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Abstract It is desired to control a multi-dimensional Brownian motion by

adding a (possibly singularly) continuous process to its n —
components so as to minimize an expected infinite-horizon
discoursed running cost. The Hamilton-Jacobi-Bellman
characterization of the value function is a variational inequality
which hks a unique twice continuously differentiable solution. The
optimal process is constructed by solving the Skorokhod problem of
reflecting the Brownian motion along a free boundary in the
(0,0,.., -1) direction.

* • * .

1. INTRODUCTION

This paper concerns the regularity of solutions u to the nonlinear
partial differential equations

(1.1) max{u(x) - Au(x) - h(x) , ^- u(x) - 1 j = 0 , x € Rn

^ n '

with a forcing term h which is convex in the x variable. Under
— — _ _ n — — — —

appropriate smoothness and growth conditions on h, the solution to (1.1) is
shown to be twice continuously differentiable. Moreover, we prove smoothness
of the free boundary of the region in which the elliptic equation u-Au-h=0
holds.

Equation (1.1) is related to a singular stochastic control problem.
Briefly, the problem is to optimally control an n-dimensional Brownian
motion by pushing only along the (0,0 -1) direction. In this context,
the solution to (1.1) is the value function for the discounted infinite-
horizon control problem in which h is the running cost and the displacement
caused by the push is equal to its cost. This problem is formulated and
solved in Section 6.

The term "singular" is loosely used to describe stochastic control
problems in which the displacement of the state caused by the optimal control
process in singularly continuous. See Shreve [22] for an introduction to

this concept. In singular stochastic control literature, the <J regularity



of the value function has been called the "principle of smooth-fit", by
Benes, Shepp and Witsenhausen [1] It has been instrumental in the analysis
of several one-dimensional problems [8], [11], [12], [13], [16], [17], [18],
[23]. Equation (1.1) is a multi-dimensional extension of the equation
studied in [1]. Another generalization of this equation is obtained by
allowing the controller to push in any direction. In this case, the related
nonlinear partial differential equation has the form

(1.2) maxjuCx) - Au(x) - h(x) , |vu(x) | - l| = 0 , x € Rn.

For (1.2) in two dimensions with a convex forcing term h, the authors
recently obtained regularity results similar to those described above [24],

For dimensions fiigher than two, the Cr-regularity of solutions to (1.2) and
the smoothness §f the free boundary are still unknown. However, Evans [9]
studied the equation (1.2) in a bounded domain with a non-convex h, and by
using a penalization method obtained existence and uniqueness of a solution

u in the classf C ' .(differentiable with Lipschitz continuous derivative).
In fact, for a general h this interior regularity result is sharp. The
boundary regularity of u was improved by Ishii and Koike [14], again via
penalization. *,

Our approach to (1.1) is to solve the obstacle problem

(1.3) max{v|x) - Av(x) - •£- h(x) , v(x) - l} = 0 , x € Rn.
^ n '

We then construct the unique solution u of (1.1) by integrating v along
the x direction. Since tlje solution to equation (1.3) is known to be of

class C ' , this procedure together with several estimates on the free
boundary yields*the declared regularity of u. In the context of one-
dimensional stochastic control, the connection between (1.1) and (1.3) goes
back to Bather find Chernoff [2] and has been given probabilistic explanations
by Karatzas an<^Shreve [18], and El-Karoui and Karatzas [8] and analytical
derivations by Karatzas [15], Chow, Menaldi and Robin [7], and Menaldi and
Robin [20]. \

The paper is organized as follows. Equation (1.3) is studied in the
next section and Lipschitz continuity of the free boundary is obtained in
Section 3. Section 4 is devoted to the construction and the uniqueness of a
smooth solution to (1.1) and the smoothness of the free boundary is then
improved in Section 5. We establish the connection between the singular
stochastic control and (1.1) in Section 6.

2. OBSTACLE PROBLEM.

In this section, we study the solutions to equation (1.3). The
following assumptions are used in our analysis.

(2.1) h Is three times continuously differentiable and 0 = h(0) < h(x)

(2.2) h, together with its gradient and second derixxitives, grows at most
polynomially as |x| tends to infinity.



