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§1. INTRODUCTION

The threshold for the existence of a perfect matching in a random graph was established

early on by Erdos and Renyi [ER]. Basically one needs enough random edges to ensure that the

minimum degree is one with non-zero probability. Bollobas and Frieze [BF] considered the

problem of the existence of perfect matchings in random graphs with minimum degree at least

1. Thus, for a positive integer k, let tf( k) denote the set of graphs which have vertex set

[n] = {1,2,...,n}, m edges and minimum degree at least k. Let G (k) be selected uniformly
n i n

from tf < k>. They found that the probability that G<1} has a perfect matching tends to the
' n>m n>m

probability that it has no pair of vertices of degree 1 which have a common neighbour. Thus in

this case about (n In n)/4 edges were needed to ensure a perfect matching with probability

tending to 1. This is about half the number of edges required in the unrestricted case.

Although we did not deal specifically with bipartite graphs, the changes required to deal with

bipartite graphs would not be too difficult. More recently Bollobas , Fenner and Frieze [BFF]

have improved the analysis and extended it to deal with Hamilton cycles. Broadly the

probability that G<k) has the property

edge disjoint Hamilton cycles plus a farther edge disjoint perfect

matching if k is odd

tends to the probability that there is no set of k + 1 vertices of degree k which have a

common neighbour. This means that about (n In n)/(2(k + 1)) edges are needed to ensure the

property <A\.

Bollobas, Cooper, Fenner and Frieze [BCFF] have considered the above property in

relation to G( k+1). Here we find that by insisting on one higher minimum degree we can show

that only a linear number (en) of edges are needed to ensure the occurrence of ^^ The results

are however not sharp, in the sense that we only prove them for c sufficiently large.

In this paper we shall prove a sharp result for the simplest case: bipartite graphs and

k = 1. (Even the simplest case seems to require a lot of work though.) University Libraries
l e d e Mellon University



For disjoint sets V,W and positive integer m we let ^(V,W;m) = {bipartite graphs

with vertices V,W and m edges}, #(V,W; m; 5 > 2} = {G € ^(Vi,V2;m) : 6(G) > 2}.

Let now c > 2 be a fixed constant, m = en and Bn be sampled uniformly from

TlEOlEM

lina Pr(Bn has a perfect matching) = 1

If c = 2 then Bn is necessarily 2—regular and so always has a perfect matching. We assume

therefore from now on that c > 2. Note that the theorem could be sharpened by consideration

of c = 2-o(l). We do not consider this possibility here.

The structure of the paper is as follows. In Section 2 we describe a useful "martingale"

inequality. In Section 3 we describe the first of two models which enable us to analyze Bn. In

Section 4 we describe the second of these two models. Finally in Section 5 we use the two

models to prove the theorem.

GEIEUC COISTIITS

The calculations of this paper involve a large number of constants. For most of them

the exact value is unimportant. We will often represent them by a generic positive constant

A. When used in a formula it merely asserts the existence of some constant. It is thus

legitimate to replace 2A by A etc.

§2. A MARTINGALE INEQUALITY

The use of martingale inequalities has become commonplace in the study of random

graphs since their introduction by Shamir and Spencer [SS]. See Bollobas [B2] or McDiarmid

[McD] for surveys.



Suppose that we have a probability space fi = n^=1Qi and a random variable

Z = Z(Ui,U2,...,Uk) defined on it. We will first assume that the measure on fi is equal to the

product of separate measures on the fii so that Ui,U2,...,Uk are independent.

For U,V G fi let d(U,V) = | {i : Ui # Vi} | . The following inequality has proved

remarkably effective: suppose that the random variable Z is such that

d(U,V) = 1 implies | Z(U) - Z(V) | < a

then

(2.1) Pr( | Z - E(Z) | > t) < 2 exp { j ^ } , for any t > 0

We will also need to apply (2.1) in the case k = m, Ui,U2,...,Um are the edges of

G 6 #([ni],[n2];m) for some ni,n2. Thus there is the dependence Ui ^ Uj for i ^ j . Also in

our applications Z will not depend on the ordering of Ui,U2,...,Uni and so

d(U,V) = | { i : Ui t {V^V^.^V.}} |. With all of these provisos (2.1) still holds.

§3. BALLS IN BOXES MODEL

We will use the following notation from [BFF]. For natural numbers s and t, let [s]t

be the set of all s t sequences to length t with the terms taken from the set [s]. Consider [s]*

as a probability space in which any two sequences are equally likely. The space [s]* has the

following intuitive interpretation which we shall use in the sequel. Put t distinguishable balls,

say bi,b2,...,bt, into s boxes, with probability 1/s of putting a particular ball into any of the

boxes. Every arrangement corresponds to a sequence of length t: if bj goes into the i'th box

then set XJ = i. Then the sequence (xi,X2,...,xt) is a random element of the space [s]*.

The degree of a number i in a sequence X = (xi,X2,...,xt) € [s]*, denoted by dx(i), is

the number of times i occurs in the sequence: dx(i) = | {j : Xj = i} |. Thus d (i) is the

number of balls in the i'th box. The minimal degree of X is S(X) = min{d_(i) : e [s]}.
A

Similarly the maximal degree of X is A(X) = max(dx(i) : i € [s]}. We denote the number of



boxes with k balls by v_(k) = |{i : d (i) = k}| for k = 0,1,2....
•A A.

Let [s]£ = {X e [s^ : 6(X) > 2} and consider this as a probability space of equiprobable

elements. This space is much less pleasant that [s]* but we can make use of it. We now

define a random bipartite multigraph in terms of this space. Thus let X = (xi,X2,...,xm) and

Y ^ (yiiy2>—>y«) denote a pair of independently chosen random members of [n]™ and let

B(X,Y) be the multigraph with vertex bipartition V,W and edges E = xiyi,x2y2,..-xmyin. The

following lemma explains our interest in B(X,Y).

LEMMA 3.1 Conditional on B(X, Y) being a simple graph, it is equally likely to be any member

of 3*.

PEOOF We simply have to observe that each member of 3n arises from exactly m! distinct

pairs X,Y. o

We will use fairly accurate estimates of the degree sequence of Bn. To obtain these we

will use some ideas of [BFF]. We need to consider the following construction: given X € [s]*

we define a sequence p(X) of minimal degree 2 in two steps. First we let

U(X) = {i G [s] : d^i) > 2} = {i^, . . , !*, ° = o(X)}

where ii < i2 < ... < ia. Omit the terms of X not belonging to U and replace ir by r to

obtain the reduced sequence p(X). By construction p(X) 6 [a]1 for some r = r(X). The

following lemma is proved in [BFF]:

LEMMA 3.2 Let YhY2€[n\*. Then, where X is chosen randomly from [sJS

Pr(p(X) = YO = Pr(/>(X) = Y2) D



(It is easy to see that Yi,Y2 arise from the same number of X's.)

