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A hyperbolic theory for the evolution of plane curves

Morton E. Gurtin. Carnegie Mellon University
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1. Introduction.
It is the purpose of this paper to develop a theory for the

evolution of plane curves which is based on balance laws for mass and
momentum in conjunction with constitutive equations appropriate to a
phase interface, and which leads to hyperbolic evolution equations. We
have three reasons for presenting such a theory:

(1) The form of the balance laws is not at all obvious, and, in
fact, represents an intriguing problem in continuum mechanics whose
solution requires a nonstandard conceptual framework.

(2) The parabolic theory for the evolution of plane curves, which
in its simplest form is based on the curve-shortening equation^

v = K (1.1)

(relating the normal velocity v and curvature K) has been extremely
successful, providing geometers with great insight; to our knowledge
there is no hyperbolic version of (1.1).

(3) Crystals of helium in their melt exhibit interfacial
oscillations2 referred to as melting-freezing waves. Motivated by
Andreev and Parshin's [AP] classical discussion of such waves, a
continuum model was developed in [G4]3 for a rigid crystal in an
incompressible,4 inviscid melt. This model, which we shall refer to

^f., e.g.. Brakke [B], Gage and Hamilton [GH], and Grayson [Gr], as veil as the references

therein and those cited In Section 5 of [AG].
2Such vaves vere predicted by Andreev and Parshin CAP] In 1978 and exhibited

experimentally by Keshishev, Parshin, and Babkin [KPB] 1n 1979.
3us1ng. as a basis, a framevork developed In [G1,G2,G3,AG,GS].
4Andreev and Parshin [AP] note that the phase velocity of melting-freezing vaves 1s
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as the CM model, leads to a free-boundary problem for the evolution
of the interface; coupling between the interface and the melt renders
this problem difficult, and it would seem useful to have a simple
model in which the motion of the interface is governed by a hyperbolic
analog of (1.1).

We here develop a theory in which only the interface is endowed
with mathematical structure-.5 we model the inertia of the melt
through an "effective" inertia for the interface, with the melt
considered only as a source of atoms for the crystallization process;
and we characterize this inertia constitutively through the
corresponding interfacial mass density. As in the CM model, we
restrict our attention to a purely mechanical6 theory, and, to avoid
the geometric complications that accompany evolving surfaces, to a
two-dimensional theory in which the interface evolves as a plane curve.

Because of the presence of an "effective inertia", the balance
laws for mass and momentum are not obvious. We derive these laws as
a consequence of the requirement that the mechanical energy
production — the rate at which the kinetic energy is changing minus
the power expended by capillary forces — be invariant under Galilean
changes in observer.

Constitutive equations, of the form derived in [G1] as a
consequence of thermodynamical arguments, are assumed for the
relevant interfacial fields. These equations and the underlying balance
laws yield a single equation for the evolution of the interface:

p(8)V + j3(8)v = ty(8) + V'(8)]K - F. (1.2)

Here \j*(8), p(8), and J3(8) are the energy, effective density, and

generally veil belov the sound velocity.
5TMs is the point of view taken by Grower, Kessler, KopHk, and Levine [BK] and Ben-

Jacob. Goldenfeld, Langer, and Schon [BG], vho use equations Involving only the Interface to

model Interfacial evolution governed by bulk diffusion.
6As noted by Marls and Andreev [MA], for superconductors such as solid helium and Its

melt, solidification Is "essentially a mechanical process, rather than a thermal process as

it is for ordinary materials".



kinetic coefficient for the interface; F is a constant which
represents the driving force for crystallization; v* is the time
derivative of v following the interface; 8 is the angle to the
interface-normal m. We assume that

\ji(8) + \j>"(8) > 0. p(8) > 0 (1.3)

for all values of 8; this ensures that when (1.2) is combined with
standard kinematical conditions for the evolution of a plane curve, the
resulting partial differential equations are hyperbolic.

