
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



A Nonlinear Elliptic Equation
Arising from Gauge Field Theory

and Cosmology

X. Chen
S. Hastings

J. B. McLeod
University of Pittsburgh

Y.Yang
Carnegie Mellon University

Research Report No. 93-NA-014

April 1993

Sponsors

U.S. Army Research Office
Research Triangle Park

NC 27709

National Science Foundation
1800 G Street, N.W.

Washington, DC 20550



University Liljmnicb

Jarnegie Mellon university
riusburgh, PA 15213-3890



A Nonlinear Elliptic Equation Arising from
Gauge Field Theory and Cosmology

X. CHEN*, S. HASTINGS*, J. B. MCLEOD*AND Y. YANG*

Abstract

We study radially symmetric solutions of a nonlinear elliptic partial differ-
ential equation in R2 with critical Sobolev growth, i.e., the nonlinearity is of
exponential type. This problem arises from a wide variety of important areas
in theoretical physics including superconductivity and cosmology. Our results
lead to many interesting implications for the physical problems considered. For
example, for the self-dual Chern-Simons theory, we are able to conclude that
the electric charge, magnetic flux, or energy of a non-topological JV-vortex so-
lution may assume any prescribed value above an explicit lower bound. For the
Einstein-matter-gauge equations, we find a necessary and sufficient condition
for the existence of a self-dual cosmic string solution. Such a condition imposes
an obstruction for the winding number of a string in terms of the universal
gravitational constant.

AMS subject classifications (1991): 34B15, 35J60, 81T13, 83F05*

1 Introduction

The purpose of this paper is to present a fairly systematic study of the radially
symmetric solutions of the equation

An + p{\x\)q{eu) = AnN6{x), x € R2, (1.1)

where TV is a positive integer and 6(x) is the Dirac distribution concentrated at
the origin. The equation (1.1) arises from several important areas in theoretical
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physics and its solutions are recognized as representing N non-interacting vortices or
particles superimposed at the origin when a critical condition, called the BogomoPnyi
condition, is fulfilled by the coupling parameters. In the context of the classical
Ginzburg-Landau theory for low-temperature superconductivity, the solutions of (1.1)
realize topological defects in a superconductor known as the phenomenon of partial
destruction of superconductivity by a magnetic field. In the context of the self-dual
Chern-Simons model discovered recently by Hong, Kim and Pac (1990) and Jackiw
and Weinberg (1990), the solutions of (1.1) give rise to topological and non-topological
vortices carrying both electric and magnetic charges which are useful or even crucial
to several issues in theoretical physics such as high-temperature superconductivity,
the quantum Hall effect, and the proton decay problem in grand unified theories of
forces. In the context of cosmology, the solutions of (1.1) are cosmic strings in the
coupled Einstein-matter-gauge theory (Comtet k Gibbons 1988), (Linet 1988, 1990),
and are believed to be produced in relatively later phase transition stages of the early
universe after the Big Bang and are responsible for the galaxy formation (Kibble
1980), (Vilenkin 1985). Furthermore (1.1) also appears when one uses the method
of Bogomol'nyi (1976) or Jackiw and Weinberg (1990) to get stationary neutral or
charged vortices in the self-dual Abelian Higgs or Chern-Simons system in (2+1)
spacetime dimensions with more general potential functions (Lohe 1981), (Lee & Nam
1991), (Yang 1991). These profound physical origins of (1.1) motivate our present
analytic work.

Since in the Ginzburg-Landau model, the non-interacting superconducting vor-
tices are completely understood (Jaffe & Taubes 1980), (Wang & Yang 1992a), we
shall focus our attention in the study of (1.1) to the other areas mentioned above.
For the Chern-Simons system, topological vortices are better understood and can ac-
tually be constructed through a numerically efficient method (Spruck & Yang 1991).
On the other hand, the existence of non-topological vortices has only been proved in
the radial case (Spruck & Yang 1992a) and the determination of the electric charge,
magnetic flux, angular momentum and energy of such a solution has remained open.
In this paper we shall solve this open problem. In fact we are able to prove the exis-
tence of non-topological Chern-Simons vortices that can realize any prescribedcharge,
flux, angular momentum or energy values above an explicit lower bound. This result
confirms not only the fractal nature of those physical quantities for non-topological
vortices conjectured in the work of (Jackiw & Weinberg 1990), (Jackiw, Pi & Wein-
berg 1990), (Jackiw & Pi 1991), but says also that we actually have a continuous
spectrum to realize them. Such a result seems to be quite unexpected. Another



interesting result is that we are able to prove that radially symmetric topological
vortices are uniquely determined by the vortex number N. For solutions without
radial symmetry, the uniqueness still remains open. For the cosmic string solutions
of the Einstein-matter-gauge equations, the first existence theorem was established
in (Spruck & Yang 1992b) by the shooting argument used in (Spruck k Yang 1992a)
and the total vortex or string number N has to verify a certain restriction. Here we
obtain a necessary and sufficient condition for the existence of a finite-energy solu-
tion. Our condition imposes an explicit upper bound for N (the winding number of a
string) in terms of Newton's universal gravitational constant, G, which excludes the
existence of solutions with large N numbers. This is the second unexpected result.
Besides, we shall also prove the existence of a class of solutions that approach the
asymmetric vacuum expectation value at infinity. Solutions of this type have been
rather elusive to obtain by other methods. All these solutions are regular. Note that
the major difference between the solutions of our problem and those constructed in
the recent work of Smoller, Wasserman, Yau and McLeod (1992) is that their solu-
tions are spherically symmetric with the absence of matter field while the ones found
in the present paper are cylindrically symmetric with matter coupling. Our method
here is based on a shooting argument for a reduced boundary value problem defined
in the entire R. The shooting data are given at — oo which yield a clear understanding
of the structure of the problem.

