?i,... ,xkjyly... ,3^), and for all zu . . . ,5*,u>i,... , ^

if Eq(xi,...,XA.,5i,...,llb) and Eq(yi, . . . ,yk,W\,... ,wk) then

£l n •.. n

It then follows from Claims 4.11(i) and 4.12 that (Vert, Eq, Edge) semanti-
cally embeds Q in C. Hence SP(Af) is hereditarily undecidable. I

5 Unary classes

In this section we specialize our results to the case of a locally finite universal
class whose type consists of finitely many unary operation symbols. The
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algebras in such a class are easy to visualize. If A is a unary algebra and
a, 6 G A write a < b to mean a G SgA(6), a « 6 to mean SgA(a) = SgA(6),
a < b to mean a < b but a 56 6, and [a] to denote the set {# G A : x « a}.
< is a preorder on A; « is its corresponding equivalence relation, and the
set [A] = {[a] : a G A} of ^-classes is a poset in the natural way. Note that
the height of this poset is bounded by the maximum size of the 1-generated
subalgebras of A; and the subalgebras of A correspond naturally to the
nonempty lower segments of [A].

Definition 5.1 Let A be an algebra of finite unary type and let a, 6 G A.

(1) Da = {x G A : x < a}.

(2) DA = \JaeADa.

(3) 6 is a conjugate of a (in A) if Db = Da and there exists an isomorphism
a : SgA(a) = SgA(6) satisfying a(a) = b and a(d) = d for all d G Da.

(4) ConjA(a) is the set of all conjugates of a in A.

Note that in the previous definition, Da and D A are subuniverses of A,
and the relation "is a conjugate of" is an equivalence relation. The next
lemma illustrates the concepts defined above.

LEMMA 5.2 Suppose K, is a locally finite universal class of unary algebras
of finite type, and A G /C. If AQ is a subuniverse of A satisfying D A C AQ,
then A is locally homogeneous over AQ.

PROOF. Let D = Z)A. We shall give the proof for the case Ao = D (the
proof of the general case is essentially the same). Let L = {[a] : a G A \ D}\
thus L is the set of maximal elements of the poset [A]. For [a], [b] G L
let us say that [a], [6] have the same color if [b] C\ ConjA(a) ^ 0. "Having
the same color" is an equivalence relation on L. Now suppose Bi,B2 < A
with 2?i fl D = B2 n D. Isomorphisms from Bx to B 2 fixing Bi C\ D are
particularly easy to describe. Let Li = {[b] G L : b G B{} for i = 1,2, and
suppose a : Bi = B 2 satisfies c ^ n D = id-B^D- Then

1. a induces a bijection a from L\ to L2 by the rule cr([b]) =

2. <J preserves colors.
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3. For each [b] G £1, the restriction a\[b] : [b] —> [cr(b)] is a bijection;
moreover, a; is a conjugate of a(x) for all x 6 [i>].

Conversely, if r is a color-preserving bijection from L\ to £2, (ba)a<7j is
a sequence of elements from B\ such that the sequence ([&a])a<77 names each
member of L\ exactly once, and (ca)Q<v is a sequence from L2 such that
Ca G T([bQ]) and ca is a conjugate of ba for all a < 77, then there is a unique
isomorphism a : Bi = B2 satisfying cr^nD = id^nD, cr = r , and cr(6a) = ca

for all a < 7].
Now to establish that A is locally homogeneous over D, suppose C is

a finite subalgebra of A containing Bi and B2 , and suppose a : Bi = B 2

satisfies cr^nD = id|#inD- Let L1? L<i and a be as in the previous discussion,
let (ba)a<rl be a sequence from #1 enumerating the ^-classes in JLI, and define
ca = a(ba) for a <rj. Finally let L3 = {[6] G i : b G C}.