The lemma is of course vacuous when n > s or m > t but we are interested in the

case where s > t > m and the probability of a = n, r = m is not too small.

We let o ;=nMnn and then define c,Mb,Nb by

c = c -
1 - (1 + c)e-*

Mb = [cNb - u)]

where a is large and positive.

To justify the implicit definition of c we observe that the function

/ x x - xe~ x

vanishes at x = 0, tends to infinity with x and is strictly monotonic increasing for x > 0.

This last remark can be justified as follows:

and the numerator of this expression is

1 - (2
* - 1 -

We will prove



LEMMA 3.3 There exist N\> = iVt» + 0(u), M^ = Mb + 0(u) such that if X is chosen randomly

from [Nh]Ub then

Pr(o-(X) = n and T(X) = m) > exp{-An*(ln n)2}.

PIOOF We first estimate the expected sizes of o\Y), T(Y) when Y is chosen randomly from

[Nb]
Mb. Now since

we have

E(»/y(0)) = Nb(l -

E( V 1 ) ) = Nb ^ (1 ~ i ^ " 1 = Nb5e-5 + (c -

and then where

Aa = Aa(c) = a + ce-s, and A, = A,(c) = (1 + (c - l)e-e),

E(a(Y)) = n - (Aff + o(l)V, E(r(Y)) = m - (A, + o(l))a;.

Changing a single Yi can change a(Y) by at most 1 and r(Y) by at most 2. So applying

(2.1) successively with Z = o(Y), a = 1, t = bed (b small and positive) and then with

Z = r(Y), a = 2, t = bu we deduce that with probability 1 — o(l)

|o<Y)- (n-A a a ; ) | <

| r (Y) - (m-A T w) | < 2bu>.



Hence there exists n, m such that

In —A u — n| , |m —A^w —m| < 2bo;

and

(3.1) Pr(a(Y) = *, T{Y) = m) > u2.

Let k = n — n and / = m — m and observe that if a is sufficiently large and b is

sufficiently small then Aa, A,, > 0 and

A, + 2b t A, - 2b

Aff — 2b - E — Aa + 2b

_ 1 + ca + (c - l)e-c - 2b

a + ce-c + 2b

Now let Nb = Nb + k and Mb = Mb + I and consider constructing X G [Nb] b as follows:

(i) first choose Y randomly from [Nb] b,

(ii) independently, for i = 1,2,...,Mb, and with probability — replace Yi with a random

Nb
integer in [Nb + 1, Nb].

If Y denotes the transformed value of Y then clearly Y is a random member of

[ N b ] M b .

(iii)Independently, for i = Mb + l,...,Mb randomly choose an integer value Yi in [Nb]. At

this stage X = (Y l r . .YM b , Y M b + l J . . .Y^ b ) is a random member of [Nb]M b .

To complete the proof of the lemma we observe that o(Y) = n, r(Y) = m, if



(a) <x(Y) = n,

(b) Y = Y,

(c) Yi € [Nb + 1, Nb] for i = Mb + l,...,Mb and each j 6 [Nb + 1, Nb] occurs at least

twice as a Yi.

The events in (a), (b), (c) are independent and

Pr((a))>u/-2 by (3.1),

Pr((b)) = (1 - A)Mb > {_ Mb(_k_
Nb ~~ Nb

Pr((c)) > {+-)'

(since there is at least one way for the Yi to produce (c).)

Multiplying these 3 lower estimates of probability gives the lemma.

D

REMAU. The lower bound in the above lemma is small but it will suffice for this paper. It can

be improved to n"A using the methods of [BFF] and the next section.

We can now give reasonably good estimates for the degree sequence of B(X,Y) (and

hence Bn, as we will see.) Let 0 = 1 — e~c(l + c).

LEMMA 3.4 Let X be chosen randomly from [n]^. Then with probability 1 — o(l)

(3.2) |̂ ()
k! 0



for k = 2,3,... [log nl.

PIOOF Let X be chosen randomly from [Nb] b. We have

lxMb~k

Nb

()
Nb

But changing one Xi can only change î k(X) by at most 1 and so we deduce from (2.1) with

t = n'79 that

Let now S denote the event {cr(X) = n, r(X) = m}. Then from Lemma 3.3 and our

expression for E(i>k(X)) we have

Pr( | i/k(X) - ^ ^ n | > n^\ 8) < exp{-n57 + A n a l o g n)2}.
k\0

But i'k(X) = z^(p(X)) for k > 2 and given S} we have by Lemma 3.2, that p(X) is a random
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member of [n]£.

D

We should of course interpret i\(X) as the number of vertices of degree k in one half

of the partition of B(X,Y).

The above lemma deals with vertices of low degree. Our next lemma will show that

with high probability there are no vertices of large degree.

For the following lemma X is chosen randomly from [n]™ and Z is chosen randomly

from [n]m. Let

I
(3-3) D (0 = S d_(i)

X i l ^

for I > 1 and let Dz(£) be defined analogously.

LEMMA 3.5 Suppose I < (log n)2 and A > 0. Then there exists a constant a = a(c) such that

PlOOF

Pr(Dx(0 > A) = Pr(Dz(0 > A | d^i) > 2, 1 < i < n)

Pr(Dz(0 > A, dz(i) > 2, 1 < i < t | d z ( i ) > 2, t < i < n)

Pr(dz(ij > 2, 1 <i < l \ dz(ij > 2, I < i < n)

Pr(Dz(Q > A, dz(i) > 2, 1 < i < I)

z i ) > 2, 1 < i < / | dz(ij > 2, I < i < nj

by a simple monotonicity argument.
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P r ( D . ( / ) > A)

— I
II Pr(d z(i) > 2 | d z ( j ) > 2, i < j < n)

II Pr(d z(i) = 2 | d z ( j ) > 2, i < j < n)

The lemma will follow immediately from

CLAIM:

Pr(d_(i) < 2)
Pr(d (i) = 2 | d_(j) > 2, i < j < n) > \ ~-^-

This is because

PlOOF OF CLUM

Let n t = {Z e [n]"1: dz(i) = t, dz(j) > 2 for i < j < n}, t = 0,1,2. Fix t = 0 or 1.

We estimate the ratio |ftt»i|/ |ft t | .
 F o r Z 6 fit> Z' 6 fit*i we write Z ~ Z' if

I {k : zk # zQ I = 1 (so that necessarily we can find some k for which Zk i i and put zk = i

and leave other components of Z unchanged.)

For Z e Qt let D(Z) = |{Z' 6 Ot*i: Z ~ Z'} | and let Dn.in = min{D(Z) : Z 6 n t } .

