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Abstract: We study the threshold for the existence of a spanning maximal planar subgraph in

the random graph Gn . We show that it is very near p = ~TTO- We also discuss the

threshold for the existence of a spanning maximal outerplanar subgraph. This is very near
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§1. Introduction

In this short note we consider the threshold for the property that the random graph

GntP contains a spanning maximal planar subgraph, i.e. a planar subgraph with 3n — 6

edges and 2n — 4 triangular faces. Our notation and terminology follows [l]; in particular

Gn>p is the random graph with vertex set [n] = {1,2, . . . , n} which is obtained by selecting

each of the N = (£) possible edges independently, with probability p. Let us define the

graph property A by setting G = (V,E) E A if E contains a set F of 3|F| — 6 edges such

that (V, F) is planar. Thus G G A iff G contains a maximal planar graph spanning the

entire graph.

Theorem 1.

(a) Let p = ~^3 where c = (27C/256)1/3. Then a.e. GnjP & A .

(b) Let p = c(1°n
g

1/)
3

1/3 where c > 100. Then a.e. Gn,p eA. I

Note the small gap within which the exact threshold has been located. It is difficult to

speculate what the exact threshold value is.

Note also that the simplest 'local' condition that every vertex lies on at least one triangle

is not almost always sufficient, in contrast with many other graph properties (see [l]).

Note also that n"""*/(3*~6) is the exact threshold for containing any fixed maximal planar

subgraph with k vertices. The techniques used to prove Theorem 1 can be modified to

prove another problem. Recall that a graph is outerplanar if it can be drawn on the plane

with every vertex incident with the outer face. A maximal outerplanar graph is one in

which every face other than the outer one is a triangle. An n-vertex maximal outerplanar

graph has 2n — 3 edges.

Let B denote the property of containing a maximal outerplanar graph spanning the

entire graph. Thus G = (V, E) € B if there exists a set 1.

Theorem 2.

(a) Let p = - ^ 5 where c = (e/4)1/2 . Then a.e. Gn,p £ S.

(b) Let p = c(log
1/)

2
1/2 where c > 8\/2. Then a.e. Gn,p EB. I
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The proofs of these two theorems are given in the next two sections.

§2. Proof of Theorem 1

Let Mn be the number of maximal planar subgraphs with n labelled vertices. Then

P(GntPeA)<MnpZn~6.

As almost every maximal planar graph has a trivial automorphism group, Tutte's classical

formula [3] implies that

if n is sufficiently large (in fact, for all n). Hence, if p = —fr^ where c = (27C/256)1/3 then

P{GniPeA)<l/n

and this proves part (a).

To prove part (b) we need to define some specific triangulations that we can construct

with high probability. Let T = T\ be the 19-vertex triangulation of Figure 1. Note that T\

can be constructed from the outer triangle by a sequence of 'vertex insertions'. By this we

mean take a face JP = xyz and then insert a new vertex v into F by adding edges vxy vy,

vz. Thus we can start with outer triangle, insert the vertex labelled 2, insert the vertices

labelled 3 into 3 of the faces and so on. We refer to these insertion as operations 2, 3, 4

and 5.

Ti is the first in a sequence 2 \ , T%,... ,2* , Ti is obtained from T\ by 'inserting'

a copy of T\ into each of the 6 'special' faces labelled 3, 4, 5. After insertion the vertices

inside each special face are numbered as they are in T\ and so T2 has 36 special faces.

In general Tk is obtained from Tk-i by inserting a copy of Ti into each special face and

numbering the vertices as above. Tk has the following statistics :

(i) 6* special faces;

(ii) tk = I (16 • 6* - 1) vertices;

(iii) maximum degree 18.

(We obtain (ii) from the recurrence t* = t*-i + 6 f c - 1 • 16.)



Now define T*,;, i = 0,1,2,3,4 as follows : Tk,o = T* and 2*,; is obtained from T^i-i by

applying Operation t + 1 to those subgraphs contained in each of what was a special face

of T*. Thus Tk,4 = Tjt+i. It is convenient to let To denote a triangle.

