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Abstract

We consider a randomized version of the usual greedy algorithm
for finding a large matching in a graph. We assume that the next edge
is randomly chosen from those remaining at any stage. We analyse
the expected performance of this algorithm when the input graph is
fixed. We show that there are graphs for which this Randomized
Greedy Algorithm (RGA) usually only obtains a matching close in
size to that guaranteed by worst-case analysis (i.e. half the size of the
maximum). For some classes of sparse graphs (e.g. planar graphs and
forests) we prove that randomization does produce an improvement
over the worst-case, the ratios to maximum being at least ^- and
0.76- • • respectively.
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1 Introduction

Perhaps the simplest heuristic for finding a large cardinality matching in a

graph G = (V,E) is the "Greedy Heuristic".

GREEDY MATCHING

begin

M<-0;
while E(G) ^ 0 do

begin

A: Choose e = {u, v} € E

G+-G\{u,v};

end;

Output M

end

The choice of e in statement A is unspecified. It is known [2] that, if the

worst possible choices are made in A, the size of the matching M produced is

at least one half of the size of the largest matching, and one half is attainable.

(Consider choosing the middle edge of a path of length three.)

Now randomization sometimes improves the performance of algorithms (per-

haps the most important example being primality testing). The question we

pose here is what effect does randomizing statement A have ? In particular

if e is chosen uniformly at random from the remaining edges, what is the

expected ratio of the size of M to that of the maximum matching ? We

prove that there are graphs for which the average-case is hardly better than



the worst-case, but also that there are classes of graphs (e.g. planar graphs)

for which it is significantly better.

2 Notation

Let G = (E,V) be a (simple) graph with \V\ = n. For any v G V, T(v)

denotes its neighbours in G. For any S C V, G \ S denotes the subgraph

induced by the vertex set V\S. Let m(G) be the maximum size of a matching

in G and fi(G) be the expected size of the randomized greedy matching. Let

r(G) = fi(G)/m(G) i fm(G)>0

= 1 ifm(<3) = 0.

If K is any class of graphs p(/C) = miGeK,r(G). Unless otherwise stated, Q

will denote any class of graphs closed under vertex deletions and (to avoid

trivialities) we suppose \E\ > 0 for some G G G-

<G) = mf{\V\I\E\ : G = (E,V), \E\ > 0}

Note that since some G G Q has an edge, and Q is closed under deletions, the

graph containing a single edge lies in Q. Thus 0 < K(G) < 2 for any Q. In

particular AC(GRAPHS) = 0, /c(PLANAR GRAPHS) = | , AC(FORESTS) = 1. The

abbreviation RGA is used for "Randomized Greedy Algorithm".

3 A monotonicity property

Many of our results depend on the following

Lemma 1 For all veV, /JL(G) > fi(G \ {v}) > ii{G) - 1
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Proof The statement clearly holds for G = ({v},0) and we argue by

induction on |V|. Let us carry out the RGA in G and mimic it in G \ {v}.

Owing to the uniform choice mechanism, the simulation will be successful

until some random edge {u, v} is chosen in G. Suppose k edges have been

chosen in G \ {t>}, and let H be the remaining subgraph of G\ {v}. The size

of the final matchings will thus be, in expectation, 1 + k + IZu{fi(H \ {u})}

in G, and k + fi(H) in G \ {v}. Let A be the difference, so

A = 1 + Eu{/z(# \ {u})} - ti{H)

By induction, since \V(H)\ < \V(G)\,

0<l+fi(H\{u})-fx(H)<l.

So 0 < A < 1. Since //((?) - fi(G \ {«}) = E(A), the conclusion follows. •

Corollary 1 Let v £ V be exposed in some maximum matching of G, then

r(G\{v})<r(G).

Proof Clearly m(G \ {v}) = m(G), so the result follows from Lemma 1.

•

Corollary 2 Let 7i C Q be the set O/GEQ which are connected and contain

a perfect matching. Then p{Q) = p(H).

Proof Clearly p(H) > p(Q). By Corollary 1 (applied repeatedly if nec-

essary), any G G Q can be reduced to a Gf which contains a perfect matching



and has r(G') < r(G). If G" has components G\ (i = 1, . . . , c), let # = G£

where r(67J) = min1<t<cr(G;). Clearly H € W and r(#) < r(G') < r(<2).

Thus />(#) < /9(G). D

In particular we have the following, which we use below,

/0(FORESTS) = />(TREES WITH A PERFECT MATCHING).

We note in passing that monotonicity under edge deletions does not hold. As

a simple example, let G b e a path of three edges. Then fi = | , but, when

the middle edge is deleted, // = 2.

4 A lower bound

We give a weak, but easily proved, lower bound and examine its consequences.