Now, for Z' G fit+i |{Z G fit+1: Z ~ Z ' } | = (t + l)(n - 1). Thus



|Ot*ll > Dmin

But Dmin > (c — 2)n and this yields

> 1

and the claim follows.

COEOLLAIY 3.6 If X is chosen randomly from [n]^ then

PlOOF

(using the notation of Lemma 3.5)

m
< na [ in -\ *

(±\2 logn/loglogn
2 logn / loglognj vn ;

12
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logn
logn/loglogn

0

Let ^6 denote any graph property. We wish now to show the way that we will use the

results of this section. Let X, Y be sampled independently from [Nb]"b and let RIGHTSIZES

denote the event {a{X) - o(Y) = n, r(X) = r(Y) = m}. Also let SIMPLE denote the event

{B(pX),p(Y)) is simple} (this would seem to require us to extend our definition of B(X,Y) to

cases where X,Y have different lengths. It does, and any consistent extension will do, because

we will always condition on RIGHTSIZES.)

By Lemma's 3.1 and 3.2,

Pr(Bn € ^) = Pr(B(p(X),p(Y)) G J6\RIGHTSIZES,SIMPLE)

rrPr(B(p(X),p(Y) ) € jg, SIMPLE | RIGHTSIZES)
Pr(SIMPLE | RIGHTSIZES)

<Pr(B(p(X)>/g(Y)) €^ 1 RIGHTSIZES)
~ Pr(SIMPLE | RIGHTSIZES)

P r ( B ( X , Y ) 6 J()
Pr(SIMPLE | RIGHTSIZES)

(3.4) < A Pr(B(X,Y)

for some A = A(c), by the following Lemma.

LEMMA 3.7

Pr(SIMPLE | RIGHTSIZES) >
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P1.00F (outline) Instead of just conditioning on RIGHTSIZES we can condition on the

sequences dx(i), dy(i), i = 1,2,...,n or equivalently on X,Y up to a permutation of their

coordinates. By Lemmas 3.4, 3.5 we may assume (3.2) and

A(X), A(Y) < IQ = [2 logn/loglognj. Under these conditions

E(# loops in B(X,Y)) = mPr(xi = y{) by symmetry

= mPr(xi =1) by symmetry

— by symmetry

= c.

E(# pairs of repeated edges in B(X,Y)) = (^)Pr(xi=x2,yi=y2)

by symmetry

= (^)Pr(Xl=x2)Pr(yi=y2).

But

n
Pr(x, = x2) = E Pr(xt = x2 = i)

i l

_ n dx(i)(dx(i) - 1)
" . , m(m-l)

1 = 1 v '

and
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E dY(i)2 = E
i= l x k=2

k=2

Thus the expected number of loops and pairs of repeated edges tends to a constant A = A(c),

say. This suggests that number of these objects is asymptotically Poisson and that

Pr(B(X,Y) is simple) -* e""A.

It is straightforward to verify this rigorously (e.g. Bollobas [Bl], Theorem 1.20) and we leave

this to the reader.

D

§4. 2-CORE MODEL

In this section we will study the random graph Bn n p. This is a random bipartite

graph with bipartition Vi = [nj, V2 = [n2] (disjoint copies) and in which each of the n^2

possible edges is independently included with probability p.

A subgraph H of Bn n p is defined to have ^i(H) vertices in Vi, i = 1,2 (or

Vi-vertices) and /z(H) edges. The 2-core /C2(G) of a graph G is the largest subgraph of G

with minimum degree 2. Its use in this paper stems from the following known fact:

LEMMA 4.1 Let H = *2(Bn n ). Let V ^ V f H j n V i . Then conditional on
h 2)*̂

m7 = /x(H), H is equally likely to be any member of ^(V^V^; m'; S > 2).

D

(For each H G ^(V^V^; m; 6 > 2) and m > m' there are the same number of graphs

in ^(Vi,V2; m) which have H as their 2--core. Furthermore, for a given m, each graph in
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2; m) is equally likely to occur as B .)
1> 2 > "

The aim of this section is to prove that given c > 2 there exists d = d(c) > 1, Ci > 0

and integers N,N!,N2 such that

(4.1) Ni« N2 » N = An,

(4-2) p = £ ,

and where H =

(4.3) Pr(i/i(H) = n, i = 1,2 and (i(E) = m) > n"01.

It follows immediately from Lemma 4.1 and (4.3) that for any graph property

(4.4) Pr(Bn 6 <A) < nC lPr(/c2(BN i N 2 p) 6 jt).

We will need to get accurate estimates of the likely size of the 2—core of Bn n p.

These are given in Lemma 4.12. This will take quite a while. The reader who would like to get

on with the proof of the main theorem could skip now to §5. While the size of the 2—core of

Gn,p is known accurately (Pittel [P]), the bipartite case has been somewhat neglected. On the

other hand the methods of proof are well established and we will try to be brief.

We now examine the component structure of Bn n where
1) 2r

(4.5a) ni = ain , i = 1,2 ,

(4.5b) p = | ,
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(4.5c) a\ = ai(n) -> a\ as n -+ OD, i = 1, 2 ,

(4.5d) a i a 2 d 2 I 1 = [1 — e, 1 + e] where e > 0 is fixed and small.
e

We will show that the dichotomy d < 1, d > 1 for G is represented by ata2d
2 < 1,

> 1 in the bipartite case.

So first of all let

ri>k == t^ ie n^mber of Vi—vertices in tree components of size k ,

i,k = the number of Vi—vertices in non—tree components of size k,

and

i = 1 ,2 a n d l < k < | V i |

Let

h(o,,o8>d) = J

a; log n
Let a;-» © slowly, and Ti = E ri>k , i = 1,2.

k = l

LEMMA 4.2

E(Ti) = nh(ai,a3-i,d)
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for i = 1,2.

PIOOF Assume w.l.o.g. that i = 1.

E(rok)= I (?'] [j

k-1
(4.7) = E E

k=a;logn ^=1

Now

7,=

- 5 j IS^(^M)Wo'd)kV + o©

The lemma will follow from

(4.6) REM < n~k0}

where

REM = S V
k=aiogn 1=1

2 k 7 X
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and

Ji(0) n J2(0) # 0 «—• (1 - 0)2 < aia2d2 < (1 + BY

Hence, assuming,

e > 30 we have Ji(0) n J2(0) = 0.

Furthermore

= . r a id 1 — 0 . _ aid ^ __ 1 + 0 \
^ "" ^1+0+aid ' l -0+a2d J 1 + 0 + aid ' 1+0 + a2d^

>0

and outside 1̂ , Te1 7 < (l-^)e^ < e ^ 2 . Thus

(4.8)

for some constant ( < 1.

