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I. Introduction

Our goal in this paper is to provide conditions on a function f:D-+Kn, with D a subset

of R , that are weaker than one-sided Lipschitz continuity or monotonicity and that

guarantee a restricted property of uniqueness of solutions of the associated initial value

problem

x(t) = f(t,x(t)) (1)

x(0) = x°. (2)

We call the functions studied here "weakly Lipschitzian"; each such function f has associated

with it a number of auxiliary functions G.:I.->R, j€{m+l,...,n} with LcR and me{l,...,n}.
j J J

We show here that when f is weakly Lipschitzian, both classical and Filippov solutions of the

initial value problem (1), (2) are unique, provided such solutions are compatible with the

domains of the auxilliary functions in a sense to be made precise in section 2.

We arrived at the notion of a weakly Lipschitzian mapping through an earlier study of

uniqueness of motions of certain elastic-plastic oscillators [1] in which a physically natural

measure of energy separation of solutions was shown to decay in a weaker sense than would be

the case were the right—hand side f monotone. For such oscillators, one of the components

of the solution necessarily is non—decreasing and there is a concave, increasing response

function for the oscillator that controls the evolution of the energy separation. These features

of the oscillator led to the observation that the energy separation never exceeds its initial

value, even though that separation may increase on some intervals of time, and this yielded

uniqueness of solutions. In this article, we show that this observation can be employed

through the notion of a weakly Lipschitzian mapping to obtain uniqueness theorems for a

broader class of ordinary differential equations than the ones studied in the paper [1].

"*megie Mellon University
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In Section 2, we define the notion of a weakly Lipschitzian mapping, and we establish

in Theorem 2.1 the uniqueness of classical solutions of (1), (2), i.e., absolutely continuous

functions that satisfy the equation (1) almost everywhere and satisfy the initial condition (2),

provided that such solutions are compatible with the domains of the auxiliary functions. Our

proof of restricted uniqueness involves first proving uniqueness only of a certain number of

components of the solution (roughly corresponding to those components that determine the

energy separation used in [1]). The proof of uniqueness of the remaining components is then

based on the uniqueness of the former components. If the weakly Lipschitzian mapping f

happens to be Lipschitzian, one-sided Lipschitzian, or monotone, then the second step is not

needed, because the first step treats all of the components of the solution, and no auxiliary

functions are used.

In Section 3, we give some examples from mechanics of differential equations in which

Theorem 2.1 can be applied to obtain unrestricted uniqueness of solutions. In each of the

examples, the form of the right-hand side f of (1) permits us to partition the set of initial

data and the domain D of f into finitely many subsets. Each corresponding restriction of f

satisfies the hypotheses in Theorem 2.1, and one obtains in this manner local uniqueness of

solutions for each restricted problem. Unrestricted uniqueness of solutions of the original

problem then follows readily in each example. We note that the example we give of a single

damped non—linear oscillator also can be treated using transversality arguments [2], and the

example of the elastic—plastic oscillator also can be treated by the methods employed by

Groger, Necas, and Travnicek [3] in their study of partial differential equations from the

theory of plasticity. However, we do not know of a method other than ours that covers both

of these examples. Moreover, we know of no other method that yields uniqueness of solutions

for the coupled, damped non-linear oscillators that we describe in Section 3.

In Section 4, we describe Filippov's notion of solution [4] of an ordinary differential

equation, and we show in Theorem 4.1 that, when f is weakly Lipschitzian and satisfies



Filippov's condition B, the initial—value problem (1), (2) has at most one Filippov solution

that is compatible with the domains of the auxiliary functions.

If one wishes also to establish local existence of classical solutions of (1), (2), then one

must supplement the assumption that f is weakly Lipschitzian by an additional property.

For example, one can assume that f satisfies Caratheodory's conditions [5, Chapter 2,

Theorem 1.1]. However, in the case of Filippov solutions the Condition B, which we assume

in proving restricted uniqueness of solutions in Theorem 4.1, implies local existence of

solutions [4, §3, Theorem 4]. In each of the examples presented in Section 3, local existence of

both types of solutions is assured. For the elastic-plastic oscillator in Example 3, a natural

extension of the right—hand side is required in order to obtain local existence of Filippov

solutions for all choices of initial data; once this extension is made, one can show that the two

notions of solutions coincide. (Actually, in all of the examples in Section 3, the two notions of

solutions coincide.)