Clearly a can be extended to a color-preserving bijection r : L3 —> L3,
and the sequences (6a)a<T7, (ca)a<r7 can be extended to sequences (ba)a<K,
(ca)»<«5 both enumerating the ^-classes in L3 and such that ca G ''"([^a])
and ca is a conjugate of 6a for all a < K. Hence a can be extended to an
automorphism <T+ of C satisfying <J+|cnD = idcnD, as desired. I

Now we state and prove the principal result of this paper.

THEOREM 5.3 Suppose )C is a locally Unite universal class of unary al-
gebras of finite type. Then the following are equivalent:

(1) V(/C<) is decidable.

(2) \/(}Ct) is not hereditarily undecidable.

(3) K, is almost homogeneous.

(4) There exists N < to such that for all A G /C?

if a,c G A with a < c, then |ConjA(a)| < N.

PROOF. (1) => (2) is trivial. We shall prove (4) =^ (1) k (3) and -(4) =>
-(2) & -n(3).

-«(4) =^ -»(2) & ~^(3). Suppose no N exists as in (4). Let L be the type of
/C. Because there are only finitely many quantifier-free 1-types realized in /C,
the following predicates are definable in /C be quantifier-free L-formlulas:
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Figure 1: The poset [A].

1- x < y (and thus x & y and x < y);

2. x and y are conjugates.

Hence the assumption that N fails to exist, combined with a compactness
argument, produces a countable algebra B G fC and elements a,b £ B such
that ConjB(a) is infinite and a < b. Let Mo = ConjB(a). As the poset [B]
has finite height, we may assume that a and b have been chosen so that if
m G -Mo and m < 6, then [m] -< [6]. Define

M
A

P

S

T

= {x £ B : x & rn
= SgB(Mu{6})
= Da

= SgB(M)

= MUP
= {m G M : m <

for some m € Mo}

6}.

See Figure 1 for a schematic representation of the poset [A].
Note that ConjA(a) = Conjs(a) = ConjB(a) = Mo; that T and P are

finite sets (they are contained in a 1-generated subalgebra of A) while M
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is infinite; that Ds = P , so S is homogeneous over P by Lemma 5.2 and
Claim 2.2(ii); and that (using the terminology of the proof of Lemma 5.2)
the ^-classes in M have the same color.

Again because the number of quantifier-free 1-types realized in K, is finite,
there is a quantifier-free L-formula fio{x) with parameters from P such that
fi£ = Mo. Let //(a;), T(X), and IJJ(X) be the formulas

fi(x) : 3y[fio(y) & x « y]

r(x) : fi(x) & 3z[x < z]

if>(z) : 3x[fi(x) & x < z].

Clearly //A |5 = (iA = M, rA\s = T, and 6 G </>A while i/>A\s = 0.
Suppose m G Mo; as a and m are conjugates, there is an isomorphism a :

Sg s(a) = Sg s(m) satisfying a\p = idp and a(a) = m. As S is homogeneous
over P , a extends to an isomorphism a of S (which fixes P). Clearly 0"([a]) =
[m] and a(M) = M; hence

M = Ui^C3") : cr G Aut S : a | P = idP and a(M) = M}.

It follows from the above remarks that if the language L is expanded to
include a family of new constant symbols indexed by P, and if A* and S* are
the natural expansions of A and S to this larger language, then A*, S*, //, r
and rj) satisfy the hypotheses of Lemma 4.1 (= is equality). So a hereditarily
undecidable class of graphs semantically embeds into SP((A*)t), from which
it follows that V(/C*) is hereditarily undecidable. This proves ~|(2).

To prove "^(S), suppose /C were almost homogeneous and /Co witnessed
this fact. Let So be a maximal /Co-subuniverse of S; extend 5o to a maximal
/Co-subuniverse Ao of A. Then by hypothesis and Claim 2.2(ii), A is locally
homogeneous over Ao, Ao D S = So, and So is finite.