Putting this upper bound into (4.7) yields (4.6) and the lemma.

D

When we consider small non—tree components we find, as in the model Gn,p, that there

are few vertices on them.

We will say as in Knuth, Motwhani and Pittel [KMP] that an event £n occurs quite

surely (q.s.) if Ti(gn) = 1 - o(n~~K) for any positive constant K.

LEMMA 4.3 Let Ti = the number of Vi-vertices in non—tree components of size at most

wlogn, i = 1,2. Then
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(a) E(Ti) = 0(1) i = 1,2.

(b) f i < a<logn)2n* q.s.

PlOOF

(a)

A j Vj 4

< A E k(k ( as in (4.8)
k=4

< CD.

(b)

We use (2.1) here. Adding or deleting an edge changes Ti by at most 2u logn. Take

t = j cj(logn)2 n* to obtain the required result.

D

Letting A denote maximum degree it is easy to show by the first moment method that

LEMMA 4.4

A(Bn D) < log n q.s.

D

Let now Si = Ti + Ti for i = 1,2.
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LEMMA 4.5

|Si-nh(ai,a8-i ,d) | = 0(um*(logn)3) q.s.

for i = 1,2.

PEOOF Assume w.l.o.g. that i = 1. We want to apply (2.1) with Z = Ci but vertices of large

degree will cause problems. We circumvent this problem with a simple idea from Frieze and

McDiarmid [FM]. For an integer u > logn let Bu be obtained from B = Bn as follows:

go through Vi in order and if vertex v has degree d > u delete d—u edges incident with v;

to be specific delete the edges incident with its d-u highest neighbours. (Thus the degrees of

Vi-vertices in Bu are bounded by u, but there is no such bound for V2-vertices.)

Now,

(4.9) Pr(Bu * B) = Pr(A(B) > u)

Next let Ui, i = l,2,...,ni denote the set of edges incident with i 6 Vi and

17/TT TT TT \ Q /T) \

= LyU i,U2r-' ̂ n ) = ^lv^uj*

Changing any Ui, changes Z by at most uo;logn and so (2.1) implies

Pr( IZ - E(Z) I > t) < exp{- :

Let now u = t 2 / 3 / (n^a; 2 / 3 (logn)2/3) so that
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Pr(Bu + B) <

(assuming t > um.^2 (logn)3) and

< ne-u.

Hence, using Lemmas 4.2 and 4.3 and (4.10),

Pr( | Si - nh(ai,a2)d) | > t + ne^ + 0((w logn)2)) < e-u + e A u .

Hence

(4.10) Pr( | St - nh(ai,a2,d) | > t) < exp{- ^ }
n1 / 3a;2 / 3(logn)2 / 3

provided t > un1^ (logn)3.

(The above inequality can be strengthened, but is good enough as it stands.)

The lemma follows easily from (4.10).

D

We now "eliminate" components of size between aAogn and n/u (and a little more).

Let fi,k = the number of Vi~vertices in trees of size k which have at most one vertex

with neighbours outside the tree. (Thus these trees can either span a component or span a

subgraph attached to the rest of the graph by a unique vertex.)

LEMMA 4.6

2 n/u
E E ri,k = 0 q.s.

i = l k=o;logn



2 3

I

PiOOF Fix k.

n e . , k>

as in (4.8) of Lemma 4.2. The lemma now follows.

D

We now concentrate for a short while on the case a ^ d 2 < 1. First of all there are

usually few vertices on cycles.

LEMMA 4.7 If ai52d2 < 1 then

Pr(Bn n p has > u vertices on cycles) = o(l).

P*OOF

E (number of vertices on cycles) < E [a£nl [a^nl (k!)2(|)2k

< 2 E k(&ia2d
2)k

k=2

= 0(1).
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The Markov inequality can then be used to complete the proof.

D

It will now be easy to prove that Bn has no large components, with probability

1-0(1) .

LEMMA 4.8 If a i M 2 < 1 then

Pr(Bn n p has a component of size > ~) = o(l).

PEOOF Suppose B = Bn n has such a component C and T is a spanning tree of C. We

can, by Lemma 4.4, assume that A(B) < logn. Thus T contains a subtree T' of size

between u logn and o^logn)2 which is attached to the rest of T by a single vertex. But

then we may assume, by Lemma 4.6, that there is an edge not in T which joints a vertex v

of T' to a vertex of T —T'. But then v is in a cycle of B. We can remove T' and apply

the above argument to T — T' , showing that B has at least n/(oAogn)2 vertices on cycles.

Now apply Lemma 4.7.

D

Thus we can now deduce that if a^d2 < 1 then

(4.11) E(#Vr-vertices in components of size < u logn) = ck\n — o(n)

= nh(ai,a2,d) + o(n). (Lemma 4.5)

Thus

(4.12) h(ai,a2,d) = ax if axa^ < 1.

(We have dropped the bars over the a's. (4.11) implies (4.12) is true for constant a^a2 and of
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course, for fixed n, aua2 are constants.)

Assume from now on that aja^ 2 > 1. We first prove

LEMMA 4.9 There exist (unique) 0U02 such that

(a)

(i) /?!/?2d2 < 1

(ii)

(iii)

(b)

h(ai,a3-i,d) = Pi i = 1,2.

P*OOF Let XJ = aid and Ai = aide""3"1 for i = 1,2. Then

(4.13) xi = Aie
X3-i for i = 1,2

and so

(4.14) fi(xi) = 0 for i = 1,2

where

(4.15) fi(x) = x - AieA3-ie* for i = 1,2.

Furthermore

f<(x) = 1 - (Aie
A3-ieX)(A3-ie*) for i = 1,2

and so f'( < 0 and f, is strictly concave for i = 1,2. We consider fj.

(4.16) f;(Xl) = 1 - xjx2 = 1 - a ! * ^ < 0.
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Thus fi(x) = 0 has 2 distinct roots, xi and a second yi < xi satisfying

f'i(yi) > 0.

Let

(4.17) y2 =

so that

(4.18) A / 2 = X* l

Now put /?i = yi/d for i = 1,2. (4.17) and (4.18) are equivalent to (aiii), (aii) respectively.

But then, as for (4.16), i\(ji) = 1 - y#2 > 0 and so (ai) holds.

The simplest check for uniqueness is from (b) (which will not involve a circular

argument.)

(b)

v
MLmmmm X v > ~ ™ JL

i

by (4.12).

We may therefore re—express Lemma 4.5 as
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(4.19) | Si - n/?i| = O(wn*(logn)») q.s.

Not surprisingly, when ai&2d2 > 1 there is q.s. a unique giant component of size exceeding

u) logn.