Suppose now that p = c{l°*$/S where c = 100. Let Pl satisfy 1 - (1 - P l ) 1 0 = p so

that pi > p/10. We can assume that Gn>p is the union of 10 independent copies of GntPl.

Let 2?o5 JE?I, 2?2, • • • > #9 denote the edge sets of these copies.

Let k0 == max{fc : 2tk - 4 < | n } = [logs ( ^ (^p + l l ) ) J .

We try to construct a spanning maximal planar subgraph of Gn>p as follows : we will

fill in the details of each step of the construction later.

A : construct To using edges in Eo;

B : for k = 0 to k0 — 1 do

for j = 1 to 4 do

construct a copy of Tkj from the copy of Tkj-i via operation j and using only

edges from Er, r = ((k + l)j mod 8) + 1

C : augment the copy of Tk0 to a spanning triangulation by vertex insertion using edges

from Eis only.

We must now show that we can complete the construction above with probability

l - o ( l ) .

A : Gntw has a triangle if it; = w(n) —* oo. Since np\ ~> oo we can be sure that A succeeds

with probability 1 — o(l).

B : the process of constructing Tkj from Tkj-i involves trying to insert a vertex into each

of at most \n triangles. Suppose that the vertices outside of our copy of T^j-i comprise

Vi(kyj) and the vertices of the triangles into which we are trying to insert vertices from

Vi(fc> j) comprise V2(k9j) CVi(k- 1,/). We are examining edges from Er. The previous

time we used edges from JEV, the vertices in V2(k,j) were outside of the then current

triangulation Tk-2j-i an<i s o the Er edges between Vi(fc,j) and V2(k,j) are unconditioned

by the history of the construction to this point.

To show that Tkj can almost always be constructed from Tkj-i we define a bipartite

graph BP(k,j) with vertex partition Vi{k,j) and S(k, j) = { faces F of Tkyj-i into which

a new vertex is inserted in the creation of Tkj}. BP{k,j) has an edge vF whenever



v G Vi(k,j) is adjacent in Gr = {[n),Er) to all vertices of F G S(k,j). Note that P(vF G

Er) = pf but that these edges do not appear independently.

To complete the analysis of B, we need only prove that

(1) P(BP(k,j) contains a matching of size \S(k,j)\) = 1 - o ((logn)""1).

Because the edges of BP(k,j) do not appear independently we again resort to the
7

trick of partitioning the edge set. Thus now let Er = \J 2?r|t- where the edges of ETji are

chosen independently with probability p2, 1 — (1 — P2)7 = Pu V* > ^ - Consider now the

graph r(fc,j) which has vertex set S(k,j) and an edge F1F2, Fi, F2 G S(k,j), whenever

JFI, F2 share a vertex in T(k,j — 1). It is not hard to see that the maximum vertex degree

in F(fc,y) is at most 7 (when j = 3 and accounting for special faces sharing a vertex.) It

is therefore possible to colour these triangles using only 7 colours so that triangles of the
7

same colour are vertex disjoint. Let us now decompose BP(k,j) as |J BP(k,j\i) where
t=i

BP(kjj\i) has the t-coloured triangles S(k,j\i) C S(k,j), all of Vi(k,j) and an edge vF if

t; is adjacent to all vertices of F via edges of colour i?r>t-. Edges in BP(k,j\i) now appear

independently with probability p | > P3/703. We can now use the result of Erdos and

Renyi [2] (see also [1, pp. 155-159]) concerning the threshold for a perfect matching in a

random bipartite graph. Actually, we only need a matching from S(k,jyi) to Vi(k,j).
3

By choice of fco, |Vi(fc,j + 1)| > \ always and ^ 5 • ^ > logn and so we can

first match S(k,j\ 1) to a subset Vi(A;,j,l) of Vi(fc,j) and then S(kyj\ 2) to a subset of

Vi[k9j)\Vi[k)j,l) and so on, with sufficiently high probability (observe that the domi-

nant failure probability in Erdos and Renyi's result comes from isolated vertices.) This

completes the analysis of B.