(2.3) there Is an a > 0 such that

3-—H:— M x) I • lr
7X OX. v ' ' J

~~ n 1 J

n

for euery x € R n
t i = 1,..., n - 1.

Theorem 2.1. There is a unique polynomial I y growing, locally Lipschitz,
continuously differentioble solution to (1.3). We shall henceforth denote
this solution by v.

The C ' regularity of solutions to (1.3), in a bounded domain, is
proved by Brezis and Kinderlehrer [4], and a modification of their proof
yields the above result. The proof proceeds by introducing the penalized
version of (1.3):

(2.4)e ve(x) - Ave(x) + ̂  [(v£(x) - 1)+]2 = gf-Mx) , x € Rn,
n

where e > 0 is a small parameter and a = max{O,a}. Using standard
methods from the theory of partial differential equations, the following
lemma can be proved, and Theorem 2.1 follows immediately. (A similar result
is proved in [24]).

Lemma 2.2. For R >0, there are constants C,m,C(R) > 0, independent of e,
such that

(2.5) |ve(x)| + |we(x)| £ C(l + |x|m) , x € Rn

(2.6) |D2ve(x) | < C(R) , |x| < R.

Moreover, as e tends to zero. ve conuerges to the unique solution of

(1.3) in the weak topology of

3. GEOMETRIC PKOPERTIES OF THE FREE BOUNDARY.

In this section, we prove the Lipschitz continuity of the boundary of
the region

(3.1) <g = {x € Rn : v(x) < 1}

Further regularity of the free boundary is proved in Section 5. We start

with an estimate on the gradient of v .

Lemma 3.1. There is a constant p > 0, independent of e, such that



(3.2)

and

(3.3)

n

n

for every e > 0, x € R

Proof. Set wi(x) = a ~

to obtain

Differentiate (2.4)e with respect to x±

+ i (ve(x) - - Aw*(x) =
n i

Assumption (2.3), together with the maximum principle, yields that

wn(x) > a maxdw^l.O},

where a is the constant appearing in (2.3). Now it is easy to obtain (3.2)

with P = (i + £*=aL

a

Let

(3.4) = (x € Rn : ve(x) < 1}.

Since T T — V never vanishes on R , by using the implicit function theorem
n

we can parametize the level curves of ve. In particular, there is a

real-valued function qe such that

(3.5) <? = {x € Rn ; xn < q
fc(Xl x^)}

We next estimate the Lipschitz constant of qe.

Lemma 3.2. There is a constant k > 0, independent of e, such that

(3.6) |qe(0)| + |vqe(y)| < k

for every y € R11"1, e > 0.

Proof. Using the two representations of <ge, (3.4) and (3.5), we obtain two



expressions for the outward unit normal vector v (x) at any boundary point

x € &€e. In paticular,

(3.7) u
|wfc(x)

(-vqfc(x),l)

E l * Ivq£(

where

Hence, for every y € Rn ,

9 e, e, AX i e, e, ^ i r- i e, A i2-,-l/2
£-y (y.q (y)) = |w (y.q (y))| [l + |vq (y)| ]n

and

3 e.f x d s f &f > v r d £ , £ , \\\""1
a^-q (y) =-sr-v (y.q (y))(or-v (y.q (y))) .

We now use the estimate (3.2) to arrive at

(38) l ^ - q ' l

To complete the proof of (3.6), it sufficies to show that

(3.9) sup|qe(O)| < «.
e>0

Suppose that (3.9) does not hold. Then there exists a sequence, denoted by

e again, such that |q (0) | converges to infinity. We analyze two cases
separately.

al qe(0) -» -HP. In view of (3.8), we have

(3.10) £im qe(y) = -K»

e

for every y € R11"1. Also (3.5) together with (2.4)e implies that

v£(x) - Ave(x) = JL- h(x) , x n < q
e(x).

n



Using the above equation, (3.10), and the convergence of v to v, we

( 3 .

( 3 .

obtain

i i )

and

12)

v(x) - Av(x) = •£- ]v ' 5xn

v(x) £ 1 ,

h(x) .

x € Rn.

x 6 R n

a2

Since — o h( x) ^ a (c-f. (2.3)), (3.11) and the maximum principle imply
dxZ

n

that rr— v(x) 2 a. for every x € Rn. But this contradicts with

(3.12). n ?

b) a fO) >» -». Arguing as in the previous case, we obtain

(3.13) v(x) - Av(x) < ̂ h ( x ) , x € Rn

n

and

(3.14) v(x) = 1 , x € Rn.