Lemma 2 Let a(Q) = 1/(2 - |*(0)). 77*en p(Q) > a{Q).

Proof By induction on |V|. Since 0 < K(Q) < 2 we have \ < a(Q) < 1.

If \V\ = 0, r(G) = 1 and hence r(G) > a(G).

Since (by Corollary 2) we may assume G has a perfect matching we take

\V\ = 2m(G) > 0. Now

1 +

However

t/, v}) = m(G) — 1 if {u, v} lies in some perfect matching,

= m(G) — 2 otherwise.
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Thus,

£ m(G\ {«,»}) > m(m- l )

= \E\(m-2) + m.

Hence, using the inductive hypothesis,

> 1 + i E am(G\{u,v})
1̂ 1

> am + 1 — 2a + |

completing the induction. •

Corollary 3 />(GRAPHS) > | , (̂PLANAR GRAPHS) > £ , p(FORESTS) > | .

D

5 The class GRAPHS

Lemma 3 /9(GRAPHS) = | .

Proof Let Gm be the graph obtained by adding a new vertex and edge

adjacent to each vertex of the complete graph Km.



Clearly m(Gm) = ra, and write fi(Gm) = fim. Consider the first step of the

RGA on Gm. There are (™J + m edges. Thus, with probability

m 2

we choose an added edge. Its removal leaves Gm_i. Otherwise we choose a

Km edge whose removal leaves Gm-2 (and two isolated vertices). Thus the

final matching size will be, in expectation,

2
1 + //m-i with probability

m + 1
m — 1

and 1 + A*m-2 with probability .
m + 1

Thus,
.. , 2 / ^ q + (m -

with /̂ o = 0, Hi = 1. Writing this as

(l*m - ^m-i) = 1 - (ra + x)^™-1 " ^ - 2 ) , (1)

we make the substitution um = (im — Mm-i anci wo = /̂ o- Thus tx0 = 0, ux = 1,

and /xm = Z^̂ =oMi? a n ^ from (1),

It is easy to show inductively that (2) has solution, for m > 1:

u™ = 2 + 2^ (modd)

Let Lm = 1 + | + \ + 1- i for m odd. Thus,

A*m = E^o«i = | m - | + Xm (modd)

§ + ^m-i + 2(Ai)



Asymptotically Lm = | (7 + log 2m), where 7 is Euler's constant. So

Pm = \{m + Iog2m + 7 - 1) + o{\).

Thus r{Gm) = \ + O(logm/m) and r(Gm) -> \ as m -> 00. •

6 Concentration near the mean

We now show that the value of the matching obtained by the RGA is "almost

always" near its expectation.

Lemma 4 Let G be a graph with m = ra(G),^ = fi(G) and let X = X(G)

be the random size of the matching obtained by the RGA in G. Then

PT(\X - n\ > em) <2e~e2m/2

Proof Let Ŷ , (i = 0 , 1 , . . . , m) be the Doob martingale induced by the

first i choices of the RGA on G, i.e. Y{ = E(X | first i choices). Clearly

Y{ = K + n{H) for some integer K < i and subgraph H of G. In fact K = i

unless jff = 0. Also

•̂+1 = if + 1 + E(//(# \ {u, V}) if # contains an edge,

= K otherwise,

where the expectation is over the random choices of the edge {tx, v}. Thus,

Yi+X -Y{ = 1 + E(fi(H \ {u, v}) - fi(H)) if H contains an edge,

= 0 otherwise.

Thus if H contains an edge,

< 1, since fi(H \ {u, v}) < (x(H)
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Furthermore,

since fi(H \ {u, v}) > fi{H \ {u}) - 1

> - 1 , since fi(H \ {u}) > ft(H) - 1,

where all inequalities follow from Lemma 1.

Thus |Yi+1 — 1{| < 1 whether or not H has an edge. Hence {Yi} is a bounded

difference martingale sequence, and it follows from the Hoeffding-Azuma

inequality (see Bollobas [1], McDiarmid [3]) that

Pi(\X - /x| > em) < 2e-*cm>2/2m = 2e"c2m/2

D

Corollary 4 If {Gm} is a graph sequence such that m(Gm)(= m) -+ oo,

and ujm —* oo (arbitrarily slowly), then

Proof Put e = wm/y/m in Lemma 4. •

Corollary 5 If{Gm} is the graph sequence defined in the proof of Lemma 3,

let X{Gm) be the best solution obtained from any polynomial number p(m)

of repetitions of the RGA on Gm. Then

Pr( | m < X(Gm) < \m + logra/ \ /m) —> 1 as m —> oo.