C : since the maximum degree in Tk0 is 18, each face of Tk0 shares a vertex with at most

51 other faces. Also Tk0 has at least ^ faces and so it is possible to find ^2 v e r t e x disjoint

faces in Tfc0. Furthermore, if a triangulation contains a vertex disjoint faces and a vertex

is inserted into one of these faces then the new triangulation has at least a vertex disjoint

faces.

Let t/i, V2>..., vm, m < n be an enumeration of the vertices outside of Tk0- We will

try to insert vt-, i = l , 2 , . . . , m sequentially into the current triangulation using edges in



J5io only. Since there are always at least ^ v e r t e x disjoint faces available, we have

P(3 i : Vi cannot be inserted ) < n(l - p\)n/612

< n~1'2

and this shows that we can complete the construction with high probability and completes

the proof of Theorem 1.

§3. Proof of Theorem 2

The proof of part (a) is similar that of part (a) of Theorem 1. Let 0n be the number

of maximal outerplanar graphs with n labelled vertices. Then

P(Gn>p € B) < 0nP
2n-3.

But it is known (e.g. Lovasz [3, Problem 39 of Ch. l]) that

and so if p = (e/4n)x/2 then

2n-3

n,P eB)< ±— On < »

and this proves part (a).

For part (b) we provide a construction which can be shown to work with high proba-

bility. We once again assume that GntP is given as the union of a number of independent

copies of C?niPl, here four will suffice so that 1 — (1 — pi)4 = p and p\ > *-. Let £0, 2?i, #2>

Ez denote the edge sets of the these copies. We can now go straight into the construction.

A : construct a triangle AQ using edges of JEo only.

B : fork = 0 to kt = [log2 f J - 1 do

At this point Ak is an outerplanar subgraph of Gn>p containing n* = 3 • 2h vertices.

Let the edges of the outer face of Ak be ci, C2,...,enjfe where ct, ef+1 are adjacent i =

l,2,...,njb — 1. Let Fi = {ei,C3,cs,...} and F2 = {e2,C4,e6,...} be the odd and even

indexed edges respectively.

for j = 1 to 2 do



construct the bipartite graph BP'(k,j) with vertices FjU{[n]\V(Akj-i)) [Ak,o =

Ak, Ak,i is constructed 'during' j = 1 and A*^ = -Afc+i-]

There is an edge ve, v £ V(Akj-i), & £ /y whenever v is adjacent to both endpoints

of e by edges in Ej.

If BPf(k9j) contains a matching of size |Fy| then we can use this matching to add \Fj\

vertices to Akj—i in an obvious way. See Figure 2.

C : augment Akl to a spanning maximal independent outerplanar graph using edges from

Ez only.

We must now show that we can complete the construction above with probability

l - o ( l ) .

A : as for A in the previous section.

B : the edges of BP'(k,j) occur independently with probability p\ > ^g. We can apply

the result of Erdos and Renyi as before since |F(Ajt,y-i)| ^ f by definition of k\.

C : Let Vij V2?--->vm be an enumeration of [tt]\V'0Afc1). For t = l , 2 , . . . , r n we try to

find an edge on the outerface of the current triangulation for which both endpoints are

adjacent to V{ using edges in Ez. Since V(Ak1) has at least ^ vertices and the Ez edges

incident with vt* are unconditioned by the previous history we have

P{3 %: Vi cannot be added) < n( l - P i ) n / 4

= 0(1) for c > 8\/2

This completes the proof of Theorem 2.

§4. Final Remarks

The reader will observe that the constants in parts (b) of the theorems can easily be

reduced but that it is not clear how to increase those in parts (a).

The main question left open by this paper is the whereabouts of the exact thresholds.

One can also ask for the threshold for the existence of spanning planar subgraphs with an

edges, a > 1. The argument of parts (a) shows that the threshold is at least n"1/* and

it seems likely that the constructive method we have used can be adapted to attack this

problem.
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