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Abstract

This paper presents a coupled finite element and boundary integral method for solving the time-

periodic oscillation and scattering problem of an inhomogeneous elastic body immersed in a

compressible, inviscid, homogeneous fluid. By using integral representations for the solution in

the infinite exterior region occupied by the fluid, the problem is reduced to one defined only over

the finite region occupied by the solid, with associated non-local boundary conditions. This

problem is then given a family of variational formulations, including a symmetric one, which are

used to derive finite dimensional Galerkin approximations. The validity of the method is

established explicitly, and results of an error analysis are discussed, showing optimal

convergence to a classical solution.

••••••• '* • ' 2 < ? ~ ; ? P Q 0



1. Introduction

We consider the problem of an elastic body immersed in a compressible, inviscid

homogeneous fluid. More precisely, we study small time-periodic oscillations and scattering

about a constant equilibrium state due to an incident acoustic wave propagating through the

fluid. The body may be spatially inhomogeneous. A precise statement appears in section two.

Various physical applications are described, e.g., in [10], [12].

The solid-fluid interaction is a special case of a general situation. Let Q be a bounded region

in space, with boundary F, and let Cl+ be the complement of Cl. Suppose one has equations Lu =

0 in Q and L+u = 0 in £l+ with transition conditions across F. The coupling idea is the

following. If L+ is spatially homogeneous then one can apply integral equation methods to Q.+

so as to obtain relations between the exterior Cauchy data on F. One then uses the transition

conditions to obtain relations on the inner Cauchy data. The result is a problem for Lu = 0 in Q

with non-local boundary conditions which one can then solve by finite element methods. This

procedure is often denoted as the coupled boundary element and finite element method for

interface problems.

The coupling idea has been used in a great variety of circumstances, starting with [14] in the

engineering literature, with [9] apparently providing the first theoretical justification. Formal

coupling procedures are reviewed, e.g. in [3]. Reference [8] describes and analyzes one coupling

method for the elastic solid-fluid problem. Here we present a different one. In fact, in section

three we present a family of non-local problems (Pa) depending on a parameter a, 0 < a < 1.

For each we give a variational formulation (VPa). We also give a family of finite dimensional



approximation problems (AVPa
h). The choice of a is dictated by what kind of information is of

most interest, but when a = 1/2 the problems (AVPa
h) are symmetric which will facilitate

numerical computation. Our methods were inspired by analogous ones given in [4] for elastic-

elastic scattering.

Remark 1.1 We feel our method has two advantages over that in [8]. It avoids the use of

hypersingular integrals and it leads to symmetric finite element equations.

Remark 1.2 An important feature of the method here and the one in [4] is the symmetry of the

resulting Galerkin equations. We are presently performing numerical work on the elastic-elastic

problem with good accuracy.

Remark 1.3 In section four and the appendix we give a proof of the validity of our method, and

show the optimum convergence of the Galerkin approximations.

Remark 1.4 Extensions are possible. If the obstacle is a shell the procedure is essentially the

same. In principle one can hope to extend to non-linear elastic bodies but then the time-periodic

theory, in general, no longer applies and one needs a variation of the treatment of the exterior

problem with artificial boundaries [1], [2], [6].

2. Statement of the problem.

We suppose Q represents a linear, isotropic elastic solid. If u denotes the displacement and

X [u] the stress then



U + (V a)7) + X div u I (2.1)

where |1 and X can be functions of position x. If pE is the density, the equation of motion (with

no body force) is,

M (2.2)

We assume the exterior region Q+ to be filled with a compressible, inviscid fluid. We assume

that the fluid remains close to an equilibrium state with constant density and zero velocity. Thus

the density r = p0 + p, p « 1 and one has an approximate equation of state P =f(p0 + p) ~f(p0)

+/'(Ptf) P = Po + °2P f° r l ^ e Pr^ssure» where c is the speed of sound in the linearized fluid. If y

is the velocity (v « 1) then the linearized equations of motion are

= 0 , p = — p (2.3)

