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1. BACKGROUND. THE ANISOTROPIC EVOLUTION EQUATION

There are situations of interest for which the motion of a phase
interface is essentially independent of the behavior of the corresponding
bulk phases. One of the first to model such motions was Mullins [Mu], who
introduced the curve-shortening equation

V=K (1)

to study the planar motion of grain boundaries. Here V is the normal
velocity, with positive normal-direction outward from the boundary o0Q of
the grain Q=Q(t), and K is the curvature, with K<0 when 0Q is a
circle. The curve-shortening equation is a parabolic PDE with a large
literature (cf. Brakke [Br], Sethian [Se], Abresch and Langer [AL), Gage and
Hamilton [GH], Grayson [Gr], Osher and Sethian [0S], Evans and Spruck [ES1-
3], Chen, Giga, and Goto [CGG], Giga and Sato [GS], Almgren, Taylor, and Wang
[ATW], Taylor, Cahn, and Handwerker [TCH]). As shown by Gage and
Hamilton [GH] and Grayson [Gr], a boundary curve with evolution governed
by (1), and of arbitrary initial shape, shrinks to a point in finite time, with
asymptotic shape a circle.

The curve-shortening equation also arises as an approximation to the
Landau-Ginzburg equation, a result established formally by Allen and Cahn
[AC) and Rubinstein, Sternberg, and Keller [RSK], and then rigorously by
Barles, Soner, and Souganides [BSS], Evans, Soner, and Souganides [ESS],
Chen [Ch], and DeMottoni and Schatzman [DS]. |
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Mullins's theory was generalized by Gurtin [GI] and Angenent and
Gurtin [AG]] to include anisotropy and the possibility of a difference in bulk
energies between phases. The resulting equation is

bV « gOK - U, @

where ©, the normal-angle, is the counterclockwise angle from a fixed axis
to the outward normal of dQ. Here '

g(e) - f(e) +f'(e) 3

with f(©)>0 the interfacial energy; U is the relative energy of the
material in Q; and b(©)>0, the kinetic modulus, is a material function.
The presence of the angle B reflects anisotropy, and the particular form in
which f appears in (3) is a consequence of thermodynamics. In fact, a
consequence of (2) and (3) is the thermodynamic inequality

(d/dt){If(e)ds « Uarea(Q(t))} * - Ib(e)Vads, (4)
30Q(t) 3Q(t)

showing that b(e)V? represents the rate of enérgy dissipation, per unit

,length.
In writing (2) we have neglected the dependence of b(e) on V, a

dependence not ruled out by thermodynamics and considered important by
material scientists (Owen, Schoen, and Srinivasan [OSS], Hillert [Hi]). The
behavior of (2) with b(e) replaced by b(©,V)>0 remains an open problem.

2. BACKWARD PARABOLICITY. CORNERS FACETS AND WRINKLINGS
When

9(e) >0 | ©)

(2) is parabolic, and the underlying behavior, which is not much different
than that for V=K, iswell understood (Angenent [Ag], Chen, Giga, and Goto
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[CGG), Soner [So], Barles, Soner, and Souganidis [BSS]). What makes (2)
nonstandard is the possibility of interfacial energies that satisfy

g(e) <0 (6)

for certain ranges of the angle &, for in these ranges the evolution
equations are backward parabolic. Such energies are not mathematical
curiosities: material scientists give strong arguments in support of
interfacial energies that satisfy g(8)<0 for some values of & (Gjostein [Gj),
Cahn and Hoffman [CH)).

Let

N(8) = (cos®,sin®), T(8) = (sin®,~-cosd), (7)

so that T and N represent a unit tangent and normal to the interface
when © is its normal-angle. In analyzing energies with backward-
parabolic angle-intervals an important concept is the Frank diagram ¥,
which is the polar diagram of f(8)"! (the curve defined in polar
coordinates (r,8) by r=£(8)"1); ¥F islocally strictly convex where g(8)>0
and locally strictly concave where g(8)<0. The importance of the Frank
diagram becomes evident when one considers the homogeneous extension {
of f to R2\{0): f(aN(8)) = xf(8) for all angles & and all «>0. Then ¥ is
the one-level set of f, so that convexity properties of f are related to
those of F. In particular, { is convex if and only if the region enclosed by
F is convex. Further,

g(8)= T(8) [VVIN(e)IT(8), (8)

which, to some extent, explains the form of (3).