A brief outline of the paper is in order. In Sect. 2 we recall the self-dual Chern-
Simons system and the Einstein-matter-gauge equations and introduce all necessary
physical quantities. In Sect. 3 we set up the mathematical problem to be studied in
the paper and state our main results. The conditions imposed on the functions p and
q in (1.1) come from the physical problems discussed in Sect. 2. In Sect. 4 we present
our detailed proofs. In Sect. 5 we state some of the interesting physical implications
of our solutions.

2 The Physical Models

The purpose of this section is to introduce the model equations and physical
quantities to be investigated in the paper.

S.I. The Chern-Simons Vortices.
Let </> be a complex scalar field, called the Higgs field, and Aj (j = 1,2) a vector

gauge field. Both <f> and Aj are assumed to be defined in R2. Let Dj<f> = dj<f> — iAj<f>



be the gauge-covariant derivative and Fj* = djAk - dkAj the magnetic field induced
from Aj. Then the energy density for the stationary solutions of the self-dual Chern-
Simons theory is (Jackiw k Weinberg 1990)

where K > 0 is a constant. The Chern-Simons Gauss law implies that the electric
charge density p obeys the relation p = KFI2. The self-dual solutions of the model are
governed by the following Bogomol'nyi type equations (Jackiw k Weinberg 1990):

= 0,
x € R2. (2.2)

Using the elliptic Lp-theory in (2.2) and the finite energy condition /^2 £dx < oo
in (2.1), we can derive the boundary condition (Spruck k Yang 1991)

|CP(X) | —*• 1 or I Y H X ) | •—• u a s | x | —• o o .

The former is called topological which gives rise to quantized magnetic and electric
charges, etc., while the latter, non-topological (Jackiw k Weinberg 1990), (Jackiw, Pi
k Weinberg 1990), (Jackiw k Pi 1991). We shall show in this paper that, in contrast
to topological solutions, non-topological solutions can carry arbitrary charges and
energies above a certain level.

The first equation in (2.2) says that, locally, <j> is the product of a complex analytic
function and a non-vanishing function. Thus the zeros of <j> are discrete and all have
integral multiplicities. We will be interested in a solution of (2.2) so that the origin
is the only zero of <j> and the multiplicity of the zero is an arbitrary integer, N say.
Such a solution describes N vortices clustered together. It is straightforward that the
substitution u = In |<£|2 reduces (2.2) into the elliptic equation (Jackiw k Weinberg
1990)

Au = -^eu(eu - 1) + 4*N6{x), X € R2. (2.3)

2.2. Self-Dual Strings in the Einstein-Matter-Gauge Theory.
Let <7Ml/ be the metric tensor of a four-dimensional Minkowskian spacetime with

signature (—h ++) , R^u the Ricci tensor, and R the scalar curvature. Then the

Einstein tensor takes the form
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The standard 1/(1) matter-gauge Lagrangian in the BogomoPnyi coupling is de-

fined in the expression

c = Ip-'V'J^nv + \srwMW + \(\<t>\2 -1)2,

where, again, ^ is a complex scalar matter field, D^ = d^—iA^ the gauge-covariant

derivative, A^ a gauge vector field, and FMI/ = d»Av — dyA^ the electromagnetic field.

The Einstein-matter-gauge equations are

r-D^r^\\D^\) = \(\<t>\2-i)<t>,

y/\9\

where g is the determinant of the metric {g^t,}, G the universal gravitational constant
which is of the order 1O~40, and

the energy-momentum tensor of the matter-gauge sector.
We assume from now on the string ansatz that

ds2 = ,

= -dt2 + dz2 + gikdx'dxk, j , fc = 1,2,

where < = x°, 2 = x3, {^jk} is the metric tensor of a two-dimensional Riemannian
manifold M, and that AM, ^ depend only on the coordinates on M and

Ap = (0 ,0 ,J4I ,J4 2 ) .

Then T^v verifies

J. 00 "^ ^ j •* 33 ^ "^^1 **03 = Oj "̂  -* 31 "̂  ̂ 9

where

i ^ ) - + i(|^|2 - I)2



is the energy density of the matter-gauge sector. Besides, if we use K to denote the
Gaussian curvature of the two-manifold (M, {gjk}), the Einstein tensor is simplified
under local isothermal coordinates into the form

r* /** is
"""LJOO = ^ 3 3 = A,

GMl/ = 0 for other values of /x, i/.

Denote by Vj the covariant derivative with respect to the metric {gjk} and J* the
current vector

Then, in terms of the skew-symmetric Levi-Civita tensor tjk with C12 = \f\g\, we have

|2 - 1)) (F?k> + \eM\4>\2 - 1))

which suggests the following curved-space version of the Bogomol'nyi equations

Dj4> + \t)Dk<t> = 0 ,

x € M. (2.6)

From (2.6) it follows that Tjk = 0 (j, fc = 1,2). Thus the Einstein equations become

a single scalar equation

K - 4TTG Vjie^Jk) = 0, x € M. (2.7)

It is straightforward to examine that a solution triplet ({#,*}, >̂, {Aj}) of the coupled
system (2.6)-(2.7) also verifies the full Einstein-matter-gauge equations (2.4). Such
a solution is called a self-dual cosmic string.

