ON THE LENGTH OF THE LONGEST MONOTONE SUBSEQUENCE IN A RANDOM PERMUTATION

by

A. M. Frieze
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 90-74 2
February 1990

On the length of the longest monotone subsequence in a random permutation

Alan Frieze*
Department of Mathematics, Carnegie-Mellon University, Pittsburgh, U.S.A.

December 15, 1989

In this short note we prove a concentration result for the length L_{n} of the longest monotone increasing subsequence of a random permutation of the set $\{1,2, \ldots, n\}$. It is known, Logan and Shepp [4], Vershik and Kerov [7] that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\mathbf{E} L_{n}}{\sqrt{n}}=2 \tag{1}
\end{equation*}
$$

but less is known about the concentration of L_{n} around its mean. Our aim here is to prove the following.

Theorem 1 Suppose that $\alpha>\frac{1}{3}$. Then there exists $\beta=\beta(\alpha)>0$ such that for n sufficiently large

$$
\operatorname{Pr}\left(\left|L_{n}-\mathbf{E} L_{n}\right| \geq n^{\alpha}\right) \leq \exp \left\{-n^{\beta}\right\}
$$

[^0]Our main tool in the proof of this theorem is a simple inequality arising from the theory of martingales. It is often referred to as Azuma's inequality. See Bollobas [2] and McDiarmid [5] for surveys on its use in random graphs, probabilistic analiysis of algorithms etc., and Azuma [1] for the original result. A similar stronger inequality can be read out from Hoeffding [3]. We will use the result in the following form.

Suppose we have a random variable $Z=Z(U), U=U_{1}, U_{2}, \ldots, U_{m}$ where $U_{1}, U_{2}, \ldots, U_{m}$ are chosen independently from probability spaces $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{m}$ i.e. $U \in \Omega=\Omega_{1} \times \Omega_{2} \times \ldots \times \Omega_{m}$. Assume next that Z is does not change by much if U does not change by much. More precisely write $U \simeq V$ for $U, V \in \Omega$ when U, V differ in at most one component i.e. $\left|\left\{i: U_{i} \neq V_{i}\right\}\right|=1$. We state the inequality we need as a theorem.

Theorem 2 Suppose Z above satisfies the following inequality;

$$
U \simeq V \text { implies }|Z(U)-Z(V)| \leq 1
$$

then

$$
\operatorname{Pr}(|Z-\mathbf{E} Z| \geq u) \leq 2 \exp \left\{-\frac{2 u^{2}}{m}\right\}
$$

for any real $u \geq 0$.

The value m is the width of the inequality and to obtain sharp concentration of measure we need $m=o\left((\mathrm{E} Z)^{2}\right)$.

Proof(of Theorem 1) Let $X=\left(X_{1}, X_{2}, \ldots X_{n}\right)$ be a sequence of independent uniform $[0,1]$ random variables. We can clearly assume that L_{n} is the length of the longest monotone increasing subsequence of X.

Before getting on with the proof proper observe that although changing one X_{i} only changes L_{n} by at most 1 , the width n is too large in relation to the mean $2 \sqrt{n}$ for us to obtain a sharp concentration result. It therefore appears that to use the theorem in this case requires us to reduce the width by a more careful choice for Z.

For a set $I=\left\{i_{1}<i_{2}<\ldots<i_{k}\right\} \subseteq[n]$ we let $\lambda(I)$ denote the longest increasing subsequence of $X_{i_{1}}, X_{i_{2}}, \ldots X_{i_{k}}$. So for example $\lambda([n])=L_{n}$.

Let $m=\left\lceil n^{b}\right\rceil, 0<b<1$ where a range for b will be given later. Let $\nu=\lfloor n / m\rfloor$ and $\mu=n-m \nu$ Let $I_{1}, I_{2}, \ldots I_{m}$ be the following partition of $[n]=\{1,2, \ldots, n\}: I_{j}=\left\{k_{j}+1, k_{j}+2, \ldots k_{j+1}\right\}, j=1,2, \ldots, m$ where $k_{j}=$ $j(\nu+1)$ for $j=0,1, \ldots \mu$ and $k_{j}=j \nu+\mu$ for $j=\mu+1, \ldots, m$. For $S \subseteq[m]$ we let $I_{S}=\bigcup_{j \in S} I_{j}$.

Let $\theta=n^{a}$ and $\epsilon=2 e^{-\theta}$. Define l by

$$
l=\max \left\{t: \operatorname{Pr}\left(L_{n} \leq t-1\right) \leq \epsilon\right\}
$$

and

$$
Z_{n}=\max \left\{|S|: S \subseteq[m] \text { and } \lambda\left(I_{S}\right) \leq l\right\}
$$

It follows from these definitions that

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{n}=m\right)>\epsilon \tag{2}
\end{equation*}
$$

Note next that for any $j \in[m]$, changing the value of $U_{j}=\left\{X_{i}: i \in I_{j}\right\}$, can only change the value of Z_{n} by at most one. We can thus apply Theorem 2
to obtain

$$
\begin{equation*}
\operatorname{Pr}\left(\left|Z_{n}-\mathbf{E} Z_{n}\right| \geq u\right) \leq 2 \exp \left\{-\frac{2 u^{2}}{m}\right\} \tag{3}
\end{equation*}
$$

Hence, putting $u=\sqrt{m \theta}$ in (3) and comparing with (2) we see that

$$
\mathbf{E} Z_{n} \geq m-\sqrt{m \theta}
$$

Applying (3) once again with the same value for u we obtain

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{n} \leq m-2 \sqrt{m \theta}\right) \leq \epsilon \tag{4}
\end{equation*}
$$

We now need a crude probability inequality for L_{s}, where s is an arbitrary (large) positive integer.