The equation (1.2) with J3(8) = O, linearized about a flat interface
at equilibrium, reduces to the classical wave equation:

( ^ f ) o h x x - h t t. (1.4)

This equation has oscillatory solutions of the form

h(x,t) = C e 1 X x e ' i w t (1.5)

with

y YV
w2 = . (1.6)

As noted by Andreev and Parshin [AP] (cf. [G4]), the CM model also has
solutions of the form (1.5), but there w2 is proportional7 to X3.
rather than X2 as predicted by (1.6). Thus the agreement between the
simple model developed here and the more detailed CM model is at
most qualitative; because of the simplified modelling of inertia, this
is not unexpected.

For completeness we discuss the form the basic equations take
7Th1s proportionality of w* to X3 is confirmed by the experiments of Keshishev,

Parshin, and Babkin [KPB].



when the interface is an evolving surfdce in IR3. There (1.2) is
replaced by

p(m)V + J3(m)v = ^(m)K + \j>mm(m).L - F, (1.7)

where L is the curvature tensor, K = trL is twice the mean
curvature, and ^mm(m) is the second gradient of \jj(m) on the

surface of the unit ball.
We solve the problem (in IR2 and IR3) of radially symmetric

crystallization of an isotropic crystal in an infinite melt. If the phase
interface is initially at rest, then:
(i) for F > 0 the crystal melts completely in finite time;

(ii) for F<0 there is a critical radius Rcr1t := \ji/IFI

(Rcrit ••= 2\ji/IFI in IR3) such that a crystal of radius R(O)<Rcrit

melts in finite time, a crystal of radius R(O)>Rcr1t grows

unboundedly as t-»oo.
An analogous problem is discussed in [G4] for the CM model in IR3.
The results are qualitatively the same as those described in (i) and
(ii). In fact, if we identify F with the constant Wc + P - $ ( * + P) of
the CM model, where tyc and W are the crystal and melt energies,
£ is the ratio of crystal density to melt density, and P is the far-
field pressure in the melt, then the critical radii of the two theories
coincide. As would be expected, the two theories exhibit quantitative
differences: for example, during unbounded growth the radius grows
asymptotically as t2 within the present theory and as t within the
CM model.

Although the CM model does exhibit oscillatory behavior, it is not
clear whether or not shocks and other propagating discontinuities are
possible.8 To the contrary, such phenomena are generated within the
present theory. We study the propagation of fronts across which the
curvature is discontinuous. We show that, in the presence of
8Rogers [1989] shows that such phenomena are not possible within the linearized CM

theory.



anisotropy, fronts whose amplitude is sufficiently large and of the
right sign grow to infinity in finite time, strongly suggesting that the
interface develops a corner. Guided by other theories9 of hyperbolic
behavior, this result seems to indicate that there is global existence
of classical solutions of (1.2) for initial data that are both sufficiently
small and sufficiently smooth, but that smooth solutions corresponding
to large data develop singularities in finite time.

9Cf., e.g., Renardy. Hrusa, and Nohel [RHN].



2. Crystals.
We consider an infinite crystal lattice modelled as a two-

dimensional continuum, in fact as IR2. A crystal C is then a
compact subset of the lattice with boundary, dc, a smooth, simple
closed curve, dc represents the Interface between the crystal and
its melt; we write m(x) for the outward unit normal to dc and
define a unit tangent -t(x) so that U(x).m(x)} is a positively
oriented basis of IR2 (cf. Figure 1). We let ds denote the element
of arc length on dc and write fs for the derivative, sometimes
partial, of f with respect to arc length on dc (Our convention is
that arc length increase in the direction of I.) We then have the
Frenet formulas

m s = -K-t, l$ = Km (2.1)

with K(X) the curvature of dc. We define the angle 6(x), as a
smooth function of x, through

m = (cos8#sin8), I = (sin8,-cos8). (2.2)

Our goal is to model situations in which crystals grow or shrink
by processes such as solidification and melting. We therefore consider
crystals C(t) that evolve with time t, under the assumption that
dc(t) is a smooth evolving curve (in the sense of [AG]). We write
v(x,t) for the normal velocity of dc(t) in the direction m(x,t),
so that

v(x.t) - v(x,t)m(x.t) (2.3)

represents the velocity of dC(t). Fix t and X€dC(t) and (for T
sufficiently close to t) let y(x) denote the curve that passes
through x at time t and has



melt

interface

Figure 1

Sign conventions for interfacial motions



U"(T) = v(y(T).T)

dy(x)/dT; we use this notation for functions of time alone).
Then the normal time-derivative <t»'(x,t) (following dc(t)) of a
scalar or vector function *(x,t) is defined by