In terms of pressure alone one has

—pn = Ap , Y, = - — gradp (2.4)
cl Po

The solid-fluid interaction problem involves solving (2.2) in £1 and (2.4) in Q+. One needs

transition conditions on F. One condition is the continuity of traction. Since the stress in Q+ is

simply -pi this yields:

T] 00) • U = -P+ , (X DTI (B)) x n = Q (2.5)



where the minus and plus denote interior and exterior limits on F and n is the outward unit

normal. Since tangential motion of the obstacle will not produce tangential motion of a non-

viscous fluid one requires continuity only of the normal component of velocity. This yields the

transition condition,

«,f ' f l = Xf + 'B=- — p / (2.6)

We assume that there is an incident fluid motion given by a pressure which has the form Re

e^m) and we look for the corresponding steady state periodic motion W(JC, t) = Re (U(x)eim),

p(x, t) = Re ((p°(x) + P(x))&®*) so that P represents the scattered field in ft+. We impose a

radiation condition on P. Thus we obtain problem P(p°):

[U] + p£co2^ = OinQ; AP + ^P = 0i
c2

UIT (a) • a = -(P+ +P°) , ( I UIT in)) x a = Q

onF

satisfies the radiation condition.

There is a difficulty with uniqueness in P(p°).

Theorem 2.1 Suppose (U, P) is a solution of P(0). Then f s Q and

• u= 0, IT'B = 0 (2.7)



The proof of this theorem is essentially the same as that of theorem 1.1 of [7]. One uses Green's

theorem arguments and Rellich's lemma to conclude that P = 0 in Q.

It is known that for certain regions (2.7) can have non-zero solutions. This appears to be rare

but in any event we will rule out this possibility by making the following assumption:

(2.7) has no non-trivial solutions. (A.I)

3. Non-local problems

We start with the exterior region Q+. Let K2 = co2/c2, the wave number, and put K(x, y)

-(4K)"1 I x - y I"1 exp(/K | x - y |). Then we consider the layer potentials,

x)=f K(x9y)<k(y)dcy; ©[<H(x)=f JLITfcy) 4> (y) day (3.1)y; ©[<H(x)=f JLITfcy) 4> (y) day
y Jrdny

 y

We recall the jump relations:

onT(3.2)

dnx

Here 5, D and N are integral operators on T. We summarize well known results for the case of

smooth surfaces F.

Lemma 3.1 (i) The following are bounded linear mappings S: Ht(T) -» / / r + 1 (T); D :

); N: Hr(T)-> Hr+2 (F)



(ii) As mappings on L2 (O, 5 is self adjoint and D and N are adjoint.

(iii) If A/? + K2p = 0 in fi+ and /? satisfies a radiation condition, then:

(3.3)

We also need the following result

Lemma 3.2 Let {|in} be the set of eigen-values of the laplacian in Q with Dirichlet boundary

conditions. Then

(i) The mappings ^ / + D and 11 + N are singular if and only if K2 = -\in for some n.

(ii) If j\\f + N[\\f] = 0 then S[Vl is identically zero in Q+.

Proof: Suppose j \\f + A [̂\|/] = 0 and put u = 5 [\|/]. Then Aw + K2W = 0 in £2+, w satisfies a

radiation condition and M* = 0 on P. It follows that u = 0 in £2+. Thus w+ = 0 and, by (3.2)

W = 0. Thus we have Aw = -K2W in Q, w = 0 on F. It follows that -K2 = (i^ for some n. Since N

and Z) are adjoint the result follows.

The occurrence of special parameter values is typical of coupling methods and our methods

fail for these values. Thus we make an assumption ruling out these cases:

K2 * -|u,n for any n. (A2)

(Special techniques for dealing with the case K2 = -\in have been presented, e.g., in [5], [13]).

We are now ready to describe our non-local problems.