In local isothermal coordinates, it is easy to show as in the Chern-Simons case
that the zeros of <f> of a solution of (2.6) are isolated and all have integral multiplic-
ities. Thus, if we are interested in solutions such that M is conformally flat, i.e.,
(Af, {gjk}) = (R2i {e^j*}), aad ^ a t ^ ^^ exactly one zero, which is the origin of R2,
with a given multiplicity N, then the substitution u = In \<f>\2 reduces (2.6) into the
equation



On the other hand, (2.6) also gives us

Thus the standard formula K = —(e~"AT/)/2 applied in (2-7) yields a curvature

equation for the unknown conformal factor rj:

At} = 2*G[cr'(eu - 1) - Aeu].

Combining the equations for u and 17, we see immediately that

is a harmonic function in R2. Therefore, if we are only interested in radially symmetric
solutions, H must be a constant. Without loss of generality, we take H = 0. We then
express TJ in terms of u. This procedure shows that the coupled equations for u and
rj are equivalent to the single equation

Au = \x\-4*NGe2rG{u-eU)(eu - 1) + 4TTN6{X), X € R2. (2.8)

The integer TV is called the winding number of the string solution.

2.3. Non-Interacting Vortices in Generalized Systems.

A special feature of these generalized models is that the Higgs potential functions
can be adjusted to realize in a wide range rather different magnetic excitation patterns
(Wang & Yang 1992b). The existence of topological solutions is well known (Lohe
& van der Hoek 1983), (Yang 1991). The method adopted in the present paper
applies also to the proofs of existence and analysis of properties of non-topological
solutions. For example, we mention here the radially symmetric generalized self-dual
Chern-Simons vortices governed by the equation

Au = -euh{eu) fl h{t) dt + AnN6(x), x € R2, (2.9)

where h(t) > 0 (f > 0) is a smooth function satisfying the typical conditions:
(hi) There holds h(l) > 0.
(h2) The set h~l(0) 0 [0,1] has measure zero.
Important examples of h are

tm, < > 0 , m = 0,1,2,..., (2.10)



and

(ZTW' '-0' a>0*
Clearly, when h = 1, equation (2.9) coincides with (2.3).
When the Chern-Simons Higgs system is considered in a symmetric gravitational

background, self duality may again be derived and the governing equation reads .

Au = p(|x|)ew(eu - 1) + 4*N6{x), x € R2. (2.12)

In the case that p(|x|) takes some special forms, the equation (2.12) is shown to be
integrable by SchifF (1991). We can apply our method to (2.12) as well to study
topological and non-topological solutions for a general metric function p.

3 Main Results

Now we shall study the radially symmetric solutions of the equation (1.1), which,
upon setting r = \x\ and u = u(r), is equivalent to

urr(r) + -ur(r) + p(r)q(e^) = 0, r > 0,
r

u{r) = 2N In r + 0(1) for small r > 0.

Under the new variables
t = lnr, U(t) = u(r), (3.1)

the problem becomes

U"(t) + f(t)g(U(t)) =0 , -oo < t < oo, (3.2)

U{t) = at + 0(1) as t -* -oo, (3.3)

where

Motivated by the physical models discussed in Sect. 2, we shall assume that /
and g satisfy the following conditions:
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(HI ) / , ^ € C>(R) and

/° |</(t)|«ft<oo,

(H2) /(•) > 0 in R, l i m , ^ f{t) = oo, 0(0) = 0, and g(u) > 0 for all u < 0.
(H3) f'(t) > 0 for all t € R.
(H4) There exists M > 0 such that g'(u) > 0 when u < -M and

(H5) If one defines

Mo = inf IM >o\J°° f{t)g{-Mt)dt < oo|,

then

In addition, for every c > 0,

(H6) Let G0{u) - / "^ <y(u;) dw. (Note that the assumptions (H2)-(H4) imply that

o9(u)du < oo, so that Go(u) is well defined.) Define

Then both f\ = limt—oo F\(t) and ^i = limw -̂oo G\(u) exist and are finite.
(H7) The functions F\ and G\ defined in the assumption (H6) satisfy F\(i) > f\

for all t € R and Gi(u) > gx for all u € (-00,0).
(H8) There exists 6 > 0 such that $'(u) < 0 in [ -M].

Our main result on (3.2)-(3.3) is the following.

Theorem 3.1. Consider the differential equation (3.2) with the boundary condition
(3.3) where a>0 is a given constant and /(•) and g(-) satisfy (H1)-(H3). Then

(1) There exists at least one solution of (3.2)-(3.3) such that u < 0, v! > 0, u" < 0
in R (the equal signs hold only if a = 0 ,̂ and

Km u(t) = 0. (3.4)



/ / in addition (H8) is fulfilled, then there exists a unique non-positive solution satis-

fying (3.4).

(2) Assume also (H4)-(H6). Then, for every /? in (a + 2/i$i,oo), there exists at

least one solution u of (3.2)-(3.3), such that u < 0, u" < 0 in R and

lim u'(t) = - £ . (.3.5)

If in addition (H7) holds, then for any non-positive solution of (3.2) satisfying

liminft—oo^(0 < 0, there exists some /? € (a + 2/i</i,oo) to achieve (3.5).

The proof will be given in the next section.
If we apply this theorem to the Chern-Simons equation (2.3), we obtain

Theorem 3.2. For TV > 0, a radially symmetric solution of (2.3) is either trivial,

u = 0, or negative, u < 0. Corresponding to each given N, there exists a unique

solution u = u(r) (r = |x|) satisfying

lim ulr) = 0. (3.6)

All other solutions observe the behavior u(r) —• —oo as r —> oo and

lim rur(r) = - /? , fi > 2N + 4. (3.7)

More importantly, for any f) € (27V + 4,oo), there exists at least one solution u

realizing the asymptote (3.7).