*«(x,t) = (d/dT)*(y(T),T)|Tst. (2.4)

The identities

8* = £°-m - -m°-<l = vs.

f = m8° = vs + Kv-t. ( 2 5 )

are standard.10

By an Interfacial chunk we mean a smoothly evolving curve
$Xt) with 4,(t)cdC(t) at each time t; we say that $,(t) evolves
normally if its endpoints x^t) and x2(t) evolve with the normal
velocity of the interface:

x/( t ) = vCx^O.t), x2'(t) = v(x2(t),t). (2.6)

For any function *(x,t) we write

I * = 4>(x2(t),t) - •Kx.UXt). (2.7)

d^(t)
We then have the identities11

10Cf.. e.g., [AG], eqs. (2.4), (2.6), (2.18).
11(2.8)2 is generally not true If the chunk does not evolve normally: an additional term Is

needed to account for the flux of 4> across d<j,(t) (cf., e.g.. [A6], eq. (2.34)).
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f* . J*sds,
4,(0 (2.8)

(d/dt)J$ds - / ( * • - <J»KV) ds.
4,(0 4,(0

For convenience, we will generally omit the argument t when writing
such integrals.

3. Capillary force. Inertia. Balance lavs.
3.1. Basic concepts.

We describe the micromechanics of an evolving crystal C(t)
by four functions of xedC(t) and t:

C(x,0 Interfacial stress,
b(x,t) Interaction force,
p(x,t) (effective) Inertial density,
r(x,t) mass supply.

C(x,t) represents the force within the interface exerted across x at
time t; i f we let 4,+ and 4,". respectively, denote right and left
neighborhoods of x in dC(t), then C(x,t) is the force exerted on
4," by 4,+. Concerning the remaining functions, b(x,t) represents the
net force exerted on the interface by the bulk material of the crystal
and the melt; p(x,t) gives the inertial density of the interface;
r(x,t) represents the rate at which mass is supplied to the interface.

We characterize forces by the manner in which they expend power,
inertia by the manner in which it affects kinetic energy. In particular,
we assume that C(x,t) and b(x,t) expend power through the
velocity12 v(x,t), and that it is this velocity that is appropriate to
the kinetic energy of the interface. Precisely, given any normally-
evolving interfacial chunk 4,(0,

(3.1)

12Cf. [61], eq. (1.3) and §3.



is the kinetic energy of

Hrlvl2ds. (3.2)
a,

is the rate at which kinetic energy Is supplied to 4,(0, and

JC-v + {b-vds (3.3)
da, a,

is the power expended on ai t) . We will refer to

&(a,)(0 = d/d t ) {£ fp lv l 2ds} - ±jr lv l2ds - |C-v - Jb-vds (3.4)
a, a, da, a,

as the mechanical energy-production at time t. The f irst law of
thermodynamics requires that this quantity be balanced by the addition
of heat and by changes in the internal energy.

i 3.2. Invariance under observer changes. The capillary balance
law. Balance of Interfacial mass.
A basic assumption of our theory is that

the mechanica] energy-production be invariant
under Galilean changes in observer;

precisely, we assume that, given any normally-evolving interfacial
chunk a,(t) and any time t.

l v + C |2 ( l s - J C - ( v + c) - J b - ( v + c)ds
4, 4, d4, 4, (35)

= (d /d t ) { i jp lv l 2 ds> - }(Nvl2ds - Jc-v - Jb-vds
a, 4, da, a,

for any constant vector c. Here c is the velocity defining an
arbitrary observer change, and underlying (3.5) is the tacit assumption
that p, C. r, and b be invariant, while v transform to v + c.
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If ve expand the left side of (3.5) in terms of c, we find that

c-{(d/dt)Jpvds - Jrvds - JC - fbds} +
4- 4- d$, 4 (3.6)

i|cl2{(d/dt)Jpds - Jrds} = 0;
4 4

since c is arbitrary, this yields balance of interfadal mass

(d/dt)fpds = Jrds (3.7)
4- 4

and the capillary balance lav

(d/dt){Jpvds> - Jrvds = JC + Jbds. (3.8)
4 4 d4 4

The relations (3.7) and (3.8) are required to hold for every normally-
evolving interfacial chunk 4(0; using (2.8). we have the local
balance lavs:

p* - pKV = r,

p v = Cs . b. O-«

We have taken the normal velocity as the kinematic variable that
characterizes the manner in which power is expended: tangential motion
does not expend power. As is consistent with a "constraint" of this
type, we leave as indeterminate the tangential component of the
interaction b, and therefore concern ourselves only with the normal
component of the capillary balance law (3.9)2.