LEMMA 4.10 If aia^i2 > 1 then Bn has a unique component GIANT of size exceeding

a; logn. GIANT contains n(ai- /?i) + O(am*(logn)3) Vi-vertices q.s.

PiOOF Let p' = n~~*. Let B i = B n { 1 ; ) and B2 be obtained from Bi by joining up

non-adjacent vertices with probability p" = pp'/(l—P + pp')- It is easily checked that B2

has the same distribution as Bn , n ,p i-e. &n edge is included in B2 with probability

= P-

Note that pp' is sufficiently small that the conclusion of Lemma 4.6 is valid for Bi. Suppose

now that B2 has r components of size exceeding n/u (note that they comprise

approximately n(c*i — ^i) vertices q.s..) Each such component of B2 q.s. contains at least one

component of B2 of size at least Jn/o;2 (deleting < u;Jn edges from a component splits it into

at most CJJII subcomponents.) But then, from Lemma 4.6, these Bi components are of size

at least n/u q.s. But then the extra edges in B2 — Bi q.s. connect these < u components

together. Thus r = 1 q.s..

D

We now estimate the number of edges in the small components. So let

m = m (ni,n2,p) = the number of edges of Bn ,n r> in trees of size at most u logn.

LEMMA 4.11
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= 0(n*w(logn)2) q.s.

PlOOF

ogn k-1

[=2 -̂1

J (k-1) J ^ [ ^ (aide"^) W " 1 1 1 1 1 ) " + 0(a;2(logn)2)

(4.20) = 5 S (
ak=2

0(a;2(logn)2).

The last equation can be justified as follows: the R.H.S. of (4.20) is E(m^(/?in,/?2n,p)) =

/?i/?2dn — o(n), on using Lemmas 4.3, 4.4., 4.6 and 4.8. It then follows as in (4.11) and (4.12)

that the summation in (4.20) is actually /?i/?2dn.

The concentration result follows from (2.1). Indeed, adding or deleting an edge changes

m by at most 2a/logn. Putting t = n* a^logn)2 yields the lemma.

D

Having established the size of GIANT we will not study its 2-core, CORE say. Let

MANTLE denote those vertices in GIANT but not CORE. We will estimate the size of

MANTLE by using a simple and powerful idea of Pittel [P]. Observe that

(4.21) v G MANTLE <—• v is jointed to the largest component

of B — v by a single edge.

Here B = Bn ,n ,P and B — v is obtained by deleting vertex v. Note that (4.20) only
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describes MANTLE q.s.

Furthermore

(4.22) v G CORE <—• v is joined to the largest component

of B — v by at least 2 edges.

Now let BCOREJ , i = 1,2, mC0RE denote the number of Vi-vertices, i = 1,2 and edges in the

2-core of B respectively. (4.21) and (4.22) will now be used to show

LEMMA 4.12

PEOOP Let X = | MANTLE nV!| and k = [n1^10]. Then

(4.23) E((X)k) = (n0k Pr([k] C MANTLE n

where [k] cVi.

Now by considering the number of edges, t say, contained in [k],

(4.24) Pr([k]c MANTLE) < ^ ( f )(|)*Pr(ykH) + E (f )(|)* +

where K = (2) and

= {vertex i, 1 < i < k — t, is joined by exactly

one edge to the largest component of B — [k]}

and
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J6 = {B — [k] has a unique giant component in the sense of Lemma 4.10}.

Now fix 1 < s < k. Then

where v denotes the number of Vr-vertices in the giant component of B - [k],

(

Now let i/2 = n(c*2 — fa). Then

_

^ e n ) s | | v-v2\ < n4/5) + Pr(| w2\ > n4'5)

ne n y (1 + 0(-i-)) + exp{
1/5

by (4.10),

where 6 =

Hence from (4.23) and (4.24)

E((X)k) < (1 + o(l)) (n,)k
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But for any a > 0

Putting a = nj0 + jn 1 9 / 2 0 and observing that (9TH + (l-0)k)/a > 0(ni - t)/(a-t) for t < k

we find

(4.25) Pr(X > A(aa-ft)dn + ^n19"0) < (1 + o(l))(l - a - fa^- (l-fl)k )k

By using a similar argument we obtain, where ^COPEI *s *^e n u m ^ e r °f Vi—vertices of CORE,

(4.26) P r ( i W E l > (((«! - Pi) ~ M « 2 - A))n + jn19/20) < exp{-

Indeed the main step is to argue, in place of (4.24), that

Pr([k] c CORE) < | | o (^)( | ) t Pr(^ k . 2 t ) + E (^)(|)» +

where

g's = {vertex i, 1 < i < s, is joined by at least 2 edges to the

largest component of B — [k]}.

A similar argument to that given for $8 yields

n _ H 2 ! e n xs
Tl /
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and (4.26) can be easily obtained.

We can now finish the proof of the lemma quite easily,

(a)

(4.26) plus the bound on Tx in Lemma 4.3(b) for the part of the 2-core outside of

GIANT provides a probabilistic upper bound. On the other hand

Hi - nC 0 R E l < | MANTLE n Vt | + S q.s.

and the RHS of the above is bounded probabilistically by (4.25) and (4.19) and Lemma 4.3(b).

(b) Let m (= aia^dux + o(n1/2 logn) q.s.) denote the number of edges of Bn ,n ,p. Then

m - | M A N T L E | - m - m < m_..w < m - IMANTLEI - m q.s.
(J O CORE u

where m is the number of edges in non—tree components of size at most u logn.

Now m^ < (Ti + T2)A and so Lemmas 4.3 and 4.4 can be used to show that m^ is

"negligible" q.s.. Finally | MANTLE | = | V(GIANT)| - (n£Q]lBl + n^0RE2) and we can use

Lemma 4.10 and (a) to bound | MANTLE | probabilistically from above.

•

For each vertex v in the 2—core there is a unique maximal tree T containing v and

those vertices w € MANTLE for which all paths joining w to the 2—core go through v.

Let /xk = | {v E Vi : T y has k vertices} |.

LEMMA 4.13

(a) There exists Ao > 0 such that

Pr(3k > Ao logn : /xk > 0) < n"10

(b)



33

Mk < n(k + n1/5 q.s.

where ( = - ^ , £ as in (4.8) and 1 < k < AJogn.

P*OOF

(a) Fix k and let Z = the number of vertices in trees T with k vertices. Then

Z < rvk + f2,k (of Lemma 4.6.) Hence, from the proof of that lemma

> 0) < Pr(Z > 0)

<E(Z)

We can then choose Ao such that

1 + Ao log C < -12.