Proof X(Gm) > \m follows from the worst-case result (Korte and

Haussman [2]). Putting e = logm/y/m in Lemma 4, the probability of

X{Gm) not falling in the required interval is at most 2p(m)e-( logm)2/2 -» 0

asm-) oo. D



7 A monotone transformation

Deletion of exposed vertices does not increase r(G). We consider another

transformation with this property. Let {u, v} be an edge in a maximum

matching of G which does lie in any triangle. Let G1 be the graph obtained

by substituting all edges {t>, w} (w G T(v) \ {u}) with {u, w}.

Note the restriction that {tx, v} does not lie in a triangle, to ensure that G'

is a simple graph.

Lemma 5 r(G') < r(G).

Proof Clearly m(G') = m{G) so we only need show n(Gf) < fi(G). We

use the "simulation" argument of Lemma 1. The realisations of RGA in G, G1

proceed identically until some edge which meets either u or v is chosen. At

this stage, suppose the remaining subgraph of G is H. If {u, v} is chosen,

the remaining graph is H \ {u,v} in both cases. Otherwise we have, say,

H \ {it, w} and H \ {u, v, w} in Gf. (Note that G1 is only re-labelled by

changing the roles of u, v in the transformation.) By Lemma 1, the expected

value obtained by the remainder of the RGA is at least as large in G as in

G1 in all cases. Thus, taking expectations, we have fi(G') < fi>(G). •

Let us denote this transformation by a : GRAPHS —> GRAPHS, i.e. G1 = cr(G).

Let Q* be any graph-family which is also closed under <J. Let H* be the

sub-family of Q* such that any G G 7i* is connected, has a perfect matching,

and such that every edge in any perfect matching either contains a vertex of

degree 1 or lies in a triangle. Then,

Corollary 6 p{H*) = p(G*). D
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This Corollary is useful for FORESTS, since it implies we may assume

(i) The graph is a tree.

(ii) All edges in the maximum matching are leaves,

(iii) Every internal vertex is adjacent to exactly one leaf.

8 The class FORESTS

For FORESTS, Corollary 3 gives p > | , but this is not tight. First let us

establish an upper bound.

Lemma 6 ^(FORESTS) < § + 2 ]T j ^ — ' — = 0.7690397 • • •

(where nil = n(n-2)(n-4)...3.1 for n odd).

Proof Let Tm be the graph obtained by adding a leaf to each vertex of

an m-vertex path. Let tm = fi(Tm). Thus t\ = 0, t<i = 1. Clearly, for m > 2,

m-l \

Ira — ± \.._., t.=1

1 (m

9 /m-l m-2 \

zm i \ t = 0 t = 0 /

m-l m-2

From (3), for m > 3, (2m - l)tm = (2m - 1) + 2( J2 U + J2 *•)>

m-2 m-3

and hence (2m - 3)*m«i = (2m - 3) + 2( £ <t + 53 *•)•
t=0 i=0

Subtracting, (2m - l)<m - (2m - 3)*m_i= 2 + 2fm_i + 2fm_2,

11



or, (2m - l)(tro - tm-i) = 2(1 + fm_2).

In fact, substitution shows that (4) holds also for m = 2.
m

Let um = tm — i m _i , t/0 = *o, so <m = Y^ui-> a n ( l wo = 0, tii = 1, u2 = | -
t=0

m-2

So, from (4), (2m - l)um = 2(1 + ^ u 0 ( m ^ 2)*
t=0

m—3

Thus, (2m - 3)um_! = 2(1 + £ ) ut-) (m > 3).
t=0

Subtracting, (2m — l)um — (2m — 3)wm-i = 2t/m_2, (m > 3)

or, (2m — l)(um — um_i) = —2(um_i - um_2)

Let um = um - um_1? u0 = «o, so «m = £ ) vm and u0 = 0, ua = 1, u2 = - | -
«=o

So, from (5), vm = ^-^vm^ (m > 3). (6)

Thus' Vm = ^ 9 (m -3)-
Therefore, um = 0 + 1 - | - E( - 2 ) ' " 2 / (2 i - 1)!! (m > 3),

t=3

5)!! (m > 3),
it=0

with u0 = 0, ̂ ! = 1, u2 =

m j

Now <m = J2 uj = Yl £ vi
j=0 j=01=0

12



m m,

i=o

i=o

= (m + i)u

= (m + \)U

tm = mum + ( |u m - vm - 1).

from (6),

For large m, um = | + 2 E ( -
fc=O

= 0.76903975 • • • +

So, letting u = 0.76903975 • • •,

tm = l

+ 5)!! +

Thus r(Tm) = u + ( |« - l ) /m +

and so r(Tm) —»• u as m —> oo.

(7)

13



Numerical results confirm that (7) is indeed an excellent approximation to

tm. When m = 10, for example, the implied error term is less than 10"~8.