2. Restricted Uniqueness of Classical Solutions

Let neW, DcRn + 1 , f:D-*Rn, x°eRn, and T>0 be given such that (0,x°)eD. An

absolutely continuous function x:[0,T]-*Rn is called a classical solution of the initial—value

problem (1), (2) if (t,x(t))eD for all t in [0,T], x(0)=x°, and (1) holds for almost every t

in [0,T].

We say that f is weakly Lipschitzian on D if there exist me{l,...,n} and, for each

je{m+l,...,n}, an increasing mapping G.:L-*R with I. an interval in R satisfying

(WL1) for all j e {m+l,...,n}, f. > 0 and G. is concave,

or f. < 0 and G. is convex;
J J

(WL2) there exists a locally integrable function L:[0,cu)-»[0,aD) such that for

every (t,x), (t,x) in D, with XJ,XJGL for all jE{m+l,...,n},



(Px-Px)-(Pf(t,x)-Pf(t,x)) + S (G.(x.)-G (x.))(f.(t,xH.(t,x))
j = m + l J J J J J J

< L(t) ||Px-Px||2; (3)

here, for all x=(x1,...,xn)€Rn, we put

Px = P(xr . . . ,xn):= (x1,x2,...,xm,0,...,O). (4)

We note that if (WL1) and (WL2) hold with m=n, then the set {m+l,...,n} is

n
interpreted to be the empty set, the sum E in (WL2) is zero, and (WL2) is the

j=m+l

assertion that f satisfies a one-sided Lipschitz condition on D. If, in addition, L is the

zero function, then f is monotone. Thus, monotone functions and (one-sided) Lipschitz

continuous functions are weakly Lipschitzian.

THEomi 2.1: If f is weakly Lipschitzian on D and T is a positive number, there is at most

one classical solution x̂ O/Tj-ilR11 of the initial-value problem (1), (2) that satisfies

^tjelj for all t€[0,T], j€{m+l,...,n}. (5)

The condition (5) gives a precise meaning to the phrase "solutions compatible with the

domains of the auxiliary functions" used in the Introduction as well as to the phrase

"restricted uniqueness of solutions" that appears in the title of this article. Thus, instead of

uniqueness for arbitrary solutions of (1), (2), that would follow from Lipschitz continuity of f,

only uniqueness for solutions of (1), (2) compatible with the domains of the auxiliary

functions G , . ... G follows from the assumption that f is weakly Lipschitzian.



In order to prove Theorem 2.1, we need three lemmas.

LEMMA 2.1: Let an interval IcR, numbers r, r 'e l with T<T', and G:I-*R a

non-decreasing, concave function be given. There then holds

f (G(x(t)+u(t)) - G(x(t))u(t)dt > 0 (6)
r

for every absolutely continuous function U:[T,T']-»R, with u(r)=0 and u(t)>0 for all

tE(r,r /), and for every non—decreasing absolutely continuous function X^TJT']-*!.

This lemma can be proved using the arguments given on pages 109—113 in the article [1].

There, the counterpart of G was assumed to be positive, to have positive derivative, and

non—positive second derivative, but only the implied monotonicity and concavity were used.

Wang has proved (Ph.D. Thesis, Carnegie Mellon University, 1991) that when G is C , the

monotonicity and concavity of G are necessary in order that (6) holds for all functions u

and x as above.

LEMMA 2.2: Let T>0 and an interval IcR be given.

(i) If G:I-4R is a non—decreasing concave function, then there holds

" G(x(r))(x(r) -x-(r ) )dr > 0 (7)

for all t€[0,T] and for all x, x absolutely continuous functions from [0,T] into I with

x(0)=x(0) and x(t)>0, x"(t)>0 for almost every te[0,T].