Using the local balance laws (3.9) in conjunction with (2.8), we
can write the mechanical energy production (3.4) in the simple form

-JC-vsds. (3.10)

For convenience, we decompose the interfacial stress into normal
and tangential components:
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C = at + |m (3.11)

with cr(x.t) the surface tension. |(x,t) the surface shear. Then,
writing

b = b.m (3.12)

for the normal interaction, the normal component of (3.9)t becomes

= | s + CTK + b. (3.13)

4. Constitutive equations.
To state the constitutive equations that form the basis of our

theory, we associate, with each evolving crystal, an interfacial
energy \p. As constitutive equations we allow the interfacial
energy, the interfacial stress, the inertial density, and the normal
interaction to depend on the orientation of the interface through a
dependence on the angle 8, and we allow the kinetics of the interface
to affect the normal interaction through a dependence on the normal
velocity13 v:

y - y(8). C = C(8), p = p(8), b = b(8,v). (4.1)

We assume that:14

(i) \j>(8) generates the interfacial stress through the thermodynamic
relation15

C(8) = ^(6H(8) + V(8)m(8); (4.2)
13Here v represents the normal velocity of the Interface relative to the crystal, so that

v Is trivially Invariant under observer changes.
14Cf. [G1.AG], where (4.2) and (4.3) (with ft»p(6,v)iO) are derived using a

thermodynamic argument.



(ii) the normal interaction is given by a relation of the form

b(8,v) = -F - J3(8)v, (4.3)

with F a constant;
(iii) the following inequalities hold:

p(8).\j,(8).J3(8) > 0. (4.4)

Trivially, (4.2) implies that o* = cr(8) and £ = £(8) with

<r(8) = ^(8), |(8) = ^'(8). (4.5)

Concerning (4.3), the constant F represents a driving force for the
crystallization process, while -j3(8)v represents a "drag force" which,
by (4.4)3 opposes interfacial motion.16

A consequence of (3.9) and the constitutive relations (4.2) and
(4.3) is the balance law for energy}1

(d/dt){J(iplvl2 + y)ds + Farea(C)} = {Jrlvl2ds - Jj3v2ds, (4.6)
ac t ac dc

with dC = dC(t). This result allows us to identify the last term as
energy dissipated during crystal growth. The derivation of (4.6) is not
difficult. First of all we have the standard relation

(d/dt)area(C) = Jyds. (4.7)
ac

as well as the following consequences of (2.5), (4.2), and (4.3):

16Cf. [G1], Remark 4.1.
17Genera1izing (7.6) of [AG]. The integral involving y over dC plus Farea(C)

represents a basic Gibbsian functional for the statical theory of crystals (cf. [G2], Sect.
3.2).



C-Vs = \j/(8)8° - \J,(8)VK = \p(8)w - IJJ(8)VK:.

bv = -Fv + J3(8)v2. ( 4 8 >

The relation (4.6) follows from (3.4) and (3.10) with $, = dC (so that
in conjunction with (2.3), (3.12), (4.7), and (4.8).