A method of overcoming (6), introduced by Angenent and Gurtin
[AG1], is to allow the interface to contain corners (jumps in angle) that
exclude the backward-parabolic ranges of ©. In the presence of a corner
the evolution equation (2) does not by itself characterize the motion of the
interface; there is an additional condition requiring that the capillary force



C(e) = f(8)T(8) + f'(8) N(8) is continuous. (9)

Thus for a corner corresponding to an angle jump from ©; to &, we must
have

C(e,) = C(s,), (10)

which has an important consequence: the tangent line to ¥ at €, is also
a tangent line to ¥ at o,; thatis, & and &, must be angles of
bitangency for the Frank diagram [AG1).

Let C(¥F) denote the convexification of ¥ (the boundary of the
convex hull of ¥F), and let F(8), the convexified energy, denote the
energy whose Frank diagram is C(¥F), so that f(8)2F(8). Then angles #
with f(8)=F(8) satisfy g(8)20; we refer to such angles as globally stable;
we refer to angles © with f(8)>F(8) as globally unstable; and we refer to
each maximal interval (8,,6,) of angles & with f(8)>F(8) as a globally
unstable angle-interval. Then each globally unstable angle-interval
(84,8,) has &, and &, as angles of bitangency for F and hence as
admissible angles for a corner.

Wrinklings consisting of facets with normal angle ©; alternating
,with facets of normal angle &, are solutions of (2) and (9) provided the €,
and @, facets evolve according to =-U/b(e,) and V=-U/b(e,),
respectively. Such wrinklings evolve as a rigid body with velocity w

defined by
w-N(8,) = -b(8,)"1U, w-N(8,) = -b(e,)"1U (11)

[AG1]. One also has the possibility of solutions involving curved sections with
globally stable normal angles separated by wrinklings.

Local well-posedness of evolutions consistent with (2) and (9) —
ensuing from initial curves consisting of globally stable sections separated by
appropriate corners — is established by Angenent and Gurtin [AG2).

A limitation of the procedure described above is that it is inapplicable
for an initial curve 0Q(0) with globally unstable normal angles. The next

section confronts this difficulty.
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3. RELAXED EQUATION FOR INITIAL DATA WITH GLOBALLY UNSTABLE
NORMAL ANGLES
Consider an initial curve 9Q(0) that has normal angles in a globally
unstable interval (8,,8,). We formally consider I' as being infinitesimally
wrinkled, with each infinitesimal facet having either &; or &, as normal
angle, an idea due to Cahn and Taylor (private communication with the
author in 1990). The expansion

N(e) = u,(8)N(8,) + u,(8)N(8,), eec(e,,8,), (12)

then defines, for each i, the density u(8) of 8,-facets at any point of T
with normal angle ®, with p,(8) measured per unit length of T.

The use of infinitesimal wrinklings is formally equivalent to replacing
the interfacial energy f(8) by the convexified energy F(®), since

F(8) = p (e)f(e,) + u,(8)i(8,), 0e(8,,08,). (13)

A further reason for the use of such wrinklings is that the initially wrinkled
curve is more stable than the original curve:

JF(e)ds = [f(e)ds. (14)
0Q(0) 9Q(0) :

If we allow 00(t) to infinitesimally wrinkle in the same manner, we are
led to the conclusion that the effective interfacial energy for the evolution
should be F(8), so that the effective energy modulus is given by

G(e) = F(8) + F'(e). (15)

The next question we must answer is: What is an appropriate kinetic
modulus for the infinitesimally wrinkled curve? As noted in the paragraph
containing (11), if T'(t) is a finite wrinkling whose facets have &, and e,
as normal angles, then T(t) evolves as a rigid body with constant velocity
w (although TI'(t) may shrink or grow tangentially). Since w depends on



the particular wrinkling only through €, and 6,, it seemns reasonable to
suppose that infinitesimal wrinklings with ©; and @&, as normal angles
also evolve with rigid velocity w, a supposition equivalent to replacing the
kinetic modulus b(®) between &, and €, by an effective modulus B(®)
that agrees with b(e) at ©; and &, and has polar diagram between o,
and ©, a straight line:

B(e)™! = p,(e)b(e,)"! + p,(8)b(e,)? (16)

We are therefore led to an effective kinetic modulus B(8) for all €:
B(8)>0 is continuous; B(8)=b(8) for all globally stable angles ©; the polar
diagram of B(®) is a straight line over angle intervals with f(8)>F(e).

