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Abstract — A proof of a conjecture of J.M.Ball concerning the distributional
determinant is given and an application to nonlinear elasticity is indicated.

INTRODUCTION. — The aim of this note is to prove a conjecture of
J.M. Ball concerning the distributional determinant. Consider for illustra-
tion a mapping u of an open bounded set ft C R2 into R2. The Jacobian
determinant of u is given by

det Du{x) = u\(x)ul(x) - v}2(x)ul{x),

where upper indices denote components and where lower indices with comma
refer to partial derivatives. For the weak continuity properties of the Jacobian
determinant and the existence theory in nonlinear elasticity it is of crucial
importance that det Du can be expressed as a divergence. Let

DetDu = ( u V ^ ! - ( u V j ^

Clearly Det Du — det Du for u G C2; by approximation that identity is easily
seen to hold in the sense of distributions if u merely lies in the Sobolev space
VK1>2(fi; R2). By the Sobolev imbedding theorem, Det Du is well defined as a
distribution if u £ W1'4/3(ri;R2), but the identity det = Det fails in general
if one only assumes u G W1}P(ti] R2),Vp < 2. Indeed, letting fi be the unit
ball and u(x) = A one finds that det Du = 0 a.e., while DetDu = -K8Q.
The fact that in this example the desired identity fails only by a Dirac mass
led Ball [1] to conjecture that det Du = DetDu whenever DetDu is an L1-
function. Here we give a proof of that conjecture, in fact of a slightly stronger
result (see Theorem 1 below).

For the statement in the n-dimensional case recall that for an n by n
matrix F its adjugate adj F is the transpose of the matrix of its cofactors



(so that FadjF = det Fid) and that for any function « : O c R " - t R " ,
u G W1'"-1^; R"), adj Du satisfies the identity

(adj 2 ^ = 0,

in the sense of distributions (see [2]), summation over repeated indices being
understood. The distributional determinant is then defined as

Det Du = (^(adj

Theorem 1 shows that if u G W1^2^71^ (so that Det Du is defined) and if
Det Du G L1 then Det Du = det Du.

MAIN RESULT. — Theorem 1. Let fi C R n be open, let 1 < p < n
and let v G W1*^). Assume that a G £9(ft; Rn) with \ - \ + \ < 1 and
that the distributional divergence of a satisfies diver G Z1(fi). Assume finally
that the distribution

d = div(vcr)y

satisfies d <E L1^). Then

d(x) = Dv(x).a(x) + v(x)diva(x),

for a.e. x G 0 .

Remarks. - 1. The assumption on q guarantees that va G Ljoc so that d
is well defined; if p > n, q = 1 is sufficient.

2. If c? is assumed to be a Radon measure rather than an L1 -function
then Dv.cr + vdiva equals the regular part of d a.e.

3. The arguments used in the proof are entirely local, so W1>p, Lq and L1

could be replaced by W^,Lq
loc and L}oc.

4. The distributional determinant is obtained as a special case by letting
v=z u1,*' = (adj Du){,p= n2/(n+l) and q = p/(n- 1) = n2/(n2 - 1).

5. Theorem 1 allows one to reformulate the existence theory of Ball
[1] using the pointwise determinant det Du rather than the distributional
determinant Det Du. In the two-dimensional case one would minimize in a
subset of A = {u G W1*4?3 : Det Du G X1}, in the three-dimensional in a
subset of A= {ue W1* : Ad] Due L^DetDueL1}^^ 3 / 2 , l / p + l / ? <
4/3.
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The main ingredient in the proof of Theorem 1 is a version of the Lebesgue
point theorem for WliP functions due to Calderon and Zygmund [3] (see
Ziemer [4] for refinements and further references). Denoting by Br(xo) the
ball of radius r around Xo and by -f the average we have

Theorem 2 ([3, Thm. 12]). - Let H C Rn be open, 1 < p < n and
v G W1|P(0). Then, for a.e. #o G fi,