Problem Pc (p°)

Suppose (U, P) is a solution of P (p°). Then by (3.3) and (3.2)

P = S[Pn
+]-'D[P+] i

(3.4)

onT

We put X = X [U~] (fi) * a and insert the transition conditions in (3.4). This yields the problem,

Po(p°)

onF

We have also,

£ (3.5)

Remark 3.1 If/?0 satisfies A p° + K2p° = 0 in Q then a Green's theorem argument shows that

f=~P°-

Problem Pj(p°)

Again suppose (U, P) is a solution. We assume

in Q+ (3.6)
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Then (3.2) yields,

, Jpn = I ¥ + Mv] on

Once again we insert the transition conditions and obtain:

= Q in Q

on F

- V + N[y] = -pn°

Theorem 3.1 Suppose assumption (A2) holds. Then

(i) If (U, X) is a solution of Pc( p°) and P is defined by (3.5) then (U, P) is a solution of P(y°)

(ii) If (U, y ) is a solution of Pj (p°) and P is defined by (3.6) then (JJ, P) is a solution of P(p°)

Proof: For PJp°), (3.5) and (3.2) yield

and the second boundary condition in (P°) shows that P+ = - X - p°. Thus (3.5) becomes

P = 5[poC02£r a-pn°]-'D[P+] (3.7)

But P is a solution of AP + K2P = 0 in Q+ and satisfies a radiation condition. Thus we have also
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= S[Pn
+]-<D[P+] (3.8)

From (3.7) and (3.8) we see that % = p ^ U • Q - pn° - Pn
+ satisfies i % + N[%] = 0. It follows

from (A2) that % = 0.

For Pj(p°) we have from (3.6)

, P = i

The boundary conditions for Pj(p°) then yield X[£/](s) • Q = -P + - p° and po0)2^" • Q = P n
+

Corollary 3.1 If (A7) and (A2) hold PJO) and P7 (0j have only the trivial solutions.

Proof: Suppose (JJ, X) solves P^O). Then, by Theorem 3.1, if we define P by (3.5), U> P is a

solution of P(0). Hence by Theorem 2.1 {/ = Q and P = 0. P = 5 [-X] and P = 0 in Q+ implies

Pn+ = I A. + iV [X] = 0. Hence, by (A2), X = 0. The proof for P7f0>) is the same.

We now give variational formulations for P0(p°) and Pj(p°), both involving only natural

boundary conditions. We take H to be the Hilbert space H-Hj (Q) x L2 (F). We introduce the

bilinear forms:
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y ado (3.9)
r

®,U) = j

We write tl° = (U, X), Ul = (U, y), V° = (¥,<$>), Vx = (Y, %) and

j*>(<u°, V°) = A^{U, Y) +A{2(y, Y) +A2\®,U)+A22(X, 0)

(3.10)

A1 (V1, V1) = A^(U, Y)+Al2(y,V)+ A2\ (x, U) + A2\(V, x)

Finally, we define functionals Fo and Fj on // by

(3.11)

Our variational problems are:

Find « ° e // such that ^ °(U °, V°) = <V°,F °> for any V°zH (VP0)

Find U l e // such that ^ ! ( « ! , V1) = <VX, Fx> for any VlsH (VPj)

The following result is easily verified.
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Theorem 3.2

(i) If (U, X) solves P0(p°) then « ^ = ((/, X) solves (VPO). JfU° = (U9X) solves (VPO)9 and J7

and X are smooth, (£/, X.) solves P0(p°)

(ii) If (£/, y) solves P^p^j then W1 = (£/, y) solves (V/^). If Zll = (U, y) solves (VPX) and C/

and \\f art smooth, ([/, \|/) solves Pj(p°)

4. Numerical discretization

We consider here the numerical implementation of the variational problems described in the

previous section.

Suppose that Q.h (Q) and Th (F) are finite dimensional subspaces of Hj(Q) and L2(T)9

depending on a parameter h. We set Hh = Q.h (Q) x Fh (T) and consider the approximate

problems:

Find Uo
h e Hh such that A0 (<U%9 V%) = <V*, Fo> for any ^ J e //*

Find « f e //A such that A1 (ll£, Vx
 h) = <Vx

h , Fj> for any 1^* e / /

Suppose £ j , . . . C,Nh and (i^ ..., |LIM/2 are bases for Q* and F^ and we write i/11 e R ^ , ^Ae

y/i e ^M for ^ g corresponding expansions. Then the appropriate variational problems are

equivalent to algebraic equations of the form,
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f\\ Uh + ?&lh = Q ?i°i Nh x Nh

2 V1 = £1 ?i\ ^A x Nh «1 2 Â * x A/'1

(Ef)
MhxMh

Remark 4.1 If one is primarily interested in the inner region Q, Po (p°) is useful since it produces

the interior stress and boundary traction as solutions. The exterior field on the other hand

requires two integrations (3.5). If the primary interest is in Q+, Pj(p°) is better since the exterior

field requires only one integration (3.6).