5. Partial-differential equations.
The equations of our theory are balance of mass (3.9)t and the

normal capillary-balance (3.13), in conjunction with the constitutive
relations (4.2) and (4.3). Balance of mass yields

p'(8)vs - p(8)KV = r. (5.1)

This equation determines the rate at which mass must be supplied by
the melt; since we place no restrictions on r, (5.1) does not restrict
the evolution of the crystal in any way.18 On the other hand, (3.13), by
virtue of (2.5)3, (4.3), and (4.4), yields the evolution equation

p(8)V + J3(8)v = [v>(8) + V'(8)]K - F. (5-2)

which forms the basis of our theory. Note that, for an isotropic
interface, \j», j3, and p are constants and (5.2) reduces to

pv ' + J3v = \j)K - F. (5.3)

When the crystallization process takes place in IR3, the
interface evolves as a surface, rather than as a curve, but apart from
notation the theory is identical. Following the notation and
terminology of [61], we write Vs u r f for the surface gradient,
L = -V s u r f m for the curvature tensor, and K = trL for twice the
mean curvature. Then the only essential changes regarding the theory
18The melt serves only as a source of atoms for the evolving crystal; [64] considers a

more detailed structure for the melt.



presented thus far are the replacement of ip(8) by \jj(m), |3(8) by
J3(m). p(8) by p(m), and (5.2) by

p(m ) v + J3(m)v = t^(m)K + y m m(m)-L - F. (5.4)

where ^mm(m) is the second gradient of \ji(m) on the surface of the

unit ball.
Consider now the general theory in R2 as defined by (5.2).

Locally, the interface may be represented as the graph of a function
y = h(x,t), provided the x and y axes are chosen appropriately.
Consider the choice indicated in Figure 2 (with orientation such that
arc length increases with increasing x) and let

p = hx. (5.5)

where a subscript denotes partial differentiation with respect to the
corresponding variable. Then

ptanS = -1 (5.6)

and, considering v as a function v(x,t).

v = htsin8, K = hxxsin38, / 5 7 j

V = vt + vxvcos8 = sin8[htt + 2sin8cos8hthtx + (htsin8cos8)2hxx].

Thus, defining

B(8) = J3(8)/p(8), G(8)

D(8) = F/[p(8)sin8],

the evolution equation (5.2) takes the form



Figure 2

Sign conventions when the interface

is a graph y = h(x,t)



h t t + B(8)ht + 2sin8cos8h th tx = s1n28[G(8)-(htcos8)2]hxx - D(8),

(5.9)
with 8 a function of hx through (5.5) and (5.6).

The equation (5.9) is hyperbolic if and only if the discriminant
A of the coefficients of its principal part is strictly positive. Since
A = 4sin28G(8), it is clear from (4.4) that (5.9) is hyperbolic if and
only if

0. (

We will assume that (5.10) Is satisfied for all angles of interest.

Remark. The inequality (5.10) is essentially a condition of static
stability for the interface: it follows from the requirement that
straight line-segments locally minimize interfacial energy.19 When
the inequality (5.10) is reversed the partial differential equation (5.9)
is elliptic and yields unstable behavior for standard initial-value
problems. There is no compelling physical reason to suppose that
(5.10) is satisfied; in fact, material scientists often consider energies
which violate (5.10) for particular ranges of 8 (cf. Gjostein [G], Cahn
and Hoffman [CH]). Since \p(8)>0 and periodic, at worst we can have
an equation which is elliptic for some but not all values of 8. Such
elliptic intervals can be treated by introducing corners in the evolving
crystal (cf. [AG]).

6. Some simple solutions.
6.1. Radial solutions for an isotropic crystal.

In view of (5.3) and (5.4), isotropic, radially symmetric crystals
evolve according to

pR"(t) + J3R-(t) + x^R(t)"1 = -F. (6.1)
19Cf. Herring [H], Frank [F], Gjostein [G], Gruber (as referred to In [G]). Taylor [T], Fonseca

[F], Angenent and Gurtin [AG].



with R(t) the radius of the interface. Assuming that R'(O) = O and
appealing to the phase portrait for (6.1), it is not difficult to verify
that:
(i) for F > 0 crystals melt completely in finite time,
(ii) for F<0, crystals of radius R(O)<Rcr1t := y/ IFI melt in finite

time, while crystals of radius R(O)>Rcr1t grow unboundedly
as t-»co.

These conclusions are true whether or not p = O (provided we drop the

initial condition R'(O) = O for p = O). Further, for F<0 and
R(O)>Rcr1t, R(t) grows (for large t) as t when p = O and as t2

when p * 0.