Fix m G Mo \T. As a and m are conjugates, there is an isomorphism
a : SgA(a) = SgA(m) satisfying a\p = idp and a(a) = m. But clearly a
cannot be extended to an automorphism of A, by the choice of m. Because
A is homogeneous over Ao, it must be the case that either

1. SgA(a) D So ^ SgA(m) n So, or

2. SgA(a) n So = SgA(m) n So = E but a\E
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Note that if SgA(a) n So = SgA(m) n 50 = E then necessarily E C P;
so the fact that a|p = idp implies that condition (2) cannot hold. Thus
SgA(a) H ̂ o 7̂  SgA(ra) n So, and hence [a] C So or [m] C So. If a £ 5 0 then
this argument shows that m G So for all m G M0\T, which is impossible as
So is finite. Thus a G So-

It was shown in the proof of -i(2) that for any m G Mo there exists
a G AutS satisfying a(a) = m. Clearly cr""1(S'o), like So, is a maximal KQ-
subuniverse of S. Then the above argument applied to cr~1(So) shows that
a G (J~1(Sr

0), or equivalently, m G S'o. Hence Mo C So, again contradicting
the finiteness of S'o. So JC is not almost homogeneous.

(4) => (1) & (3). Suppose that N exists as in (4). Let M be the maximum
cardinality of the 1-generated members of /C, and let W be the class of all
L-algebras A such that:

1. If a, c G A with a < c, then |ConjA(a)| < N.

2. Every 1-generated subalgebra of A has cardinality at most M.

Note that 7i is a finitely axiomatizable locally finite universal class and K, C
H,. Let V! be the class of all A G H in which |ConjA(a)| < TV for all a £ A.
Note that if A G H and i? = J9A ^ 0, then D G W;.

Claim 5.4 W = I(7Yo) /or some /in^e 5e< Ho of finite algebras.

PROOF. It will suffice to show that for every i < M there is a positive integer
rti with the property that |A| < nt- for all A g H ' such that height([A]) = i.
The proof is by induction on i. As in the discussion preceding Definition 2.5,
let T\ = {to? - - • jtr-i} be a finite set of unary terms with the property that
for all A G H and a G A, SgA(a) = {tf(a) : i < r}. Also define n_x = 0.
Now suppose A G H' with height ([A]) = i > 0, and let D = DA. Then
|Z)| < n t_i. Let iy = {[a] : a G A \ J9} be as in the proof of Lemma 5.2,
and for [a] G £ let us call the set {[&] 6 L : [b] has the same color as [a]} a
color-class of A.

Assume oo ^ D and for each 6 G A \ D define a map 8\> : Ti —• D U {oo}
by

f
(6) otherwise.
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It is easy to see that if 6, c £ A \ D and 6, c have the same quantifier-
free 1-type, then 6,c are conjugates iff Sf, = Sc (in which case [b],[c] have
the same color). So the number of distinct color-classes of A is at most
s • \(D U {oo})Tl| < s(l + n,_i) r, where s is the number of quantifier-free
1-types realized in Ti (and r = |Ti|). On the other hand, each color-class of
A has at most N elements by definition of Ti!. Thus | A \ D | < M - | L | <
MNs(l + ni_i) r , and so the integer nt- = nx_i + MNs(l + n;_i)r satisfies the
desired condition. I

Claim 5.5 Ti is almost homogeneous.

PROOF. We shall verify the conditions of Definition 3.2 using the set 7i0

mentioned in the previous claim. The first two conditions are easily proved,
so we concentrate on the third. Let A £ Ti and suppose A$ is a maximal
TYo-subuniverse of A . Put D = DA and B = Ao U D. It is easy to check
that B £ TV if B =̂  0, so B = Ao by maximality. Then by Lemma 5.2, A is
locally homogeneous over Ao, verifying the third condition. I

Claim 5.6 Every universal subclass ofTi is finitely axiomatizable.

PROOF. First note that since L (the type of Ti) is finite, it follows that
for every A £ Tifin there is an L-sentence </>A with the property that for any
universal class fC of type L, K \= </>A iff A ^ /C. Also let P be a complete set
of representatives of the isomorphism classes of 7̂ yiTO, and let P = (P, c-») be
the corresponding poset under embeddability.