Thus, v(x) - Av(x) = v(x) = 1 < -£^ h(x) for every x € Rn. But
n

vh(0) = 0.
D

In view of (3.6), we can extract a subsequence e converging to zero,

such that q (y) converges to a Lipschitz continuous function q(y),
uniformly for bounded y. Moreover q satisfies the estimate (3.6). Due to

the convergence of v to v, we have the following corollary.

Corollary 3.3 We haue

« = {x € Rn : v(x) < 1} = {x € Rn : x n < q(x)}.

In particular, q(x) obtained as a limit of q (x) along a subsequence is
independent of the subsequence.

Proof: Let x be an element of the right-hand side. Then there is a
positive constant € > 0, such that

Ve(x) - Ave(x) = g2- h(x)
n

and
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ve(x) i 1

whenever e < e Q and |x-x | < e0. By the convergence of v to v, we

obtain that

v(x) - Av(x) = -^- h(x)
n

and

v(x) < 1

on |x-x | < e~. Also the maximum principle together with the convexity of

n

v(x ) < 1. The reverse inclusion is obvious.

h in the x - variable yields that ~ v(x) > 0 on |x-x | < eQ. Hence

I. C 2 REGULARITY OF u.

We construct a solution to (1.1) by integrating v along the x

direction. We start with defining t(y) by

(4.1) -r(y) = -k|y|2 + q(0) - | k . y € Rn-1

where k is as in (3.6). Since q satisfies (3.6), we have

q(y) 2 -k|y| + q(0).

Hence, for y € R11"1

(4.2) -r(y) < q(y)

We define u(x) as follows

x

(4.3) u(x) = w(x) + f _ v(x,f)df
J-r(x)

where x = (x-,..., x _ - ) , w is the unique polynomially growing solution of

(4.4) w(y) - Aw(y) = H(y) . y € R11"1

and



H(y) = h(y,T(y)) + £- v(y,nr(y))[l -
n

- 2*2

- v(y.nr(y))ATr(y).

Note that H is locally Lipschitz continuous, and due to (2.5) it grows at
most polynomially. Hence by elliptic regularity

(4.5) ; w € (*£ (R11*1)

for any a < 1 («see [3] Section 2.5.5.2, pp. 117 for similar results).

Theorem 4.1. The function u, defined by (4.3), is twice continuously
dtfferentiabie. ^Moreover, u is the unique solution of (1.1) satisfying

*•

(4.6) 0 < u(x) < C(l + |x|m)

for suitable constants C,m > 0.

Proof. For notational simplicity we use the subscript i to denote the
partial derivative with respect to x.. We directly calculate

(4.7) un(x) = v(x)

X

(4.8) Ul(x) = w.(x) + J v.(x,f)df - -^(xMx.-rfx)) . i = 1 n - 1

(4.9) unj(x) =Kj(x) , j = 1,. n

X

(4.10) Uij(x) = wi;j(x) + J ^ vij(x,f)df - -r^xjv^x.^x))

- -*j(x)v.(x,Tr(x)) - nri(x)nrj(x)vn(x,nr(x))

- T (X)V(X,-Y(X)) , i, j = 1, . . . , n - 1

The above formulae, together with (1.3), imply that u solves (1.1).

Since v € c J ^ ( R n ) , w € C ^ ( R n ) , to prove the C 2 regularity of u

it suffices to show that



x
n

8

(4.11) F(x) = J Vijl

is continuous for every i.j = 1 n - 1. Approximate the above integral
by

(q(x)-o)Axn _ xn

F
6(*) = _ v (x.f)df + _ Vi1(x.f)dfJ-r(x) ij6( f _ f ^
6 JT(X) « Jq(x)Axn

where 6 > 0 is a small parameter. Since v(x) = 1 whenever x > q(x),

the second integral in the above expression is zero. Also

v(x) - Av(x) = ̂ - h(x)
n

if x < q(x). Hence v. . is continuous on this region, due to the

assumption (2.1) and the interior regularity of elliptic equations.
Combining this with the continuity of q, we conclude that Fg is

continuous, for every 6 > 0. We estimate the difference |Fg(x) - F(x)| by

rt(x)
|F (x) - F(x)| < _ |

J(q(x)-6)Ax
_ v

(q(x)-6)Axn
 1J

where R(x) = (|x|2 + q(x)2)172. Recall that v satisfies (2.6). Hence,

|Ffi(x) - F(x)| i 6C(R(x)),

and F is continuous.