Proof. Under the transformation (3.1), the equation (2.3) becomes (3.2)-(3.3)

with
a = 27V, f(t) = ^ e 2 t , g(u) = e*(l - eu).

If u is a solution of (3.2)-(3.3) which becomes positive at some point t = to, then
the maximum principle says that u^to) > 0. Thus u"(t) > 0 and u'(t) > 0 for all
t > t0. In particular, eu^ — 1 > eu^ — 1 > 0, t > to- Now the equation gives us the
inequality

uf > 6eu, t > to,

where 6 > 0 is a constant depending on t0. Clearly u blows up in finite time t > t0.
To obtain non-positive solutions, we can modify g(u) for u € (l,oo) such that g

and g1 are uniformly bounded. Then, we can directly verify that such / and g satisfy
(H1)-(H8), and hence the assertions of the theorem follow from Theorem 3.1. D

For the Einstein-matter-gauge equation (2.8), the only physically interesting so-
lutions are those verifying u(r) < 0 (see Sect. 5.2). Thus we state
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Theorem 3,3. For non-positive valued radially symmetric solutions of (2.8), the

following statements hold:

(1) When 2vNG < 1, all the assertions of Theorem 3.2 are valid provided that we

replace 27V + 4 by 2(1 - *NG)/TCG.

(2) When 2vNG > 1, there exists a desired solution if and only ifnNG < 1.

(3) When 2vNG = 1, there are no non-positive radially symmetric solutions,

although there exists a unique (up to a scaling) radially symmetric solution, whose

range fills R.

Proof. Under the transformation (3.1), the equation (2.8) becomes (3.2)-(3.3)
with

a = 2 7 V , / ( * ) = c 2 ( i - 2 i r N G ) ^ g ( u ) = e \ l e ) =
2 7 r G d u

(1) Clearly, when 2*NG < 1, (H1)-(H8) hold with fx = 2(1 - 2*NG) and gl =
1/2TTG, and therefore the first assertion of the theorem follows from Theorem 3.1.

(2) When 2nNG > 1, we make a transformation from t to — 2, obtaining a similar
equation (3.2) with f(t) = t2^NG^1 whereas (3.3) is replaced by lim^ooti'^) =
—2N. In this case (H1)-(H8) are valid. Hence, if there exists a non-positive radially
symmetric solution of (2.8), then a = l im^-oo^ exists and is non-negative, where
u = u(t) is the corresponding solution of (3.2)-(3.3). In fact, the existence and
finiteness of a is trivial from (H1)-(H8). If a < 0, then u gives rise to a symmetric
solution of (2.8) which becomes positive when r > 0 is sufficiently large. Hence, there
exists a non-positive solution of (2.8) if and only if 2N € (a + (AKNG — 2)/7rG, OO)

for some a > 0, or equivalently, irNG < 1.

(3) When 2irNG = 1, the equation (3.2) becomes

with the boundary condition u'(—oo) = 2N. Multiplying both sides of the differential
equation by u' and integrating over (—oo,t) yield

u"(t) = 47V2 - J L e * ^ - " ) = 27V(27V - e^e^'N) = ((N, u)

since 2irG = l/N. Note that suptt€R(u - c") = - 1 and infjv>0(A^ln(27V)) = - l / 2 e ,

so that

<Z(N,u) = 2N[exp (jjNln(2NJ) - exp (-^(u - c"))] > 0

11



for all N > 0 and u € R. Therefore, there are no non-positive solutions. The only

solution is implicitly given by

«(*) 1

where c is an additive constant. D

Remark 3.1. Theorem 3.3 (2) states that there are no non-positive radially

symmetric solutions when irNG > 1. However, since g{u) = e2*G(u~et4)(l — eu) is

uniformly bounded, one can find solutions whose ranges are R. Solutions of such a

type do not have a finite energy as will be seen in Sect. 5.2.

For the generalized Chern-Simons equation (2.9), we have the following result

concerning a sub-class of h:

Theorem 3.4. Consider the non-positive radially symmetric solutions of (2.9) where

N > 0 is a constant. Assume that the function h is smooth in a neighborhood con-

taining [0,1] and is positive in (0,1]. Then the assertion (1) of Theorem 3.2 holds.

In addition, if

exists, then for any /? € (2JV + 4/io,oo), the equation (2.9) admits at least one negative

radially symmetric solution satisfying (3.7). Furthermore, if h(t) satisfies

&h(s)ds S*h(s)ds + J}h(s)ds ^ w.wnn
~7T77\ o ri Li \J > ft°' V t € ' ° ' lh

th{t) 2fth(s)ds
then the assertion (2) of Theorem 3.2 is true provided that we replace 2N + 4 by

Consequently, when h is given by (2.10) or (2.11), (3.8) and (3.9) hold with

h0 = 1/(1 + m) (in the case (2.10)) or h0 = 1 (in the case (2.11)). Therefore all the

assertions of Theorem 3.2 are valid if we replace 2N + 4 by 2N + Ah0.

The proof follows the same lines as that of Theorem 3.2.

Remark 3.2. For general h satisfying only (hi) and (h2) in Sect. 2.3, our

method can be applied to obtain existence of solutions of various kinds. In particular,

if h(eu) = 0 has roots in (—oo,0), then there are rich structures of the solutions, such

as solutions connecting —oc with any of the roots, besides the topological one and

the non-topological ones. For brevity, we shall not pursue this here.