Remark 4.2 It is interesting to note that one has a whole family of problems. Since Afi (U, V) =

A/J (U, Y) we can take convex combinations of P0(p°) and P](p°). Thus one takes H = Hj(Q) x

L2(T) x L2(T) with 11 = (U, X, v), 1/= (Y, <|>, $) and

A a CU, V) = (1-cc) A °((U, V), (k, $)) + a ^ ((U, Y), (V, 0 )

<V, Fa> = (1-a) <(}/, <))), Fo> + a <(V, %), Fx>

to obtain:

Find We H such that j? a ( U V) = <V, Fa> for any Ve H (VPa)

We now have two boundary functions to be determined and the structure of the finite

dimensional approximation equations will be:
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?n Uh

- a) v

If we choose a = j and use real basis elements then it is quite easy to verify that the system

(Ea
h) is symmetric; that is:

A Y r (4-1)

Let us verify one of these. We have

o . ( -U,+Dru, l )Utdo =

Remark 4.3 We observe also that our procedures are well adapted to standard software. For

instance, we can solve (Eo
h) by condensation. The second equation can be solved in the form,

I = (a&r1 f2- ($B~l «2°i Uh (4.2)

The inverse (IB )̂"1 is a standard one from boundary integral equation methods. One can then

insert (4.1) into the first equation to obtain equations of the form

g0 (4-3)

Here C= - ?£(S^)"1 Bfl and #o =
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and # ^ is the standard dynamic stiffness, or impedance, matrix for interior elastic problems.

This matrix is sparse.

Similarly, by condensing \|/^, (EJ1) leads to an equation of the form

?l°lUh + CTUh = gv (4.4)

while (EI/2
h) yields the equations

*& Uh + Uc + CT)Uh = \{go + gX) (4.5)

It is worth noting that the appearance of the adjoint matrices C and CT in (4.3) and (4.4) is a

direct consequence of the adjointness of the linear mappings D and N, which occur, respectively,

in the formulation of problems Po and Pj. Po is based on the integral representation (3.4) for the

fluid pressure which introduced D, while Pj uses the single-layer representation (3.6) from

which N arises. (These two alternatives are denoted as the direct and the indirect formulations in

the engineering literature [14]). It is then clear why, whereas each problem Po and Pj, by itself,

leads to a nonsymmetric system of finite dimensional approximation equations (4.3), (4.4), their

average (4.5) is symmetric. It is this form of the discretized equations which is most convenient

for computations. All the elements of the matrices C, CT and j (C + CT) are zero except for those

elements associated with the components of Uh located on P. Each of these matrices represents

the impedance of the fluid at the interface with the solid, and constitutes, in effect, a discretized

nonlocal absorbing boundary. The terms go and g t represent effective forces applied on F, due
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to the incident wave p°. After solving for JJh
y Tj1 and \|/^ can be evaluated by back substitution,

using (4.2) for Tj1 and a similar equation for \|A The scattered field P can then be calculated

from (3.5) or, more simply, from (3.6).

5. Existence and regularity

Our first goal here is to validate the procedures in the preceding section. The proof of the

validity of the coupling methods rests on the following abstract result. Let H be a Hilbert space,

A a bounded bilinear form on H x H and F an element of//', the dual of//.

Suppose that A = Ao + Aj where:

There exists k > 0 such that Ao (w, u) > k \\ u ||2 for any u € H (I)

For any bounded sequence {u^} in H there exists a subsequence u^

and a w e / / such that A j {uk, v) —> A^ (w, v) for any v e H (II)

Consider the variational problem:

Find u € H such that A(w, v) = <v, F> for any v e H (VP)

Theorem A If A (w, v) = 0 for all v implies u = 0 then (VP) has a unique solution u and F -> u

is a bounded map from H —> //.