We now consider a lower bound for FORESTS. We will need the following

Lemma.

Lemma 7 Let T = (Ey V) be a tree in which each interior vertex is adjacent

to exactly one leaf. Ife= {u, v} 6 E, let ke be the number of components in

T\{ujv} which contain an edge. Then

ke > (2n-6) .
e£E

Moreover, unless T = Tm (m = n/2) as defined in Lemma 6,

K > (2n-4) .

Proof Let / , L C V be the internal vertices and leaves of T. Clearly

|/| = \L\ = |n . If e = {u, v} then clearly

ke = (du - 1) + (dv -l)-6u-6v

where du is the degree of u and 8U = 1 {u G /) or 6U = - l ( u 6 L). Thus,

(8)

14



By deleting L from T we are left with a tree on the vertex set / with degrees

(du - 1). Thus,

J2u - 1) = 2(|/| - 1) = n - 2.

Therefore, ]T ke = £ du
2 - Zn + 4, from (8),

£ * e = £ < * u 2 - f n + 4 (9)

But we have Yldu = 2(n - 1)

Thus, ^ r f t t = | n _ 2 (10)

We must minimize the right side of (9) subject to (10). It is easy to argue by

"pairwise improvements" that the optimum will occur when all the du are as

nearly equal as possible, i.e. du = 3 for all but two u G /, which have du = 2.

Thus the the tree induced by / is a path. Then we clearly have Tm, and

] £ fcc > (|n - 2) • 9 + 2 • 4 - |n + 4 = 2n - 6
e£E

If T is not Tm however, it must have value at least 2 more than the minimum

in (9), because the du are integers with constraint (10). Thus if T ^ Tm,

> 2n - 4.

Lemma 8 ^(FORESTS) > |f = 0.7619047 • • •

Proof We establish by induction a bound of the form

fi(F) > am(F) + {3 (11)

15



for forests F which contain at least one edge. We may assume F ^ Tm (of

Lemma 6) provided we ensure the resulting bound is also satisfied by all Tm

(m > 1). Now

JL u,v}) (12)

We may assume F is a tree T in which all interior vertices are adjacent to

exactly one leaf, since the operations of Corollary 1 and Lemma 5 both reduce

fJ>(F) without changing m(F). Thus the right hand side of (11) is unaltered

by these operations.

Thus suppose T \ {u, v} has components {d : 1 < i < ke} which contain at

least one edge. Then, by induction

> E(am(C.) +/?)
t=i

= am(T\{u,v}) + pke

Hence, £ ^(T \ {u, v}) > ^ m(T \ {u, v}) + ̂ J^ ke
eeE e£E eeE

= a(m(m - 1) + (m - l)(m - 2))
eEE

using the assumed structure of T.

So, £ fi(T \ {«, t;}) = 2(m - l)2a + /? ̂  *.,

> 2(m - l)2a + /?(4m - 4),

from Lemma 7, since T ^Tm and n = 2m,

16



Thus, from (12),

, . ro(2- 3a + 2£) + (2a -3/3-1)
= am + p-\

2m— 1

> am + p

provided 2 - 3a + 20 > 0 and 2a - Z/3 - 1 > 0. (13)

Thus 0 > fa - 1 {c.f. (7)) and (13) has a solution for any a < f.

We must now consider Tm. Suppose fi(Tm) — tm > am + /3 for all m < k

with k > 3. From (4),

tk > h.r + ^-jil + h.t)

= ak + p +
2k-I

> ak + p,

provided 2 - 3a + 2(3 > 0 (c.f. (13)). Thus, if we take /3 = fa - 1, we need

only check

h = l > a - l + f a - l ,

i2 = | > a - 2 + | a - l .

These give a < | , .a < | j , respectively. Thus taking a = | | (and hence

/3 = I) we have proved ^(F) > | |m(F) + i for all forests F containing an

edge. Thus r(F) > |f and hence (̂FORESTS) > |f. •

17



9 Concluding remarks

From Lemmas 6 and 8, we have 0.761 ••• < /?(FORESTS) < 0.769- •• (the

difference in the bounds is less than 1%.) Therefore it seems reasonable to

make the following

Conjecture If F is a forest with n vertices then r(F) > <[n/2j-

While we believe that the trees Tm of Lemma 6 are worst case examples for

FORESTS, we have little idea for PLANAR GRAPHS. The lower bound £ is

almost certainly not tight, but currently our best upper bound is G4 from

Lemma 3 which gives /?(PLANAR GRAPHS) < j | . This leaves a very large

gap.

Finally, we note that there are other classes of graphs which fall within the

scope of our analysis, for example graphs with degrees bounded by a given

positive integer.
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