Similarly, we may obtain various classes of solutions for the equation (2.12).

12



4 The Mathematical Analysis

In this section, we shall study (3.2)-(3.3) under the assumption (Hl)-(H8).

First we establish the existence of the initial value problem for the equation (3.2).

Lemma 4.1. Assume that (HI) holds. Then for any constants a € R and a € R, the
equation (3.2) admits a unique solution U such that when t —* —oo,

U(t) = at + a + o(l). (4.1)

Conversely, if U(t) is a solution of (3.2) in some interval, then it can be uniquely

extended to a global solution of (3.2) in R so that (4.1) holds for some a, a € R.

Proof. One can directly verify that U is a solution of (3.2) satisfying (4.1) if and
only if U verifies the integral equation

U{t) = at + a - f (t- s)f(s)g(U(s)) ds, t € R. (4.2)

Let T € R be a constant such that

T (T-s)\f(s)\ds (= f I'1 \f(s)\dsdSl) \g(u)\

Then one can use the Picard successive iteration method (with the initial iteration
£/(°) = at + a) to establish a solution in the interval (—00, T]. Since g is bounded, we
can extend U to a solution of (3.2) in R.

Next we prove the uniqueness. Assume that U1 and U2 are two solutions of (4.2)
in the interval (-00, T]. Then their difference U = Ul -U2 satisfies

\U(t)\ = \f_Jt-s)nS)(g(U\s))-g(U2(s)))ds\

< sup\g'(u)\[T (T-s)\f(s)\ds sup |t/(-)|

< i sup |t/(-)|, t < T,
2 (-oo,T]

by the assumption on T. Since the first equation implies that sup^.^jj \U{')\ < 00,
we obtain, upon taking the superum on the left-hand side of the above inequality, that
suP(-oo,T] I^OI = 0; namely, U1 — U2 in (—oo,T]. Hence, by the unique continuation,
U1 = U2 in R.

13



Finally we prove the last assertion of the lemma. Assume that U(t) is a solution of
(3.2) in some interval. Then since g(-) is Lipschitz and bounded, U can be uniquely
extended to a solution of (3.2) in R. Noting that j2.oe>\f(s)g{U(s))\ds < oo and
for any t < 0, U'(t) = U'(0) + S? f(s)g(U{s))d$, we know that a = lim^.oo U'(t)
exists and a = U'(0) + J ^ f(s)g(U{s)) ds. Consequently, for any f € R, U'(t) =

U(t) = 1/(0) + at - f ^ f(s)g(U(S))dsdSl. (4.3)
JO J-oo

Since
f f1 \f(*)9(U{»))\ ds = f (t- s)\f(s)g(U(s))\ ds < oo,

J—oo •/—oo •/—oo

we can write (4.3) as

1/(0 = a< + (f/(0) + 1° r f(s)g(U(s))dsdsl) - /* T f(s)g(U(s))dsdsi;
\ J-oo J-oo / J-oo J-oo

i.e., U satisfies (4.1) with a = f/(0) + /^/f^ f{s)g(U(s))dsdsx. This completes the
proof of the lemma. D

In the sequel, we shall study the behavior of the solution as t —> oo. To do this,
we shall fix the constant a > 0, and vary the parameter a € R. For convenience, we
denote by u(i, a) the solution given by Lemma 4.1 and denote by ; the derivative with
respect to t and by a subscript a the derivative with respect to a.

Define

.4+ = {a € R | there exists t € R such that u(t,a) > 0},

A0 = { a € R | u ( t , a ) < 0 , u'(t,a)>0 Vt € R},

A" = {a € R | u(*,a) < 0 Vt € R, u'(*0,a) < 0 for some t0 € R}.

Clearly, the following relations hold:

A°UA- = R, A+ DA0 = A0 nA~ = A+ nA' = 0.

Lemma 4.2. >l55ume ^ i ^ and fff^. T/ien, the following holds:
(1) Ifae -4+, then u' > 0 tn </ic 5C< {< | u{r,a) < 0 Vr € (-oo,t)}.
^ / / a € A0, then u" < 0 and u' > 0 tn R and limt_>oou(M) = 0.
(S) Ifae A", then u" < 0, u < 0 tn R and lim«^ooti(t9a) = -oo.
(4) A+ is open and if a > Mx s supu€R |p(tx)| jf^ |^/(^)| ds, then a€A+.
(5) A" is open.

14



(6) Let T be a positive constant such that

(«€$-i] *(u)) l^rir'" f{s) ds>l + a'
Then ( -00, - M i - 2 - aT) C A".

(7) A0 is non-empty, closed, and bounded.

Proof. (1) Let a € A+ and t0 be the first time at which u(<,a) hits the t axis from
below. Then u(t,a) < 0 for all t € (-00, t0). Hence, by the assumption (H2) and the
equation (3.2), u" < 0 in (—oo,t0)? which implies that u'(<,a) > 0 in (—00, *o)- The
first assertion of the lemma thus follows.

(2) If a € .4°, then by the assumption (H2), the equation (3.2) and the definition
of *4°, u" < 0 in R. In addition, 6 = limt—©o u{t, a) exists and is non-positive. If 6 < 0,
then limf—00 u"(*>a) = —#(&) limt—00/(0 = —00, which is impossible. Hence, 6 = 0.