(b) Fix k < Ailogn and let Y = the number of maximal trees of size k with at most one

vertex with neighbours outside the tree. Clearly /ik < Y. Let t = [ n ^ 0 ] . Then

E((Y)t) < S
l < 4
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Hence

(4.27) Pr(Y > n fr <
Kk)

Suppose first that k < k0 = [-$ logn/log CJ so that nCk > n^6. The result in this case

follows easily from (4.27). For k > k0 we use

P r ( Y > nV") <
( n 1 / 5 )

a

We now come to the second half of our proof of (4.1). In this part we consider a

3-dimensional array of random bipartite graphs defined as follows: from values N,d (to be

defined later) we define a random bipartite graph T with vertex partition X = [u] and

Y = [u] where

v = [N + N29/30! and /x = fdN + N 2 9 / 3 0 ] .

v' = [N - N29/30! and /x' = [dN - N2 9 / 3 0 l .

For each x e X, y € Y and 1 < i < /* there exists an edge of colour i independently with

probability ^

Once all the edges of r are generated, parallel edges are coalesced to a single edge.

Let
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J = {(i,j,k) : i/' < i,j < i/, fi' < k < fi}

and for (i,j,k) € J let Fi,j,k be the subgraph of T induced by the vertices of [i] £ X,

[j] c Y and the edges of colour t e [k]. Note that for a fixed i,j,k, ri,j,k is distributed as

Bi,j,pk where pk = 1 - (1 - j ^ ) k » j ^ - , for k = 0(N). Let the 2-<x>re of Ti,j,k have £t =

£i(i,j,k) vertices from X, f 2 = 6 0 J>k) vertices from Y and 6 = £3(1 J,k) edges. The aim is

to show that for suitably chosen N,d

(4.28) 3(i,j,k) 6 J : Pr(6 = fr = n, 6 = M ) > n""A

which will imply (4.1).

We first have to show that £ does not change by much for a unit change of i or j or

k.

If a = (i,j,k) 6 J and t = 1,2,3 then

^n = (i + ftt, j + tfjt, k + 4t) (Kronecker delta.)

Let

Cs,t = max{a € J : f8((r4t) - &(*)} 1 < s,t < 3

and

C = max{Cs,t : l<s , t<3} .

LEMMA 4.14 There exists pt > 0 such that

Pr(C>PilogN)<N-io.

PIOOF Consider first £i>i- The construction of ri+i,j,k from ri,j,k can be viewed as that of

adding vertex i + 1 and then independently adding edges (i+l,y), y € [j] £ Y with probability
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For each such y let

0 if y* MANTLE ( r ^ )

size of maximal tree of mantle containing y, otherwise.

Now conditional on the values of ry, £i,i is dominated stochastically by

Z = S 7/t
t= l

where

Tt with probability p

0 with probability 1—p

and 7/i,...,7/j are independent (7/t > the number of vertices added to the 2—core if edge (i+l,t)

exists in ri+1,j,k.)

Now q.s. at most logN T/̂ S will be non—zero and so we can consider an alternative random

variable

where Zi.Z2,...,Zj are independent identically distributed random variables with

Pr(Z, = s) = f

where 7 s = |{y : r y = s } | .

Observe that Pr(Zt = 0) is bounded below by a constant. Now Lemma 4.13 implies

that q.s.
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7s < N0s +

for some 0 < 0 < 1, and

7s = 0 s > AologN.

Hence we can assume

Pr(Zi = s) < 20s + 2N*4/5 0 < s < AologN.

It follows that we can dominate Zi stochastically by Z\ + Z'[ where

; = s) = Pr(Zi = s) - 2N-*/s i < s < AologN

A o logN
PrfZ; = 0) = 1 - E Pr(Z; = s),

s = l

and

AologN with probability

0 with probability 1 - ( l o f i N ) 2

+ Z" dominates Zi since, for s > 1

" ±7" ^ A - (logN)2 I /i (lOg^J"\ pTf7/ \ o\

2A0logN>(1 _ OogNli) ( p r ( z } _
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> s) + ^-((logN)2Pr(Z1 < s) - 2AologN)

> s)

since Pr(Zi < s) is bounded away from zero by a constant.

Now

£ Z.- > 6 ) \
8=1 I 20

20f

< N-( 16-0(1) ) .

AologN
S Z's can be dealt with in a standard manner by applying the Markov inequality to its

s=l

moment generating function. This deals with (vv (2>2 and (more or less) with (v2 and £2

The number of edges added to the 2—core by adding a vertex i+1 is at most the

number of vertices added plus the degree of i+1, which is at most logN q.s. and this deals

w i t h C3>i> £3*2-

Finally, the number of vertices or edges added to the 2—core by adding an edge is at

most twice the size of the largest tree in the mantle, plus 1.

D

We now consider a function $ : R3 -• R3, $ = (^1,^2,^3) where

- 02)

= a2 - & - d£(

where we will assume c*ia2d
2 > 1 and /?i,/?2 are as in Lemma 4.9. We know from Lemma

4.12 that r
a N a N dN q"s' ^a s a 2~"core ^ ^ (approximately) N<f>i + N(̂ 2 vertices and
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edges. We will choose N,d so that

(4.29) N^(l,l ,d) = N02(l,l,d) = n ; Nfc(l,l,d) = cn

This guarantees that T^ ^ ,~ has a 2-core with approximately n+n vertices and cn edges

and we will show that a graph "close" to this has a 2-core of the required size with a

sufficiently high probability.

We must verify first that (4.29) has a solution. Observe now that from their definition

in Lemma 4.9, where d > 1

(4.30)

where x is the unique solution in (0,1) to

(4.31) xe^ = de-<

Hence

(4.32) ^ ( l , l ,

so (4.29) is equivalent to

(4.33) d _ x = c > 2, where x satisfies (4.31)
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D — XSo let f(D) = r ~ x where xe"* = De and 0 < x < 1 < D. Then the proof that (4.33) is

solvable comes from

LEMMA 4.15

(a) f(D) is monotone increasing.

(b) 1 im f(D) = 2.
D->1 +

(c) 1 im f(D) = a.
D

P1.OOF

(a)

1 1 " ' ~ ( l - x)2
where

dx _ x - Dx
3D" D - Dx

Thus

- x(D -
x)i

_ (D - x)(l - Dx))(l

Hence
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(4.35) f'(D)>0«-» D x < l

i-D

where g(D) = D2eD

But g(l) = 1 and g'(D) < 0 for D * 1 and (a) Mows.

(b)
Now f is clearly differentiable for D > 1 and so let L = 1 im f(D). But

D- .1 ,

(4.36) f(D) =

and so

L = 1 + 1 im -K by L'Hopital's rule.
D- . lT

= 1 + l i m D

= 1 + 1 im

Now clearly this implies that L ^ 1 and so

and L = 0 or 2. But (4.36) implies L > 1 and so L = 2.
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(c)

x-» 0 as D -» <D.