We claim that

(4.12) |u(x)| i C(l + |x|")

for suitable constants C,m ^ 0. Indeed, the integral term in (4.3)
satisfies the above estimate due to (2.5). Also w solves (4.4) and the
right-hand side of (4.4), H. grows at most polynomially. Thus, we can show
that w satisfies (4.12) by using the integral representation of w in
terms of H (or equivalently the Feynman-Kac formula).

To prove the positivity of u and the uniqueness of solutions to (1.1),



we need the following comparison result.

Lemma 4.2. Suppose that u,u € CT(Rn) are sub and supersoiuttons to (1.1).

respectively. Further assume that there are C ,m > 0 such that

(4.13) (u(x))+ + (-u(x))+ i C*(l + |x|m)

and

(4.14) ^ - u ( x ) < 1 whenever x n < -C*(l + |x|)

Then

(4.15) u(x) < u(x)

We relegate the proof of the above lemma to the end of the proof of the
theorem.

Choose u(x) = 0, u"(x) = u(x) in Lemma 4.2. In view of (3.6) and

(4.12), u satisfies the hypothesis of the lemma. Also the positivity of h
yields that u is a subsolution to (1.1). Thus,

u(x) = u(x) > u(x)*= 0.

In view of Lemma 4.2, to prove the uniqueness of solutions to (1.1) it

suffices to verify (4.14) for any u € CT(Rn) satisfying both (1.1) and

(4.6). Let such a u be given. For y € Rn~ , define x (y) and p(y) by

(4.16) xn(y) = inf{xn : (u - Au - h)(y,xn) < 0}

(4.17) p(y) = inf{xn : J L h(y.x ) > 1}
n

We claim that x (y) £ p(y) for each y € Rn~ . Indeed if this inequality

does not hold for some y , then there is 6 > 0 such that

. G(y*,p(y*) - 6) < 0

where

G(x) = u(x) - Au(x) - h(x)

By continuity of G, there is a neighbourhood of (y*,p(y*) •- d) on which G
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is negative. Thus, (1.1) yields that u = 1 and Au = 0 on this

neighbourhood. Using these and (2.3), we obtain that

^ - G(y*.p(y*) - 6) = (UR - Au - £- h)(y*.p(y*) - 6)
n n

= 1 - gg- h(y*,p(y*) - 6)
n

My .f)df
J , *, - ftc2
P(y )-« n

2 a6

Hence, the above inequality and the argument leading to it imply that

G(y*,xn) < 0

and

for all x < p(y ) - 6. But this contradicts the positivity of u. Hence

xn(y) 1 p(y).

Replace the estimate (3.2) by the assumption (2.3) in the argument
leading (3.8), to conclude that

sup|vp(y)| < «.
y

Since p(0) > 0, the above inequality implies that

xn(y) 2 P(y) 2 -C|y|

for some constant C 2 0. Thus, (4.14) is satisfied by u.
D

Proof of Lemma 4.2.

Consider the auxiliary function

(4.18) *£ 6(x) = (1 - e)u(x) - u(x) - fiTz fCeXj) + f(e[xn + T,(X)])]
i=l

where e,6 > 0 are small parameters,
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f(r) = e ' r l -

and 17 is a smooth function satisfying

, r € R

r ( i ) sup [|vT7(y)| + ||D277(y)||]

(4.19)
y€R'n-1

.". (ii) T)(y) > C*(|y| + 1) for all y € Rn l

with the constant C appearing in (4.14).

Since f gjrows exponentially, (4.13) implies that ^ ^ achieves its

maximum, say at x = x (e,6). Then,

un(x*) = '(e[x

Observe that < 1 and f '(r) I 0 if r > 0. Thus, we have

un(x*) i 1 - e if x ^ -T7(x*).