6.2. Small oscillations about a flat Interface.
Assume that

F = 0. (6.2)

Then flat interfaces (K = 0 ) describe equilibrium solutions of the
general anisotropic equation (5.2). We now consider interfacial
motions which are close to equilibria of this form. Precisely, we
assume, without loss in generality, that the interface has angle
8 = IT/2 at equilibrium and consider interfacial motions represented as
a graph y = h(x,t) with h and its derivatives "small". In view of
(5.6), the angle 8(x,t), to f irst order in h, is given by

8 = (TT/2) + hx. (6.3)

Therefore (5.9) linearized about this equilibrium has the form

n t t + B o h t - G o
h x x . < 5 - 4 )
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where the subscript zero signifies that the corresponding quantity is to
be evaluated at 8 = u/2. The equation (6.4) has the solution

w2 = G0X
2 - ?, $ - B o /2 . (6-5>

which represents damped oscillations of the interface.

6.3. Curvature waves advancing on a flat Interface.
We continue to assume that F = O. We consider a front of

discontinuous curvature advancing into a flat interface (with 8 = IT/2) .

Precisely, we consider an interface described by a graph y = h(x,t) and
assume that there is a curve K in the (x.t)-plane which has the form
x = £(t) and is such that:20

(W1) h(x.t) = O for x> |(t);
(W2) h and its first derivatives are continuous across ¥., but second

and higher derivatives of h suffer possible jump discontinuities
across M,;

(W3) [ K ] * 0.

Here and in what follows, [g](O denotes the jump in a function
g(x,t) across *C:

[g](t) = g(|(t)+O.t) - g(|(t)-O.t). (6.6)

Because of (W3), we will refer to V. as a curvature wave.
Standard kinematical conditions21 give

[h t t ] - -c[h x t ] = c2[hxx], (6.7)

2 0 ln continuum mechanics second-order waves of this type are usually termed acceleration

waves. We refer, e.g., to Sect. 2 of [CG] for a discussion of such vaves.
21Cf., e.g., [CG], eq. (2.5).
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where

c = d|/dt (6.8)

is the velocity of propagation. Further, by (W1) and (W2),

8 = T I / 2 and ht = hx = 0 on fc; (6.9)

hence (5.6) and (5.7) yield

[8 t] = [h x t ] , [K ] = [ h x x ] . (6.10)

As before, we write <j>0 for a function $(8) evaluated at 8 = I T / 2 .
The jump in (5.9) across it then yields

c2 = Go = ty + * " ) 0 /p 0 . (6-11)

and the velocity of propagation is constant.
We define the amplitude of the wave by

a = [K] = [ h x x ] ; (6.12)

a standard identity22 then yields

2c2da/dt = [h t t t] - c[hx x t l (6.13)

Next, we differentiate (5.9) with respect to t and take the jump in
the resulting equation; because of (6.9) and (6.10). this yields

[h t t t] + B0Chtt] = G0[hxxt] • (G')0[hxx][hxt]. (6.14)

In deriving (6.14). we used the fact that, by (W,). [hxx8 t] = [h x x ] [ 8 t l

The relations (6.7) and (6.11)-(6.14) yield a nonlinear differential
22Cf., e.g.. [C61 eq. (2.10).
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equation for the amplitude:

2da/dt + Boa + [(G')0/c]a2 » 0. (6.15)

For an isotropic crystal, G(8) is independent of 8 and (G')0 = 0.
In this case

a(t) = a(O)e"?Bol (6.16)

and curvature waves decay.
The results are far more interesting when the crystal is

anisotropic. Assume that (G')o * 0. Then (6.15) has the explicit
solution

a(0)[1 - A]
a(t) = .

1 - Ae^o
1 A e (6.17)

A = 1 - X/a(O), X = - Boc/(G')O.

An elementary analysis of the solution (6.17) leads to the following
conclusions:

(i) if A = 0, then a(t)sa(0);
(ii) if 0<A<1. then a(t)->oo in the finite time

t w = 2(lnA)/B0; (6.18)

(iii) if A<0 or if A>1, then a(t)-*O monotonically as t-»oo.

The result (iii) asserts that if, initially, the jump in curvature is
sufficiently large and of the right sign, then this jump becomes
infinite in finite time, strongly suggesting that the interface
develops a corner: [8] # 0.
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