Now let CBOX = {(Ai,A2,A3) 6 R3: | A i - n | < n24/25, i = 1,2 and | A 3 - c n | < n24/25}

and BOX = CBOX n 23.

For (71,72,73) € R3, 7i727§ > N< we let

^(71,72,73) =

and DOM = $-i(CBOX). Note that (N,N,dN) e DOM.

Now a rather lengthy calculation shows that the Jacobian of $ at (l,l,d) is given by

det

"̂  ~ a

( i -
i -

i -

)(i -

i -

J) 2 d x
X

• X

X + X2«

(I"

d - x*) (

id1-"!)'
1 - X

1 - *)*dx
1 - X2

: + x2d -

\ ( i -

( i -

- f ) 2

. - ) 2

1

1

1
i

X
—

X
—

+
—

X

X

X
X

1 - X2

since 0 < x < 1 < d and dx < 1 (see (4.35).) This implies that the Jacobian of $ is

non-zero in some neighbourhood of (1,1,d). Hence there exists a fixed e > 0 such that the

Jacobian of 4 is non-zero in {(71,72,73) : | 7i — N| < eN, i = 1,2 and | 73 — dN | < eN}. Thus

for large N, 4 : DOM -4 CBOX is a bijection. Furthermore, simple continuity arguments

imply that for some p2 > 0
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(4.37a) x,y 6 CBOX - ||*-i(x) -

(4.37b) x,y G DOM - ||ft(x) - *(y)|| < p2||x-y||.

Given the random graph Yp v we define a function * : BOX -»P as follows: if x e BOX

let y = (yi,y2,y3) = M * ) - Then let (i,j,k) = LyJ=(LyJ, LyaJ, LyaJ )• Finally, let

Observe in the above definition that, where x<) = (n,n,cn), y0 = ^"^xo) = (N,N,dN), we have,

by (4.37a),

||y-yo|| <

and so (i,j,k) e J.

Observe also that q.s. for all x 6 BOX

(4.38)

< J3 N1 9 / 2 0 by Lemma 4.12.

We extend * continuously to CBOX so that if x lies in the interior of a cube C of

the integer lattice then the components of ¥(x) lie between the largest and smallest

corresponding components at the vertices of C. The aim now is to show that q.s. there exists

x e CBOX such that

(4.39) *(x) = y = (n - 2p,/>2n, n - 2pi/?2logn, en - 13/>i/>2logn).
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To do this we use a result in Non-linear Functional Analysis (Schwartz [S], Chapter III). For

this result D refers to an open bounded subset of Rn, D is its closure and dD is its

boundary.

TXEOIEM 4.16 To every continuous map <f>: D -»Rn and every point p I <l>(dD) there is an

integer deg(p,0,D) with the properties:

(a) If <f>t is a family of continuous mappings depending continuously, in the uniform topology,

on t, 0 < t < 1 and such that p i 0t(5D) for every t then

(b)

deg(p,0,D) i 0 implies p G <p(D)

(c)

deg(p,In,D) = 1 for p 6 D.

where In is the identity map on Rn. D

To apply Theorem 4.16 we take D = int(CBOX) and <j> = ¥ and then let

<t>t = t* + (1—t)I3 for 0 < t < 1. (4.39) will follow once we verify that y t <f>t(dD) for all t.

Suppose then that x 6 dD and for example that xi = n + n24/25. Then, where

0t(x) = (71,72,73) we have, by (4.38), that 71 > xi — J3 N19 /20 > n. Other cases are almost

identical and (4.39) follows.

Now given x in (4.39) let x be a vertex of the cube containing x. It follows from

(4.37) and Lemma 4.14 that q.s. if (1 ,],k) = L*"1^)] th^n f(i ,],k) € K where

K = {(ai,a2,b) 6 Iz: n — Spipdogn < ai < n — pipdogn, en - 14/?i/?2logn < b < en - 12/9i/?2logn}.

Since |BOX| = O(n2*88) we deduce that there exists some ( i / , j / , k / ) e J such that
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=Ailogn l=k-fjL k

= 0(1)

for large 7/.

D

We now show that

(5.9) Pr(HALL(A!logn < k < A2logn)) = o(l),

for all (large) constants A2 > 0.)

We will use a similar but more careful estimate to that of (5.2) but we can now restrict

our attention to K,L,k,£s.t satisfying

(5.10a) l>k-fi Corollary 5.2

(5.10b) s < k+l + /x Corollary 5.2

(5.10c) L has at most v large vertices Lemma 5.3

(5.10d) t < r\t Lemma 5.4

So let HALL'(k,/) denote HALL(k,̂ ) where (5.10) is incorporated as extra conditions. We

need to show
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(5.11) PrtHALL'CAilogn < k < A^ogn)) = o(l).

Fix k within this range and I satisfying (5.10a). Then

Pr(HALL'(k,4) < I Jl 151 E E Pr(Dk = s, D , = t, N([k]) C [<|, (H4)).
L̂ J L*J s = 2 k t = s l

We observe next that since k = 0(logn)

(512a) Pr(di=r | dlfd2,...,di.1) < ^ - + 2 n - ^ , 1 < i < k, 2 < r < logn,
!0

The first inequality follows from (3.2) and the fact that once the number of vertices with

a given degree is fixed, the degrees of a particular set of vertices is obtained by sampling from

the multi—set of degrees, without replacement. Let now

fl(M) = {(si,s2,...,sk) : 2 < slls2j...,8k < iOg?§gn> Sl + S2 + - + s^ = s>

and

Then, where K = [k] C V, L = [<] C W,
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(5.13) Pr(dK = s, dL = t, N(K) C L, (H4)) <

E P r ^ i ) = xi, i 6 K) U
xefi(s,l) x ^cn'8 yen(t,2) ft]w

ElPLAIlTIOI

Having fixed the degrees x,y for i 6 K, j € L the probability that N(K) £ L is

(t)s/(cn)s. Given that N(K) £ L the probability that each vertex of L has at least 2

neighbours in K is at most the final term.

Note next that (5.10a) and (5.10b) imply | ft(s,l) | < P j ^ 1 ] < ^ = e0( k) and that

x e f i (s,l) implies there are at most /x xi's ^ 2 and max{xi} < /x. Hence, using (5.12b)

(5.14) S Pr(dT(i) = xi, i € K) < eo(k>
xen(s,l) x

In the following estimate A refers to the number of large vertices in L.