(ii) If G:I-»R is a non-decreasing convex function, then (7) holds for all te[0,T] and for

all x, x absolutely continuous functions from [0,T] into I with x(0)=x(0) and

x(t)<0, 5T(t)<0 for almost every te[0,T].

Proof of (i): Let x, x, G be given as in (i), and for each te[0,T], put u(r):= x(r)—x(r),

and note that u is absolutely continuous, u(0)=0, and for all t€[0,T],

\ ( { T ) ) - G(x(r)))(x(r)-3c-(r))dr =

f\G(x{r)+u(r)) - G(x(r)))u(r)dr. (8)

Let te[0,T] be given. Because u is continuous, there is a countable set J and a family

((r.,T'.)|j6J) of pairwise disjoint subintervals of [0,t] such that

[0,t] n U^CIRUO}) = U (T.,T'A (9)
J€J J J

and, for all j€J, either

u(r.) = 0 and u(r) > 0 for all T£(T.,T'.) (10)
J J J

or

u(r.) = 0 and u(r) < 0 for all TZ{J.J'\ (11)
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Let jeJ be given. If (10) holds, then x and u satisfy the hypotheses of Lemma 2.1 and by

(6) there holds

TJ(G(x(r)+u(r)) - G(x(r)))u(r)dr > 0. (12)/

If (11) holds, then put u:= —u, and note that x=x-u=x+u, so that x(r)>0 for almost

every r6(r.,r/.) and u(0)=0, u(r)>0 for all re(T.j'.). Therefore, we have

/7J(G(x(r)+u(r)) - G(x(r)))u(r)dr =

r)) - G(x(r)+u(r)))(-u-(r))dr

/rJ(G(x(r)+u(r))-G(x(r)))u-(r)dr,

and Lemma 2.1 again yields (12). If we put %C:= U (T.,T'-), then by (9), u(r)=0 for all
j€J J J

re[0,t]\^, so that U(T)=0 for almost every rG[0,t]\^. We then have by the countably

additivity of the integral and relation (12),

u(r)) - G(x(r)))u(r)dr =

(G(x(r)+u(r)) - G(x(r)))u(r)dr + f (G(x(r)+u(r)) - G(x(r)))u(r)dr =

S / J(G(x(r)+u(r)) - G(x(r)))u(r)dr > 0; (13)
j€J Jr •



relations (13) and (8) then tell us that (7) holds.

Proof of (ii): Let x, x : [0,T] -> I be given with x(r)<0 and x"(r)<0 for almost every

re[0,T]. Let G:I-»R be a non-decreasing, convex function, and observe that the relation

G(y):= —G(—y) defines a non—decreasing concave function G:(—I)-»R. Hence, if we put

x*:= -x and x*:= —x, then G, x*, and x* satisfy the hypotheses in part (i), so that by

(7)

0 < jTVWr)) - G(x,(r)))(x;(r)-x;(r)dr

;(r) - X;(r))dr

= /Q
t(-<3(x(r))+(G(x(r)))(-x(r)+x-(r))di

for all te[0,T], and this yields the desired conclusion in (ii). m

LEMMA 2.3: Let an interval IcIR and T>0 be given. If x, x : [0,T]-»I are absolutely

continuous, G:I-*R is increasing, and for almost every te[0,T] there holds

(G(x(t))-G(x(t)))((x(t)-* (t)) = 0, (14)

then for all t€[0,T],

x( t ) -x( t ) = x(0)-x(0). (15)
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PROOF: Put

E:={te[O fT]|i(t)M-(t)} (16)

and note by (14) that G(x(t)) = G(x(t)) for almost every teE. Because G is increasing, it

follows that x(t) = x(t) for all teE and, therefore, x(t) = x"(t) for almost every teE. By

(16), we conclude that E has measure zero, and, therefore, x ( t )=x ' ( t ) for almost every

te[0,T]. The conclusion (15) is now immediate. m

Proof of Theorem 2.1: Let x, x be classical solutions of (1), (2) that satisfy (5). Relations

(1) and (3) then yield for almost every re[0,T]:

(Px(r)-Px(r))(Px(r)-Px-(r) + S (G .(x.(r))^ .(x.(r)))(x.(r)-x(t)) =
j =m + l J J J J J J

= (Px(r)-Px(r))(Pf(r,x(r))-Pf(r,x(r))

+ E (Gj(x
j=m+l J J

<L(r) | |Px(r)-Px(r) | |2 (17)

Integrating the first and last members of (17) from 0 to t and using Lemma 2.2, we obtain

for each te[0,T]:

||Px(t)-Px(t)||2 < ||Px(0)-Px(0)||2

and Gronwall's inequality together with the initial condition (2) yield

Px(t) = Px(t) for all te[0,T]. (18)
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From (17) and (18) we may conclude that

n

j=m+l J J J J J J

for almost every TG[0,T], SO that for every t€[0,T] there holds

E / t(G.(x.(r))-G.(x.(r)))(x i(r)-x-.(r))dr < 0. (19)
j=m+l 0 J J J J J J

By Lemma 2.2, each of the n—m integrals in (19) is non—negative, and we conclude that for

every je{m+l,...,n} and every t€[0,T],

/o\Gj(xj(r))^j(xj(r)))(xj(r)--xj(r)dr = 0. (20)

Relation (20), Lemma 2.3, and (2) then tell us that for every j€{m+l,...,n} and te[0,T],

x j(t)~x j(t) = x j(0)-x j(0) = 0, (21)

and (18) together with (21) yield x=x. a

3. Examples in which Unrestricted Uniqueness Arises

In each of the examples we present in this section, Theorem 2.1 can be used to obtain

unrestricted uniqueness of solutions of (1), (2), because the sign conditions on components of

f in (WLl) naturally induce a finite partition of the set of initial data such that initial data in

one piece of the partition produce only solutions that remain in a particular region for a
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short time. Theorem 2.1 then can be used case—by-case to obtain unrestricted uniqueness of

solutions, because in each case condition (5) holds for all initial data for that case.

Example 1: For the following damped, non-linear oscillator

y = - y - y 1 / 3 (22)

we put Xji= y, JL^.= y and obtain the initial-value problem

(24)

(Xl(0),X2(0)) = x° = (x°,x^). (25)

Case 1: x^O. In this case, the right—hand side f of (23), (24) is locally Lipschitzian at x°

and local uniqueness of solutions of (23)-{25) follows from Theorem 2.1 or from classical

uniqueness results.

Case 2: x2=0 and Xj>0. In this case, each solution of (23)-{25) satisfies x.(t)>0 and

)>0 on [0,T] for some T>0 (that could, in principle, depend on the solution). We put

n:= 2, m:= 1, G g t a ) ^ ^ * *2:==: ^>(D) anc* n0*e *^* ^2 ^s ^ncreas^n6 an (l concave on

Ig. Moreover, we have

f2(t,x1,x2) =
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= (xr0)

Pf(t,x l jX2) = (-Xj-X

so that, for all x=(x1 ,x2), x=(x1,x2)eR2 with x1>0, x^O, x^O,

(Px-Px) • (Pf(t,x)-Pf(t,x)) + (G2(x2)-G2(x2))(f2(t,x)-f2(t,x))

j -x^ 2 < 0.

Therefore, (WLl) and (WL2) are satisfied on D:= R x {(x1,x2)€lR2|x1>0 and x^O} with

L=0. We noted above that in Case 2 each solution x of (23)—(25) satisfies x^t^O, i.e.,

X2(t)6l2, for te[0,T] for some T>0, so that (5) is satisfied locally in time for every solution

with initial data x° satisfying x^=0 and x£>0. Therefore, Theorem 2.1 applies and

(23)-(25) has at most one classical solution in Case 2.

Case 3: x2=0 and x?<0. In this case, as in Case 2, we put m=l and G2(x2) = x 2 ' ,

but we must here put I2:= (-a>,0], so that G2 is increasing and convex on I2. Moreover,

every solution x satisfies x1(t)<0 and x^t^O for all te[O,T] for some T>0, so we may

put

D:= R x {(x1,x2)eR2 | xx<0 and

and again verify that (WLl) and (WL2) are satisfied, so that (23)-(25) again has at most

one classical solution.