But if x* i -T7(x**) then u"n(x*) < 1 due to (4.14) and (4.19) (ii). Hence

u (x ) < 1 and since u is a supersolution to (1.1). we conclude that

(4.20)

Also

(4.21)

where

u(x*) - Au(x*) - h(x*) > 0.

(*)*e 6(x*) = (1 - e)Au(x**) - Au(x*) - 6ke(x**).

k (x) = e 2 2 f» (ex*) + e2[l +
e i l 1

|2]f" (e[x** + T,(X*)])
n

n

By using the inequalities |f'| $ f" ^ 5f and (4.19) (i), we obtain that
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(4.22) k (x) £ 5e2 2 f(ex*) + Ce^eCx* + T7(x*)]).
e i=l * n

Combine (4.20), (4.21). (4.22) and the fact that u is a subsolution to
(1.1) to obtain

0 1.(1 ~ e)[u(x*) - h(x*)] - [u(x*) - h(x*)] -

- 6[5e2 ̂  f(ex*) + Cef(e[x* + T,(X*
il * n

- 5e2) ̂  f(ex^) + (1 - Ce)f(e[x* + T7(x*)])].
i=l J n

—1 /9 -1 it

Since h.f I 0, for e £ min{5 ,C } we have * ^(x ) < 0. Let e.6

go to zero to conclude that u(x) < u(x).

Remarks

(i) The proof of Lemma 4.2 is an adaptation of the uniqueness proof of
Evans [9]. Evans proved the uniqueness of solutions to (1.2) in a bounded
domain with Dirichlet boundary condition. In the case of an unbounded
domain, (4.6) replaces the Dirichlet condition, and the uniform lower bound
imposed in (4.6) is necessary. We give the following simple

1 2
one-dimensional example to illustrate this point. Let h(x) = g-x , n = 1.

Then (1.1) is

max{u(x) - Uxx(x) - \ x
2 , ux(x) - 1} = 0 . x € R

and the unique positive solution is given by

u(x) =

1 2 , x-2^ x + l - e

Also for any k £ -1/2, u(x) = x + k solves (1.1).

(ii) The solution u has the following representation (see [18]).
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x

(4.23) u(x) = U(x) + f [v(x.f) - V(x,f )]df

where U,V are the unique polynomial ly growing solutions to

(4.24) U(x) - AU(x) = h(x) , x € Rn

and

(4.25) V(x) - AV(x) = ̂ - h(x) , x € Rn.
n

5 . FinrraER REGULARITY OF TEE FREE BOUNDARY.

In this section we obtain the smoothness of the free boundary 9£ by
verifying the hypothesis of a theorem of Cafarelli [5] (also see pp. 129
and pp. 162 in [10]). Let p be given by (4.17). Then (2.1) and the
implicit function theorem imply that p is twice continuously
differentiable. , We need the following additional assumption:

(5.1) sup |Ap(y)| < ».

Lemma 5 . 1 . For every y £ R n

(5-2) p(y) < q(y)

Proof - First, consider the following equation

(5.3) z(x) - Az(x) = ̂ -h(x) , xn < p(x)
n

with the boundary condition

(5.4) z(y.p(y)) = l . y e R11"1.

We claim that there is a constant K > 0 such that

(5.5) sup z(y,p(y) - e) i 1 - Ke

for sufficiently small e > 0. We prove (5.5) by constructing an
appropriate supersolution to (5.3) and (5.4).

Set

cx = sup |Ap(y)|
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= | [(c2 + 4 ) 1 / 2

and for x € Rn. define

<Kx) = 1 + a(xn - p(x)) + Cla[l - exp c2(xn - p(

where a is as in (2.3). We calculate directly

(5.6)

Y>(x) - A<p(x) = 1 + a(xn - p(x)) + Cja + aAp(x)[l - c ^ exp c2(xn -

+ (c2 + c2|vp(x)|2 - l)Cla exp c2(xn - p(x)).