(5.15) E Pr(d^Q) = yj, j 6 L) n fcl

< E
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Combining this inequality with (5.14) in (5.13) we see that

r\l ~2k+t -
Pr(HALL'(k,O) < J * E

~ 1KJ L'J s=2k t=s H ^ T I ft_of\i IM v^u;s

Now in our range of interest t s ~ 2 *=e°<k) ; (t—2/)! = (*Z?*)t-ak e 0 ( k ) ;

(t)s/([tJ(cn)s)<(2|E)2keo(k). Hence

t = 2 k ( l - e - 2 ) a £ - 2

(after using cJ = c(l — e*c),)

t _ 2

|E ) k

<eo(k) S ( _ ± ^ )
t=2k (l-e-c)2

(after using (a/x)* < ea'e.)



56

We obtain (5.11) and hence (5.9) once we observe that

— < 1 for x > 0

Large k

We now finally consider A2logn < k < S. For this we use the 2-core model of §4 and

obtain the inequality

(5.16) Pr(HALL(k,*,s)) < nC

where g, * = the number of bipartite graphs with vertex partition [k], [/], s edges and

minimum degree at least two.

The RHS of (5.16) is the expected number of subgraphs of BH H with k vertices in

V, I vertices in W, s edges and minimum degree at least two, multiplied by n *, since we are

using (4.4).

Now

where h, = the number of ways of putting s distinguishable balls into k boxes with at

least 2 balls in each box.

To see this let G be a bipartite graph with k + I vertices and edges viwi, i = 1,2,...,s.

Any permutation </> of [s] yields a pair of allocations of balls into boxes: ball i into box v i/.N,

i = 1,2,...,s and ball j into box w *,.y j = 1,2,...,s. Different orderings clearly yield different

pairs of allocations. Note also that distinct graphs yield disjoints sets of pairs of allocations
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since such a pair completely determines the edges of the graph.

Now

(5.18) h, = S s ! / n (i!)di

*'s d€fl i=2

where

s s
n = {(d!,...,ds) > 0: £ di = k, E i di = s}.

i=2 i=2

Now let p = s/k and p satisfy

and

Qi = {d € fi : (i) di = 0 for i > log k,

(ii) | d i - | ^ l | < i4/5, 2 < i < logk},
a i!

where a = 1 — e~^(l + p).

It follows from Lemma 3.4 and (5.18) that, say,

(5.19) hk>s < 2 E s!/ n (i!)di

d f i i=2

Now | Oi| < (2k*^5 + i)iogk = e0(k) and so if

,S) = ( L|J ok r | r m o d k
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then (5.19) implies

(5.20) hk)S<eo(k) s!/f(k,s).

d

) *
d

( n (i!) * > f(k,s) foUows from (a+l)!(b-l)! > alb! if a > b.)
i=2

To use (5.20) we need to know something about the behaviour of f(k,s). What we need

is summarised in the following lemma:

LEMMA 5.5 Suppose v = au + b where a = [-J > 2. then

w ife
J

f(u+ljv) * 2» assuming a < u + 1.

PlOOF

(a) f(u,v) = (a!)u(a+l)b

and

(a!)u(a+l)b+i 0 < b < u - 2

f(u,v+l) = •

((a+l)!)"+ i b = u - 1

and (a) follows.

(b)

Suppose first that

Then

= a a n ^ s o v = a(u+l) + b - a where b > a.

f(u+l,v) = (a!

and so
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Suppose next that L̂ ŷJ = a - 1 and so v = (a-l)(u+l) + b-a + u+1 where

b-a + u+1 > 0. Then

f(u,v) _ (a!)" (a
f(u+l,v) Ua-lj!ju;» ab-a • u+l

a»

Note finally that LxrJ ^ a"-2 i s r u l e d o u t by a < u+1.

It follows from(5.16), (5.17) and (5.20) that

(5.21) Pr(HALL(M,s)) < eo(k) n
Clr(k,/,s)

where

(5.22)

Now, by Lemma 5.5, for I < k < ̂  n < ^ N2

s) _ N2 -
I

> 2

provided we can assume [|j < I + 1. But this is justified by s < k logn q.s., A2 is large and

LEUMA5.6 Suppose A2logn<k<in . Let J€I denote the event that there exist K,L

satisfying (HI), (H2) and I < to = e-*d-*k. Then Pr(Bn € ^ 4 ) = o(l).
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PIOOF It follows from (4.1) - (4.4) that

lite s>2k k* l

£ 2 n C l £ e°*k)

= o(l)

Thus,

(5.24) Pr(HALL(k < A2 logn < \ n, I < e-<d-2k)) = o(l)

and we are justified in using (5.23) to obtain

k—1
(5.25) E r(k,*,s) < 2r(k,k,s).

l l

Using Lemma 5.5 once more we have
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r(k,k,s-l-l) _ d (1 dy* s + 1

(L|J +i)5

(5.26)

Assume for the moment that d < 4. Then

(5.27) S r(k,k,s) < Y - ° d ' r(k,k,2k).
s>2k 4 d

But

(5.28)

It foUows from (5.21), (5.24), (5.25), (5.27) and (5.28) that if d > 4 and A2 is

sufficiently large then

Pr(HALL(A2logn < k < 5 n) = o(l)

and this completes the proof for d < 4.

Suppose now that d > 4. In view of (5.25) we need only consider r(k,k,s). But
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r(k,k,s) <

(since Stirling's approximation implies f(k,s) > (Jf)s-)

Writing s = ak, a > 2,

(since k < N/2)

since ( | | ) a < ed/2.

Now 4e2"d/2 < 1 for d > 4 + 2 Iog4 = 6.7725887... and we have completed the proof

for say, d > 7.

It remains only to consider 4 < d < 7 and s < dk/2 < 3.5k. If s > dk/2 then (5.26)

allows us to reduce to this case.

Case 1: s = (2 + /?)k where 0 < 0 < 1.

f(k,s) = 2k

r(k,k,s) <eo<k>
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and we are done, since d > 4.

Case 2: s = (3+/?)k where 0 < £ <

f(k,s) =

r(k,k,s) < _

36K16P

36 x

and we are done, since d > 4.

This completes the proof of our Theorem.

D

We claimed in the introduction that BoUobas and Frieze [BF] had shown that roughly

^ n logn edges were needed in G*^ and that the proof could be extended to bipartite graphs.

The proof as given there would not allow us to deal with m = 0(n). So it behoves us to

explain why with en edges, we insist on minimum degree at least 2. If c = 1 then our
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bipartite graph is a perfect matching. However, for c > 1 we can use the method of §3 to

show that if a graph G is sampled uniformly from <#(V,W; 6 > 1) then it has a degree

sequence as in Lemma 3.4 with a slightly different definition of c and of course

k = 1,2,..., [logn]. Of course Lemma 3.6 remains true. Under these conditions it is easy to

show that with probability 1 - o(l) there will be 2 vertices of degree that share a common

neighbour.

Acknowledgement: I thank Charlie Coffman and Mete Soner for their help, along the way.
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