14

Case 4: x°=(0,0). Multiplying (23) by x,, (24) by x« ' , adding the resulting equations

and integrating, we find that

1 2 3 4/3Vtx < 1 o2 , 3 o

for all te[0,T]. Thus, the only solution of (23)-(25) in Case 4 is x(t)=(0,0), for all te[O,T].

Example 2: For the following coupled, damped non—linear oscillators

y = - (1+zVy 1 / 3 (26)

z = - ( l + y ^ z - z 1 ^ ( 2 7 )

we put x. =y, X2=z, Xo=y, x^=z to obtain the initial—value problem

x 1 = - ( l + x 2 ) x 1 - x 3
1 / 3 (28)

x 2 = - < l + x 1
2 ) x 2 - x 4

1 / 3 (29)

x3 = Xj (30)

x4 = x2 (31)

x(0) = x° = (xj,4,x°,x°). (32)
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The case—by—case analysis is too long to present here in full, so we discuss only one case:

x, >0, *2<0, x^=x^=0. From (30), (31), and (32) we conclude that every solution of

(28)—(32) in this case remains locally in time in the set

U:= { ( x ^ x ^ ) 6 R4 | Xl>0, x^O, x3>0, x4<0}.

We put n:=4, m:=2, I3:=[0,CD), I4:=(^»,0], G3(x3):= Xg1/3, G4(x4) = x^/ 3 , and note

that for all (t,x), (t,x) with t>0 and x,xeU

(Px-Px) • (Pf(t,x)-Pf(t,x)) + S (G.(x
j = 3 J J

= (x1-x1)(-(l+x2
2)x1-x3

1/3 +

+(x2-x2)(-(l+x1
2)x2-x4

1/3+(l+x1
2)x2+x4

1/3)

*) (^^(^ * *

- (x1-x1)(x2-x2)x1(x2+x2)

- (x2-x2)(x1-x1)x2(x1+x1)

x||2Px-Px||2, (33)
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where we have used the fact that x^x^O and XgjX^O. The relation (33) and the choice of

U, G3, and G. tell us that we can choose DdR*U so that (WL1) and (WL2) are satisfied

with L a suitably chosen constant function, and uniqueness in this case follows from

Theorem 2.1.

Example 2: In the article [1], a uniqueness theorem was proved for the initial—value problem

governing forced motions of an elastic—plastic oscillator with work—hardening, and the proof

of that theorem motivated both our motion of a weakly—Lipschitzian function as well as our

proof of Theorem 2.1. Nevertheless, it is instructive to re-examine this elastic-plastic

oscillator in light of Theorem 2.1, because we can understand more immediately than in the

article [1] the features of the oscillator that are used in establishing uniqueness. For a given

positive—valued, concave strictly increasing function H:[O,OD)-*IR, locally integrable function

g:[O,ao)-*IR, and (v°, ̂ ° , w°) with |<r°|<(H(w°)) ' , we wish to establish uniqueness of

classical solutions of the initial value problem

v(t) =

v ( t )

and <r(t)v(t)>0,

otherwise,

(34)

(35)

w(t) =
T+H

if \a(t)\=(2E(w(t)))^2

and <r(t)v(t)>0,

otherwise (36)
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(v(0), (r(0), W(0)) = (v°, <r°, w°) (37)

subject to the constraint

The case—by—case analysis of initial data is best carried out using the cases:

|(7-°|<(2H(w°)) ' , <r°>Q and a°<0. In the first case, the system reduces locally in time to

that governing a forced harmonic oscillator

v(t) = g(t)-<r(t)

*(t) = v(t)

w(t) = 0

with the constraint (38) in the form of a strict inequality, and uniqueness is immediate from

the relation

governing the energy separation of two solutions (v,<r,w) and (v,tr,w).