This procedure, introduced by Gurtin [G2], yields a relaxed evolution

equation
B(e)V = G(8)K - U (17)

with B and G the effective moduli corresponding to f and g. It is

important to note that:

(a) The relaxed equation coincides with the original equation (2) at globally
stable angles #.

(b) Because of the construction of G(8), no matter how smooth f(8) is,
G(8) will generally be discontinuous whenever the angle & changes
from globally stable to globally unstable; this property of G(®) renders
the relaxed evolution equation nonstandard.

(c) G(8)=0 whenever ® is globally unstable, so that (17) degenerates to
hyperbolic at globally unstable angles. »

The relaxed evolution equation (17) is studied by Gurtin, Soner, and

Souganides [GSS]; their main results are a theorem of existence and local

uniqueness and a global comparison theorem for level-set solutions, a

theorem established independently and Ohnuma and Sato [OSa).

Because of the lack of continuity of G as well as the degeneracy of

(17) when G=0, [GSS] discuss this equation within the weak framework of

viscosity solutions. This approach to geometric equations, initiated by Evans

and Spruck [ES1] and Chen, Giga, and Goto [CGG), and given an intrinsic form



by Soner [So] and Barles, Soner, and Souganidis [BSS], is based on the use of

level sets to characterize evolving curves, an idea due to Ohta, Jasnow, and

Kawasaki [OJK], Sethian [Se], Osher and Sethian [0S], and Barles [Bal. The

difficulties concerning (17) result from the discontinuous nature of G; the

degeneracy of the equation at angles © with G(8)=0 causes no great
difficulty; were G continuous, most of the results would follow from those
in [CGG].

[GSS] establishes the following results of physical interest:

(1) Viscosity solutions of (17) not only satisfy (2) away from corners, but,
what is most interesting, such solutions automatically satisfy the force
balance (11) across corners.

(2) If (e,,8,) is a globally unstable angle-interval, then, as shown by [AG1],
a wedge whose sides have normal angles &; and &, and evolve
according to b(8,)V=-U and b(8,)V=-U, respectively, is a solution of
the basic equations (2) and (9). [GSS] shows that the foregoing choice of
the effective moduli G and B is the only possible choice if all such
wedges are to be viscosity solutions of (17).

(3) For U<O0 and for the initially enclosed region Q, large enough,
t-1Q(t) converges to a dilation of the Wulff region for 1/B(8), a result
conjectured in [AG1] and proved by Soner [So] for G>0 and B with a
convex polar diagram, and extended in [AG2] to general B>0.

4. FOURTH-ORDER THEORIES. REGULARIZED EVOLUTION EQUATION

Another method of analyzing behavior within the unstable range of
angles is to regularize the evolution equation (2). Such a regularization,
proposed in [AG1], was developed by DiCarlo, Podio-Guidugli, and Gurtin [DPG]
and yields the equation

B8V = g(8)K - U - e(Kys + $K3), (18)

where s denotes arc length and €>0 is a small material parameter. The
chief ingredient in the derivation of (18) is a constitutive dependence of
interfacial energy on curvature, an idea that traces back to Gibbs [Gi] and
Herring [He).



The equation (18) is very much like the Cahn-Hilliard equation (cf.,
[CHi)), with the angle-intervals on which g(8)<0 playing the role of
spinodals. When linearized about a flat interface at angle ®=mn/2, (18) has
the form

Uy = O Uxy = BUyyyx (19)

with §>0, but with «<0 when ©=1n/2 lies in a spinodal. The linear
equation (19) is exactly the equation used by Cahn [Ca] in his treatment of
spinodal decomposition.

A somewhat similar model (Davi and Gurtin [DG]), based on ideas of
Mullins [M2], allows for heat conduction within the interface with heat flow
driven by changes in curvature; granted isotropy, it leads to the fourth-
order parabolic equation

BV = - oK, (20)

with o,p>0 material constants. This equation has been used by Mullins
[M2] with great success to model the formation of grooves at intersecting
grains on exposed surfaces.

There are almost no analytical or numerical results for the evolution
‘equations (18) and (20). In particular, it would be of great interest to use
(18) to study the behavior of the interface within an angle interval that
defines a corner of the unregularized equation (2).
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