Since c2 > 0 and CjC2 < 1, we have

1 - cxc2 exp c2(xn - p(x)) 2 0 if xn i p(x),

and consequently for any xn £ p(x) the following inequality holds:

aAp(x)[l - C lc 2 exp c2(xn - p(x))] I -ac^l - c^ exp c2(xn - p(

Substitute the above inequality into (5.6) and then use (2.3), to obtain

a(xR - p(x)) + CjO - c^Cl - c^ exp c2

I " 1 ^ c l a exp C2^xn " p^x^

— 2 —
a(xn - p(x)) + Cja[c2 + CgCj - l]exp c2(xn - p(x))

a(xn - p(x))

Hence <p is a supersolution to (5.3), and <p satisfies the boundary
condition (5.4). Since <f> is growing linearly, we can use the maximum
principle to arrive at

z(x) < <f>(x) . xn < p(x).
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In particular,

z(y.p(y) - O £ <p(y.p(y) - O

= 1 - ae + c.a[l -

i 1 - ae + CjCgae

= 1 - a(l - CjCgJe.

Thus, (5.5) holds with K = (1 - CjC^a > 0.

We continue by showing that p < q. We then obtain the strict

inequality by using (5.5). Now suppose p(y ) > q(y ) for some y € R
MM

Then, in a neighbourhood of (y ,p(y )), we have v = 1 and Av = 0. Hence
(1.3) implies that there is 6 > 0 such that

O M v - A v - i - h)(y*.p(y*) - 6)
n

= 1 -;=§-h(y*,p(y*) - 6)
ax
n

•r > o
P(y )~6 n

Therefore, p < q.

Since v 2 0, we have v(y,p(y)) < v(y,q(y)) < 1. Hence v is a

subsolution to (5.3), (5.4), and the maximum principle implies that v(x) <

z(x) whenever x < p(x). In particular, (5.5) yields

v(y,p(y) - e) < 1 - Ke.

Using the identities v(y.q(y)) = 1, vn(y,q(y)) = 0, and the Lipschitz

continuity of v , rewrite the above inequality as

1 ~ Ke I *(y,p(y) - e)

= v(y,q(y)) - F * v (y.f)df
Jp(y)-e n

r(y) r<i(
v (y.r)dr df
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2 1 - c(y)[q(y) - p(y) + ef,

where c(y) > 0 depends on the sup-norm of v in a neighbourhood of y.

Hence

q(y) - p(y)

for every sufficiently small positive e.
D

Theorem 5.2. Suppose that -~ h € (^^(R11) for some m > 2, a € (0,1).
n

Then the free boundary &€ Is of class

Proof. Let x € m. The previous lemma together with (2.3) yield

^ - h(x) > 1 > v(x)
n

for every x sufficiently close to x . Hence there is 6 = 6(x ) > 0
such that

H(x) = ̂ - h(x) - v(x) > 0 , x € Bg(x*)
n

and

max{-Av(x) - H(x), v(x) - 1} = 0 . x € Bfi(x*).

Hence by Theorem 3 [5], q is continuously differentiable and v is twice
continuously differentiable in *S up to the boundary (see also Theorem
3.10, pp. 162 [10]).

The result of Kinderlehrer and Nirenberg [19] applies to this
situation, yielding the stated result (see also Theorem 1.1, pp. 129 [10]).

D

Remark. For a one-dimensional, time-inhomogenous stopping time problem,
van Moerbeke [25] proved the smoothness of the free boundary under
structural assumptions quite different from ours. He also obtained results
like Lemma 5.1 (Section 2.6 [26]).

6. THE SINGULAR CONTROL PROBLEM.

Consider the stochastic process x = (xt,..., x^) € R
n defined by
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(6.1) x* = x1 + 1/2V , i = l n - 1 , t > 0

(6.2) x* = x11 + /TW™ - f(t) , t > 0

where x = (x1,.^., x11) is the initial condition, Wt = (W*,..., W*) is an

n-dimensional standard Brownian motion, and f(t), the control process, is
non-decreasing, left-continuous, and adapted to the augmentation by null
sets of the filtration generated by W, with f(0) = 0.

For a given initial condition x, the control problem is to pick a
control process 50 as to minimize the pay-off functional

(6.3) J(x.f(-)) = E f e"t[h(x )dt + df(t)]

where E is the mathematical expectation. Finally we define the value

function u (x) to be the infimum over all control processes satisfying the
conditions listed above, i.e.,

(6.4) u*(x) = inf J(x.f(-)).