. i f / - . l1 / p*
lim — \+ \v(x) "" v(xo) — Dv(xo)(x — xo)\

p dx> = 0 ,
r-+Q r (yj9r(xo) J

where p* = -£!L-.
r n—p

PROOFS. — Proof of Theorem 1 (diva = 0). - For the sake of simplicity
we first deal with the case diver = 0 which is the one relevant to Ball's
conjecture. By the Lebesgue point theorem and Theorem 2 we have, for a.e.
XQ G fi,

lim / \d(x) - d(xo)\ dx = 0, (1)

lim / \<r(x) - o-(x0)\
q dx = 0, (2)

r-*0JBr(x0)

\v{x)-v(xo)-Dv(xo)(x-xo)\p*dx\ =0. (3)

Fix such a point x0, let if> G C(?(Bi), t/> > 0, /Rn ̂ {y) dy = 1 and let
Vv(z) = r-»^(£=^L). By (1)

limdfa) = lim / rj>r{x)d{x) dx = d(x0). (4)

On the other hand letting

P(x) = v(x0) + Dv(xo)(x -

and writing Br instead of Br(x0) we have

= -I (Ah(x)(v(x)-P(x))c?i(x)dx- f (4>r)jP(x)at(x)dx
JBr

 J&r



= - / (iPr)j(x)(v(x)-P(x))aj(x)dx+ j $T(x) Dv{xo).a{x) dx
J Br J Br

= ~f Wr),j{x){v{x)-P(x))cri{x)dx+ I i>r(x)Dv{xo).{o{x)-a{x0))dx
J Br J Br

tl>r(x)Dv(x0).<T(x0)dx. (5)

The last term is of course nothing but Dv(xo)-<r(xo)- The first term in the
last expression is bounded by

r""-1 sup \Dtf>\ f \v(x) - P(x)\\a(x)\ dx,
J Br

which by Holder's inequality can be estimated by

)L\1 \v(x)-P(x)\p dx> 11 \a(x)\qdx\
r UBT > UBr )

and thus converges to zero as r —> 0 by (2) and (3). Finally, the second term
in the last identity in (5) is bounded by

C\Dv(xo)\ -I \a(x) - a(xo)\dx
J Br

and therefore converges to zero as r —> 0 by (2). It follows that

v) = Dv(xo).a(xo). (6)

It should be noted that the derivation of (6) only depends on the assumptions
on v and a and not on the hypothesis d G L1. The theorem (for diver = 0)
now follows from (4) and (6).

Proof of Theorem 1 (general case). - Since diva" € L1 we may assume
that in addition to (1) to (3) we also ha.ve

lim-f Idiva(x) — divcr(xo)\ dx = 0. (7)
r-+oJBr()

The only difference in the case diver ^ 0 is that in (5) an additional term

/ tf>r(x)P(x)(diva)(x)dx
J BrBr
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appears. This term may be rewritten as

/ i>r(x)(P(x)-P{x0))(div*){x)dx + i i>r(x)P(xo)(div*{x)-dW<r(xo))dx
J Br JBr

+ I rf>r(x)P(x0){diva)(x0)dx
JBr

The last term is just v(xo)diva(xo), the first term is bounded by

C\Dv(xo)\r-f \diva\(x)dx,
JBr

and the second by

C|^(#o)| T |div<j(x) — div<j(a:o)| dx,
J Br

and in view of (7) both terms converge to zero as r —* 0. Thus

v) = Dv(x0). a(x0) + v(xQ)diva(x0), (8)

and the theorem follows from (4).
Proof of Remark 2. - If d is a Radon measure and dreg its regular part

then, by the differentiability theorem for measures (see, e.g. [5, Thm. 8.6]),

limd(Vv) = dreg(x0)

for a.e. x0, and the remark follows from (8).

References

[1] J.M.Ball, Convexity conditions and existence theorems in nonlinear elas-
ticity, Arch. Rat. Mech. Anal, 63, 1977, pp. 337-403.

[2] C.B.Morrey, Multiple integrals in the calculus of variations, Springer,
Berlin-New York, 1966.

[3] A.P.Calderon and A.Zygmund, Local properties of solutions of elliptic
partial differential equations, Studia Math., 20, 1961, pp. 171-225.

[4] W.P.Ziemer, Weakly differentiate functions, Springer, Berlin-New York,
1989.

[5] W.Rudin, Real and complex analysis, McGraw Hill, New York, 1974.