Suppose K, is a universal subclass of Ti] then P C\ K, is a lower segment
of P . As P satisfies the descending chain condition, the complementary
upper segment P \ )C is generated by its antichain C of minimal elements. As
every locally finite algebra is an ultraproduct of its finite subalgebras, K is
axiomatized relative to Ti by the set {</>A : A £ C}. Thus to prove the claim
it is enough to show that P has no infinite antichains.

For each B £ Ti0 let

TiB = {A £ Hfin : D A = B}.

Also let 7̂ 0 = {A £ Tifin : D A = 0}- In what follows, we shall refer to
B-embeddings between members of 7YB5 and to quantifier-free B-1-types
realized in HB* These notions were defined in Section 2.
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Fix B G Ho U {0}, and let po> • • • >Ps-i enumerate the quantifier-free B-
1-types realized in HB- For each A G HB let L = {[a] : a e A\ DA} and
define a A : {0 , . . . , s — 1} -» a; by

<*A(0 = |{[a] G X : there exists b G [a] whose quantifier-free B-l-type is p t}| .

The key is to observe that if A, A' G HB then A ^ A' iff a A < a A' *n the
product ordering of u>s.

Now suppose that {Ao,Ai, . . .} is an infinite antichain in P . We may
assume that each At- belongs to HB for some B G Ho U {0}; and as Ho U {0}
is finite we can further assume that one of the Tie's contains all of the
A t 's. Now for any positive integer s, u)s has no infinite antichains; so there

must exist % ^ j for which a ^ < otAr But then At- -̂> Aj by the above
observation, and so certainly Aj c-> Aj, which contradicts the supposition
that the A,'s form an antichain. This proves the claim. I

Now we can finish the proof of (1) and (3). fC is finitely axiomatizable
by Claim 5.6; hence Thv(/C) is decidable. As the property of being almost
homogeneous is inherited by universal subclasses, K is almost homogeneous
by Claim 5.5. Thus V(/C') is decidable by Theorem 3.3. This finishes the
proof of Theorem 5.3. I

6 Conclusion

The methods developed in this paper to study the decidability of V(/C<) have
applications beyond the case when /C is of unary type. For example, M.
Valeriote and the author [19] have used the semantic embedding of Section 4
to show that if RM. is the variety of all unitary left .R-modules for some finite
ring R with unit, then ^{RM1) is decidable iff R is semisimple. This finishes
the classification, nearly completed in [4], of those locally finite varieties V
of finite type for which V(V*) is decidable.

A second application is to the study of the decidability of the finite mem-
bers of V(/Ct), where K is a locally finite universal class of finite type. By
the theorem of Bulman-Fleming and Werner, V(/C*)/jn consists of all algebras
isomorphic to finite direct products of members of /C£n, plus 1-element alge-
bras. Hence an easy argument using the original theorem of Feferman and
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Vaught [11] proves that V(/C*)^n is decidable iff /C£n is decidable (iff )Cfin is
decidable).

Our methods in Sections 2 and 3 can be used to show that if /C is almost
homogeneous, then Th(/C) = Th(/C/En)> and both are decidable if Thy(/C) is
decidable. It follows from Theorem 5.3 that if /C is of unary type, then the
decidability of V(/C*) implies the decidability of the finite members of V(/Ct).

Joohee Jeong at the University of California, Berkeley, recently discov-
ered [22] an example of a universal class K of unary algebras of finite type
with the property that V(/C*) is decidable while V(/C*)/fa is not. By the pre-
vious remarks, )C cannot be locally finite. It would be interesting to know
whether there exists a locally finite universal class of finite (but not unary)
type with this same property.

Finally, we mention that we know of no locally finite universal class K, of
finite type for which Thy(/C) is decidable and which is a counterexample to
the converse of Theorem 3.3. The discovery of such a counterexample (or a
proof that none exists) would greatly increase our understanding of decidable
discriminator varieties.
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