Suppose that one has a family Sh of finite dimensional subspaces contained in H and one

considers the approximate variational problem:

Find II* e S* such that A(uh, vh) = <v*, F> for any \h € S* (AVPh)
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We suppose that the Sh approximate H in the following sense:

Given any e > 0 there is an h0 > 0 such that for any h < ho and u e H there is

a w ^ e ^ such that || u - w h || < e. (Ill)

Theorem B If A (u, v) = 0 for all v implies u = 0 then:

(i) There exists an ho > 0 such that (AVPh) has a unique solution u!1 for any h<ho

(ii) If u is the solution of (VP) \\u-uh \\ -> Oas/zIO

Theorem A is an easy consequence of the Lax-Milgram lemma and Riesz-Schauder theory.

Theorem B is fairly well known (see for instance [7] and [11]) but for completeness we sketch

the proof in an appendix. The results in the appendix also show that one has optimal

convergence. For instance, if one uses piecewise quadratic approximations in Q and piecewise

linear approximations on F one obtains O(h) in Hj (Q) and O(h2) in L2 (F)-

In proving the validity of our procedure, Ptf(po) and Pj(p°) can be treated in the same way and

both begin with the same observation. We write,

(4.1)

pEUYdx

For m sufficiently large Korn's second inequality implies that there is a k > 0 such that

Ao(U9U)>kW\\Hl(Q)
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The form A^ satisfies (II). If {Uh} is a bounded sequence in H^ (Q) then there is a subsequence

Uk which converges weakly in H^ (Q) and strongly in L2 (Q) to JJ e Hj (Q); hence A

10-> ^ (£^,30 for any Jf G Hj (Q).

Consider first (V7^). We decompose .3 ̂ (W, V) in the form

Jlf (U ^) = Ax a/, y ) + A12" (X, V) + A2^ (<|>, V)

From (4.2) we see that j ^ * satisfies (/). We assert that ftf satisfies (II). We have already seen

this for Ai (U, V) and we consider the remaining terms under the assumption that Uk = (U^ ^ )

with {Uk} a bounded sequence in H^ (Cl) and Xk a bounded sequence in L2(F). Then we have

that {£^1 } is a bounded sequence in Z/1/2 (F). We conclude that there is a subsequence k: such

that:

UK converges weakly in Hi (Q) to U

Uk\ converges weakly in / /1 / 2 (D to U \

Uk | converges strongly in L2 (F) to U \

~ j r r

X«. converges weakly to X in L-> (F)

Consider the individual terms
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yk)

5 is a bounded map from L2 (F) into Hx (F); hence 5 [# • Uk] converges strongly to 5 [n - U] in

L2 (F) and A2<J (tf, Uk) -> Afi «>, £/)* .

f • > =

D is a bounded map from L2 (F) into H2 (F) and X̂  is bounded in L2 (F) and converges weakly

to X; hence we can assume (with possibly another subsequence) that D(Kk) converges strongly to

X in L2 (F). Thus A $ ftkj, <(>) -> A22 (X, (|)).*

We have thus shown that conditions (I) and (II) are satisfied. If we take/?0 e Hjloc (Q+) with

+ K2p° = 0 then we have p° | r e H'l/2 (F), pn° | r e / /1 / 2 (F) so that Fo e Hl and we can

use theorems A and B. From Corollary 3.1 we see that, under assumptions (Aj), (A2), A ° (Zl, V)

= 0 implies 11 = 0; hence, Th (A) implies the existence of a unique solution of (VP0). If, in

addition, (III) holds Th (B) implies the convergence of Galerkin's method.

The argument for (VPj) is the same with the same conclusions.