(3) Since the only solution of (3.2) with U{t0) = U'(t0) = 0 is U = 0, it follows
that if a € A" then tz(-,a) < 0 in R, and therefore u"(-,a) < 0 in R; that is, u\t,a)

strictly decreases. Hence, limsupt_oot//(/,a) < 0. Assertion (3) of the lemma thus
follows.

(4) Since u(t,a) is continuous in a (Cf. the uniqueness proof of Lemma 4.1), if
ti(to,ao) > 0, then u(to,a) > 0 when a is close to ao; that is, A* is open. From (4.2),
tx(0,a) > a - A f i > 0 i f a > Mu so that (A/1,00) C A*.

(5) Assume that ao € A". Then there exists t0 € R such that u'(to,ao) < 0, and
consequently, u;(<o> a) < 0 when a is close to ao. In addition, by the third assertion
of the lemma, u(t,a0) < 0 for all t < to which also implies that u(t,a) < 0 for all
t < t0 and a close to ao. (When t is negatively very large, use (4.1); when t is
in a compact subset, use the continuity of the solution in a.) Furthermore, since
the assumption (H2) implies that any solution of (3.2) cannot take a local negative
minimum, u'(t, a) < 0 for all t > t0 as long as u(t0, a) < 0 and ti'(*(b a) < 0- Therefore,
tx(t,a) < 0 for all t > 10 when a is close to a0. That is, A" is open.

(6) We need only consider the case a > 0 since when a = 0, A~ = (—00,0). Let
a < -Mi - 2 - aT be any constant. From (4.2), u(a,t) < at + a + Mi < - 2 for
all t € (—oo,0]. Since u cannot take a local negative minimum, it follows that if
a £ ,4", then there exist positive constants Ti and T2 such that T2 < 7\, tz(i,a) < —2
in (-00, T2], u(r2,a) = - 2 , u'(T2,a) > 0, u(t,a) € [-2,-1] for all t € [T2,Ti],
u(Ti,a) = - 1 , and ti'(Ii,a) > 0. It then follows that u"{t,a) = -f(t)g{u(t)) < 0
for all t < 7\, which implies that u'(t,a) < a for all t € (-00,Ti]. Therefore,
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T2 > \u{T2,a) - u(0,o)]/o > [-2 - a - Mi]/a > T and Ty-T2 > I/a. Consequently,

= u\T2,a)-rf(s)g(u(s))ds

by the definition of T, which contradicts the assumption that u'(7i,a) > 0. Hence
a € A".

(7) Since R cannot be decomposed into two disjoint non-empty open sets, the

assertion follows from the conclusions (4)-(6). E

The following lemma deals with the monotonicity of the solution with respect to

the parameter a and will play an essential role in analyzing the three sets .A+, A0,

and A".

Lemma 4,3. Assume (H1)-(H3) and let T0(a) € [—oo, oo] be the first time such that

either iz'(t,a) > 0 or u(f,a) < 0 is violated, namely,

T0(a) = sup{r € [-00,00] I ti(t,a) < 0,u;(t,a) > 0 Vi € (-00,T)}.

Then
ua(t,a) > -u'{t,a) > 0 Vt € (-oo,r0(a)).

a
Proof. We need only consider the case T0(a) > —00. From (4.2) and the standard

ODE techniques on the continuous dependence of solutions on the the parameters,
one can show that v(<,a) = ua(t,a) exists, is smooth and satisfies

v"(a, t) = -f(t)g'(u{t, a))v{t, a), -00 < t < 00,

lim v(t,a) = 1, lim v'(t,a) = 0.

Define Ti(a) = sup{r € R | t>(-,a) > 0 in (-00, r)}. Then, by the last two equations,

7\(a) > -00.
Set w = u'. Then limt_>_oo w(<,a) = a and by (3.2), limt—00 w'(M) = 0.

It follows that the function C(f,a) = u?(f,a)/v(t,a), t € (-oo,Ti(a)), satisfies
limt-^-ooCr(t,a) = a and limt—00 C\t^ a) = 0. Since the function w satisfies the
equation w" = — f{t)g'(u)w — f'(t)g(u)) the method of variation of parameters yields

C'(M) = --277-T T ff(^a{t,a)g(u(s,a))ds Vt € (-00,2\(a)). (4.4)
t;^(t,aj J-00

Since / ' > 0, it follows that C" < 0 and therefore C < a in the set (-oo,Ti(a)); that
is, v(f,a) > ±;w{t,a) in (-oo^T^a)). Clearly this implies that T0{a) < Tx(a). The
lemma thus follows. •

The following statements characterize the sets ^4+, ̂ A0, and •A".
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Lemma 4.4. Assume (H1)-(H3). Then there exist constants ax and a2 satisfying

a\ < a2 such that

(1) A+ = (a2, oo);

(4) if in addition (H8) holds, then a\ = a2.

Proof. We need only consider the case a > 0 since in case a = 0, one can directly
verify that A+ = (0,oo), A0 = {0}, and A" = (-oo,0).

(1) Since A+ is open, it suffices to show that if (61,62) C >1+, then 62 € A*. For
any a € (61,62), let zo(a) be the first time the solution crosses the t axis. (Since
a > 0, limt-^_oott(<,a) = —00, so zo(a) is well defined.) Clearly, u(zo(a),a) = 0,
u'(zo(a),a) > 0, and by Lemma 4.2 (1), u' > 0 in (—00, zo{a)]. By Lemma 4.3,
ua > \u' > 0 in (—00, zo(a)]. Applying the Implicit Function Theorem to the equation
u(zo(a),a) = 0 then yields that zo{a) is a differentiate function of a in the set
(61,62) and ^zo(a) = — ua(zo(a),a)/u'(zo(a),a) < 0. Noting that (4.2) implies that
u < at + a in (—00, zo(a)], we then know that zo(a) > —a/a for every a 6 (61,62).
Thus 20(62) = lima//62 zo(a) exists and is finite. By continuity, u(zo(b2), b2) = 0. Since
u'(20(62), 2̂) = 0 would result in tt(J, 62) = 0, we also find that u\zo{b2), b2) ^ 0, which
implies u(t,b2) > 0 for t near 2:0(62). That is, 62 € -4+. The first assertion of the
lemma thus follows.