Lemma 1

$$
\operatorname{Pr}\left(L_{s} \geq 2 e \sqrt{s}\right) \leq e^{-2 e \sqrt{s}}
$$

Proof Let $s_{0}=\lceil e \sqrt{s}\rceil$. Then

$$
\begin{aligned}
\operatorname{Pr}\left(L_{s} \geq s_{0}\right) & \leq\binom{ s}{s_{0}} / s_{0}! \\
& \leq\left(\frac{s e^{2}}{s_{0}^{2}}\right)^{s_{0}} \\
& \leq e^{-2 e \sqrt{s}}
\end{aligned}
$$

Let now $s=\lceil 2 \sqrt{m \theta}\rceil$ and let \mathcal{E} denote the event

$$
\left\{\exists S \subseteq[m]:|S|=s \text { and } \lambda(S) \geq 6 \sqrt{\frac{s n}{m}}\right\}
$$

Now if $|S|=s$ then $\left|I_{S}\right|=(1+o(1))(s n / m)$ and so on applying the lemma above we get

$$
\begin{aligned}
\operatorname{Pr}(\mathcal{E}) & \leq\binom{ m}{s} e^{-2 e \sqrt{s n / m}} \\
& \leq \exp \left\{s \ln m-2 e \sqrt{\frac{s n}{m}}\right\} \\
& \leq \epsilon_{1}=\exp \left\{e\left(n^{\frac{a+b}{2}} \ln m-2 n^{\frac{1}{2}+\frac{a}{4}-\frac{b}{4}}\right)\right\}
\end{aligned}
$$

Now if $Z_{n}>m-2 \sqrt{m \theta}$ and \mathcal{E} does not occur then

$$
L_{n} \leq l+6 \sqrt{\frac{s n}{m}}
$$

So

$$
\begin{equation*}
\operatorname{Pr}\left(L_{n}>l+6 \sqrt{\frac{s n}{m}}\right) \leq \epsilon+\epsilon_{1} . \tag{5}
\end{equation*}
$$

Putting $l_{0}=l+3 \sqrt{\frac{s n}{m}}$ and combining this with the definition of l we have

$$
\begin{equation*}
\operatorname{Pr}\left(\left|L_{n}-l_{0}\right| \geq 3 \sqrt{\frac{s n}{m}}\right) \leq 2 \epsilon+\epsilon_{1} \tag{6}
\end{equation*}
$$

The theorem follows by choosing any a, b, α, β such that

$$
a+3 b<2
$$

and

$$
\beta<\frac{1}{2}+\frac{a}{4}-\frac{b}{4}<\alpha
$$

We remark finally that Steele [6] has generalised (1) in the following way: let now k be a fixed positive integer and given a random permutation let $L_{k, n}$ denote the length of the longest subsequence which can be decomposed into
$k+1$ successive monotone sequences, alternately increasing and decreasing. The monotone case above corresponds to $\mathrm{k}=0$. In analogy to (1) Steele proves

$$
\lim _{n \rightarrow \infty} \frac{\mathbf{E} L_{k, n}}{\sqrt{n}}=2 \sqrt{k+1}
$$

Theorem 1 generalises easily to include this problem. In fact we only need to change L_{n} to $L_{k, n}$ throughout. In order to avoid complicating the proof of Lemma 1, it suffices to prove

$$
\operatorname{Pr}\left(L_{s} \geq 2(k+1) e \sqrt{s}\right) \leq e^{-2 e \sqrt{s}}
$$

This follows from Lemma 1 since if the 'up and down' sequence is of length at least $2(k+1) e \sqrt{s}$ then one of the monotone pieces is at least $2 e \sqrt{s}$ in length.

References

[1] K.Azuma, Weighted sums of certain dependent random variables, Tokuku Mathematics Journal 19, (1967) 357-367.
[2] B.Bollobas, Sharp concentration of measure phenomena in random graphs, to appear.
[3] W.Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 27, (1963) 13-30.
[4] B.F.Logan and L.A.Shepp, A variational problem for Young tableaux, Advances in Mathematics 26 (1977) 206-222.

[5] C.J.H.McDiarmid, On the method of bounded differences, Surveys in Combinatorics, 1989, Invited papers at the Twelfth British Combinatorial Conference, Edited by J.Siemons, Cambridge University Press, 148-188.
[6] J.M.Steele, Long unimodal subsequences: a problem of F.R.K.Chung, Discrete Mathematics 33 (1981) 223-225.
[7] A.M.Vershik and C.V.Kerov, Asymptotics of the Plancherel measure of the symmetric group and a limiting form for Young Tableau, Dokl. Akad. Nauk. U.S.S.R. 233 (1977) 1024-1027.

[^0]: *Supported by NSF grant CCR-8900112