Of the remaining two cases, we treat here only the case <r°>0; the case <r°<0 is

similar. From the discussion in Section 3 of [1], uniqueness of solutions of (34)—(38) when a

is positive follows from uniqueness of solutions of the following initial value problem

v(t) = g(t) - <r(t) (39)
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v(t)

if

and v(t)>0

otherwise, (40)

v(t) if <r(t)=S(A(t))
and v(t)>0

otherwise, (41)

= (vV,0) (42)

subject to the constraint

(43)

Here, S is also a positive—valued, increasing, concave function from [0,a>) into R. We may

now put

D:= t>0, \>0, 0«r<S(\)} (44)

I3:= [O,OD), G3:= S and note that, from (41),

' l+s?(J|) i f * =S(A)andv>0

0 otherw i se

is non—negative and Go is increasing and concave. Moreover, denoting by f, and f« the
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right—hand sides of (39) and (40), respectively, one can easily verify that for every

there holds

( ) t , v ^ ^ ) < 0.

Therefore, (WL1) and (WL2) are satisfied and, because (5) is satisfied locally in time for

all solutions of (39)—(43), Theorem 2.1 yields uniqueness of solutions of that initial—value

problem.

4. Restricted Uniqueness of Filippov Solutions

In this section we indicate how the concepts and arguments in Section 2 can be

adapted to yield restricted uniqueness of Filippov solutions of the initial—value problem (1),

(2).

Let neW, DcRn+1 , (t,x) —> f ^ e R 1 1 , x°€Rn and T>0 be given such that (0,x°)eD,

f is defined almost everywhere in D and is measurable, and f satisfies Condition B ([4,

Section 2]): for every compact subset CcD, there is an integrable function t •—• B ^ t )

such that |f(t,x)| < B^(t) for almost every (t,x) in C. An absolutely continuous function

x: [0,T] -* Rn is called a Filippov solution oi (1), (2) [4, Section 1] if (t,x(t))eD for all

te[0,T], x(0)=x°, for almost every te[0,T] and 6>0,

| { x | ( t , x ) 6 D } n B 5 ( x ( t ) ) | > 0 , (45)

where | - | denotes Lebesgue measure on Rn and B^(x(t)):= {y€Rn| |x(t)-y | < 6}, and

for almost every te[0,T], there holds
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x(t)e( 1 f 1 konvf(t,B,(x(t))\N) (46)
6>0 |N|=0 d

where for each subset A of Rn, konv A is the intersection of all the closed half-spaces

containing A. The right—hand member of (46) can be thought of as the convex hull of the

essential range of x •—• f(t,x) restricted to arbitrarily small Rn—neighborhoods of x(t).

For a mapping f satisfying Condition B, we interpret the assertion f is weakly

Lipschitzian on D to mean that the conditions (WL1), (WL2) on f given in Section 2 are to

hold for almost every point in D. Our interpretation is consistent with the intent of Filippov

that modification of f on a null set in R should not alter the class of Filippov solutions

of (1), (2). We may now reformulate the content of Theorem 2.1 in the context of Filippov

solutions.

THEOREM 4 J J If f is weakly Lipschitzian and satisfies Condition B, then for every T>0

there is at most one Filippov solution x:[0,T]-*Rn of the initial-value problem (1), (2) that

satisfies

Xj(t)eL for all te[0,T], j€{m+l,...,n}. (5)

Our proof of Theorem 2.1 only has to be modified in the very first step in order to

yield a proof of Theorem 4.1. In fact, for Filippov solutions of (1), the equality sign in (17) is

not necessarily valid, but one can show nevertheless that the first member of (17) is bounded

above by the last. The detailed arguments required to verify this modified form of (17) can be

obtained directly from Filippov's article [4] (see the proof of Theorem 9, Section 5). The main

fact used in the modification is that a Filippov solution x:[0,T]-*Rn of (1) satisfies: there

exists a null set Nc[0,T] such that for every te[0,T]\N and every v€Rn,
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x(t) • v< l i m e s s sup (f(t,y)-v) (47)

([4, Lemma 2]). This inequality and Condition B permit one to bound to any desired

accuracy the first member of (17) by an expression that is of the form given in the left—hand

side of (3). Using (3) and taking a limit, one then obtains the modified form of (17).
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