(2) It is sufficient to show that (61,62) € A' implies 61 € A~. For every a € A~, let
z\(a) be the point where u'(zi(a),a) = 0 and let m(a) = u(zi(a),a) be the maximum
of t/(-,a) in R. Since \i"(z\(a),a) < 0, the Implicit Function Theorem implies that
Z\(a) is a differentiate function on A'. Hence,

-j-m{a) = u'(zi(a),a)—zi(a) + ua{zi{a),a) = ua(zi(a),a) > 0 Va € (61,62).
da aa

Consequently

'6i + &2>
m(a) = sup u(a, t) < m I — - — J for all a € (6

tcR

By continuity, m(6i) = supt€Ru(t,6i) < m{^^) < 0. This implies that 6X €
A°UA~. However, by Lemma 4.2 (2), we can easily conclude that 6 £ A0. Therefore,
61 € A~. This completes the proof of the second assertion.

(3) Since ,4° = R \ (A* U,4~), the assertion follows from the first two conclusions.
(4) For every a £ A0 = [au a2], we have u' > 0 in R and, by Lemma4.3, ua{t, a) > 0

in R. In addition, since u is monotonic and limt-MX>t/(f,a) = 0, for each 6 > 0 there

17



exists a continuous function Ts{a) such that u(I>(a),a) = — 6 and u(t,a) > - 6 in

(T6(a), oo). By the assumption (H8), g'{u) < 0 when u € [-*,0]. Therefore

< = -f(t)g\u)ua > 0 V* > T6(a), a € [aua2).

Hence uQ is a non-negative convex function on [7i(o), oo), so that

ua(oo,a) = lim ua(f,a)

exists and ua(oo,o) € [0,oo]. Suppose that we have shown ua(oc,a) > 0 for all

a € [ai,a2]. Then, by Fatou's lemma,

ua(t,a)da> I ua(oo,a)da

which implies that oi = 02. It remains to show that t/a(oo,a) > 0 for all o € [01,02].
Suppose, on the contrary, that ua(oo,a) = 0 for some o € [oi,o2]. Then by (4.4),

the function C = u'/ua satisfies

C\t,a) = 577—T / ' f'(s)ua(s,a)g(u(s,a))ds
ul

a{t,a) J-00
1 f°

< ——\J f'(s)ua(s,a)g(u(s,a))ds->-00 as t -> 00,

which implies that C(t,a) < 0 when / is large enough. However, this is impossible

since C = u'/ua > 0 for all t € R. This proves that ua(oo,a) > 0 for all o € [oi,a2]

and thus the last assertion of the lemma follows. •

Now we want to find more detailed behavior of the solution u(<,o) when <->oo

and a € .4".

Lemma 4.5. Assume (H1)-(H4). Then for any a £ A",

(̂) U)
exists and is positive and finite.

Proof. Since for any a € «A~, u" < 0 in R, it follows that /?(a) exists and belongs
to the interval (0,00]. We want to show that f)(a) < 00.

Assume that f}(a) > M where M is the constant in the assumption (H4). Then
there exists a constant T > 1 such that u{t,a) < -Mt for all t > T. Since g'{u) > 0
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when u < — M, it follows that g(u(t,a)) < g(—Mt) when t > T. Consequently, for
all t > T,

u'(t,a) = u'(T,a)-£f{s)g(u(s,a))ds

> u'(T, a) - f f(s)g(-Ms) ds > u'(T, a) - f ° f(s)g(-Ms) ds.
JT JO

Therefore, £(a) < -u'(T,a) + /0°° f(s)g(-Ms)d$ < c». The assertion of the lemma

thus follows. •

Finally, we would like to find the range of /?(a) when a runs over the set A".
Note that the assumptions (H2)-(H4) imply that /°ooP(u) du is finite, so that we can
define

G0(u)= T g(w)dw. (4.5)
J-oo

Lemma 4.6. Assume (H1)-(H4) and let Go be defined as in (4-5). Then for any

a € A~, both the function f(-)g(u(-,a)) and the function ff{-)Go(u(-,a)) are in Ll(R)

and there hold the relations

0(a) + a = JRf(t)g(u(t,a))dt, (4.6)

I/?2(a)-ia2 = Jnf'(t)G0(u{t,a))dt. (4.7)

Proof. Since u'(t,a) = a - /loo/(05( t i(^°))A ^ J9 t 0, the identity (4.6)
follows from Lemma 4.5.

To show (4.7), we use the identity

) = f(t)G0(u(t,a))

which follows by multiplying (3.2) by u;. Integrating both sides over [—T, T] yields

r? un(t a) t = T l t=sT

/ f'(i)G0(u(t, a)) dt = 1^1 + f(t )G0(u(t, a))\ .