Theorem 6.1. The value function u is the unique solution of (1.1)
satisfying (4.6). Moreover, the infimum in (6.4) is achieved by the

left-continuous process f given by

(6.5) f*(t) = max [x + /2V1 - q(xX + / 2 V , . . . , x11"1 + 75V1"1)]+. t>0,
0^T<t n T T T

where q is as in Section 3.

Proof. Let u be the solution of (1-1) satisfying (4.6). An application
of It6fs rule for semimartingales [21] yields

-tAr r
tATm

(6.6) u(x) = E e mu(xtAT ) + E J e s[u(xs) - Au(xs) - h(xg)]ds

m
J e'^Cx )ds + E f m e"s ̂ - u(x )df (s)
Jo
 s J0 n s

E J

E 2 e"s[u(x ) - u(x ) + J - u(x )(f (s+) - f (s))]
0<s<tAr S s+ 9xn s
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where t A T = min{t,T } and T is given bym m m

Tm s inf{s > 0 : |x | > m}.

Using the equation (1.1) and the convexity of u in the x -variable, we

obtain

-tAT t A Tm
(6.7) u(x) < EJe mu(x ) + f e"S[h(xJds + d£(s)

1 * Jo

for any control process £(•)• First let f = 0. Then, x = x + /2^W ,

and due to the growth condition (4.6), we have

-tAT
£im <im E e mu(x + /2^W tAr ) = 0
tf00 m-*» m

Hence

e s h ( x + fFW )ds .

S

Therefore for an arbitray £(•), we have

-tAT -tAT
(6.9) E e m u ( x ^ ) < E e m U(xtAr )

m

m

~ t A Tm *

Ee m[U(xtAT)-u(xtAT)].
m m

We estimate each term separately. Since our goal is to establish the
inequality

(6.10) u(x) i J(x,f(-)).

we may assume that J(x,jf(O) < ». This implies that

tim E I e~s[h(x )ds + df (s)] = 0.
JtAT s

m
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~tArm t m
The integral in the above expression is equal to E e ^(xtAT '^ ' (*))•

m
where ft>m(#) is just a translation of £(•)• Hence,

~tAT
m *(6.11) *im iim E e mu (x . ) = 0.

m

We continue by showing that F(x) = U(x) - u (x) is non-decreasing in

the x -variable. Set e = (0,0,..., 0,1) € Rn. For e > 0,
n n

[U(x) - u*(x)] - [U(x - een) - u*(x - een)] I

I inf [U(x) - J(x.f(-)) - U(x - ee ) + J(x - ee f(

= inf E I
f(-) J0

e"s[h(x + JTV ) - h(x + TFV - f (s)e ) - h(xs s n

+ h(x + >/2> - f(s)e - ee )]ds.s n n

Convexity of h in the x -variable implies that the integrand in the last

expression is non-negative. Thus, g—- F(x) 2 0. Using this, we obtain
n

~tAT
m «

(6.12) «im sup iim sup E e m[U(x . ) - u (x . )] =
m m

-tAT
= iim sup eim sup E e m F(x + /2>^A - f(t A T )e )

t*» nH» tATm m n

-tATm
sup tim sup E e F(x + »*, n .

m

-tAT
sup <im sup E e m U(x +

= 0.

The last equality follows from the fact that U grows at most
polynomially. Combine (6.9). (6.11). (6.12) to conclude that
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(6.13)
-tAT

£im £ e

m

for any f with J(x.f(«)) < °°- Using (6.13), (6.7) and the finiteness of
J(x.f(*)). we obtain (6.10). Hence,

(6.14) U(x) i u*(x).

To complete the proof of the theorem, it suffices to show that

(6.15) u(x)

Let xt be the solution of (6.1) and (6.2) with control process f given

by (6.5). The following follows from (6.5)

(6.16)

(i) x? € <g for t > 0

* _*(ii) x ,f are continuous on t > 0

(iii) £ - q(x)f

(iv) f
Jo o

where 1. is the indicator set A. Using (6.6), (6.16), (1.1). and the

positivity of u, we obtain

u(x) = E

tAT

m' J0

Let t.m go to infinity in the above expression to arrive at (6.15).
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