Under hypotheses (I) and (II) and assuming p° e H^°° (Q+) we obtain a generalized solution

*This idea comes from [11]
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of Po (p°) or Pj (p°) with U & Hj (Q) and P e Hjloc (Q+). Because of the special form of

these problems it is not difficult to obtain regularity results by bootstrapping. We illustrate with

Po(p°). Suppose p° € //r
loc (Q+) with r > 1. Then p° | r e Hr _1/2 (T) andpn° e / / r . 3 /2 (T);

hence/= - ip° + S [p°J - D \p0] e Hr. 7 /2 (T). If U e / / ; (Q) we have U" • B e / /1 / 2 (T) and 5

=min(r- l /2 ,3/2)

On the other hand we have

Hence j ^ e Hs+3f2 (Cl). Take r > 2, then we have at least, U e / /3 (Q). If r is arbitrarily large

we can continue this process and show that U e Hk (Cl), X e Hk.3}^ (T) for ^ arbitrarily large,

thus establishing that (JJ, X) is a classical solution of P0(p°) and, accordingly, that we have a

classical solution of P(p°).
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Appendix Proof of Theorem B

We begin by defining the Galerkin operator G^: H -» Sh by G* u = vt1 where

Ao (S*, v*) = A^ (w, v*) for any vh (A A)

If we expand U h in terms of the basis elements of Sh (A. 1) becomes a system of linear algebraic

equations and condition (I) guarantees that this system has a solution so G^ is well defined. For

any w*1 e Sh we obtain from (A.I),

Ao (uh -wh, \h) =Ao(u-wh, vh),

hence, by (I),

|| < 1 a ||M

where a is an upper bound for Ao. Thus

e H^ e Sh (A2)

Hence condition (III) implies that || Gft0 u - u \\ —> 0 as h 10 for any u e H, that is, Gfto converges

strongly to I as h i 0. Moreover we can put w^ = 0 in (A.2) and conclude that

U - u || < K || u || for any u e H. It follows that || G£ || is uniformly bounded.

Next we consider Aj. We note that, for each us / / the map v —> Aj (u, v) is bounded and

linear, hence we can define a map / : H —> H by

<v, Ju> = A1 (w, v) for any v e H (A3)
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Condition (II) states that / is a compact map.

Theorem A states that the solution of (VP) defines a bounded solution map S from H1 into H

by the equation

A(5F,v) = <v, F>for any v (A.4)

Consider the map SJ (I - G^). This is a map from H into itself and we assert that its norm tends

to zero as h i 0. Suppose not. Then we can find an e > 0 and a sequence hn i 0 with un e //,

|| un || = 1 such that || SJ (/ - G£) wn || > e. Since || / - G* || is uniformly bounded (I -G^)un = wn

is a bounded sequence in H and by the definition (A.I) of G^one has

Ao (ww \h) = 0 for any \h e S* (A.5)

Now {wn} is bounded in //, hence there is a subsequence wn which converges weakly in H to w.

But then (A.5) implies Ao(w, vh) = 0 for any \h e 5^ which, in view of (III), implies A0(w, v) =

0 for any v e 5. Hence by (I) w = 0. Thus wn converges weakly to zero. But / is compact so

Jwn converges strongly to zero and 5 is bounded so SJ(I - Gol
h)un converges strongly to zero

which contradicts || SJ (/ - G )̂wn || > e.

Since || SJ (/ - G )̂ || tends to zero as h -> 0 we can find an h0 sufficiently small that

(7-5/ (I - Cfy)'1 exists for h<ho and we can define Gh = Gj [/ - 5 / (0 - G^)"1

We assert that

A (Ghu, \h) = A (w, v/l)for any vAG 5*f (A.6)
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that is, Gh is the Galerkin operator for A. To verify (A.3) put z = (/ - SJ (/ - Go
h))'x u. Then we

have

-Go
h)z (A.6)

By (A.3) and (A.2) this means

A (z, v) = <v, / ( / - G*) z> + A (M, v)

or

A, (z, v) + Aj (Gj zyv)=A (M> v) (A.7)

We put v* in (A.6). Then Ao (z, v*) = Ao(Go
hz, vh) and (A.7) yields

A (Go
hz, vh) = A (w, vh) for any v* e Sh

and this is formula (A.5).

(A.5) gives the result we want. For a solution u of (VP) <\h, F> = A (u, v) and (A.5) says that

the Galerkin solution is

j (A.7)

The operator in (A.7) tends to / as h 10 confirming that uh —> w. This completes the proof.
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