Since the integrand on the left-hand side is positive, to finish the proof, we need
only show that \imt-+±oof(t)Go{v>{t,a)) = 0. Since f(t) —> 0 as t —> — oo and Go(u)

is bounded, we have f(t)Go(u(t^a)) —• 0 as t —> —oo. It remains to show that

(u(t, a)) -> 0 as t -> oo.
Since ur > —fi(a) in R, for T sufficiently large so that u' < 0 when t > T, we have

G0(u(t,a)) = /U ^

= / g{u(s, a))u'(s, a)ds < P{a) f°° g{u(s, a)) ds.
•/OO Jt
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Hence, using the facts that / monotonically increases and that f(t)g{u(t,a)) €

we obtain that 0 < /(t)G0(ti(f,a)) < fi(a) ft°° f(s)g(u(s,a))ds - • 0 as t -> oo,
thereby completing the proof of the lemma. D

Lemma 4.7. Assume that (H1)-(H5) hold. Then the function /?(a) is continuous in

A".

Proof. Let ao € A' be any point and M, Mo be the constants in the assumptions
(H4) and (H5). First we claim that /?(a0) > Mo. In fact, if Mo = 0, there is nothing
to prove. Thus it suffices to assume Mo > 0. If the claim is not true, then since
u"(t,a) < 0, uf(t,a) > —Mo in R, which implies that there exists a positive constant
C such that u(t,a) > -C - Mot for all t > 0. Let T > 0 be a time such that
u(t,a>o) < - M for all t > T. Then

f(t)g(u(t,ao))dt > £ f{t)g{-C - Mot)

>

by the assumption (H5), contradicting the finiteness of /9(ao) and (4.6). This shows

that P(a0) > Mo.
Let 6 = (/3(ao) — Mo)/4. Then there exists a positive constant 7\ such that

(M0+6)Ti > M,u'(Tua0) < - (M o+26) , and u{Tua0) < ~(M0+26)Ti. Since u{a,t)

and u'(a,t) are continuous in a, uf(Tua) < - (M o + 6) and u{Tua) < - ( M o + 6)Ti

when a is close to a0. It then follows that, since u" < 0, t/(<, a) < — (Mo+6)t in [Ti, oo)
for all a close to a0. Let W(t) be the function defined by W(t) = supu€R \g(u)\f(t)

for t < Tx and W(t) = f{t)g{-(M0 + 6)t) for < > Tx. Then by the definition of Mo,
W € ^(R) . In addition, when a is close to a0, f(t)g{u{t,a)) < W(t) for all < € R.
The assertion of the lemma then follows from the Lebesgue Dominated Convergence
Theorem and the formula (4.6). D

In order to find the range of /?(a), we need find the behavior of /3(a) as a f ao =

supaeX-{a} and as a —• —oo.

Lemma 4.8. Assume (H1)-(H4) and let a0 = s u p a € ^ { a } . Then

lim j8(a) = oo.
a/o0
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Proof. Using the identity (4.7), we have

^ - ^ =
2 2 tT

> liminf liminf / f'(t)Go{u{t,a))dt
T-*oo o/oo Jo

= lim Ff\t)Go(u(t,ao))dt
T—*ooJo

> lim Go(u(0, a0)) f /'(<) * = 00
T—*oo Joo

where in the last inequality we have used the property that both Go(#) and u(-,ao)

are monotonic so that G0{u(t,a0)) > Gx>(u(0,ao)) for all t > 0. Since fi(a) > 0, the

assertion of the lemma thus follows. O

To study the behavior of 0(a) as a —> —oo, we need the following property of the
solutions.

Lemma 4.9. Assume (H1)-(H4) and for any a € A', let m(a) = sup t€pu(<,a).

Then

lim m(a) = —oo.
a—•-oo

Proof. Since when a = 0, m(a) = a, the assertion of the lemma is obviously true,
so that we need only consider the case a > 0.

Let a G A" be any constant and let z\(a) be the point such that u'(zi(a),a) =
0. Then (4.2) implies that u(t,a) < at + a which, in turn, implies that m(a) =
u(zi(a),a) < azi(a) + a; that is,

Since 0 < v! < a in (—oo,2i(a)), there holds the inequality

m(a) — 1 < u(t,a) < m(a) V< € (^i(a) — 1

so that

0 = u ' (* i (a ) ,a ) = a - / / (5 )p( t / (5 ,a ) )d6

< a — ( inf <
^w€[m(o)-l,m(a)]*

Therefore, by (4.8) and the monotonicity of / ,

inf fKu)) / /(
tA€[m(o)-ltm(o)] 7 Jzi(a)"l/a

(4.8)

inf y(u)) / / ( 5 ) r f5>( inf g(u)) / f "
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Since f(t) —* oo as t —* oo, the assertion of the lemma must hold. D

Now we are in a position to find the behavior of 0(a) as a —» —oo.

Lemma 4.10. Assume (Hl)-(H4) and (H6). Then

lim 0(a) = a + 2figl. (4.9)

If in addition (H5) holds, then (a + 2figuoo) C {0(a) | a €A~).

Proof. Let a < - 1 and T » 1 be any fixed constants. Then the identity (4.7)
implies that

^ - y = JRf'(t)G0(u(t,a))dt

= / f(t)G0(u(t%a))dl+rFl{t)G1(uitia))f(t)g(u(t,a))dt
J-oo JT

= IT f'(t)G0(u(t,a))dt + KindiuiT^a)) /~ f(t)g(u(t,a))dt
J-oo JT-oo

by the Mean Value Theorem, where T* € [T, oo). Using the identity (4.6) we have
that

£^- - y = F,(2-)G,(u(r,a))(a + 0(a)) + A(T,a) (4.10)

where

A(T,a) = f^ [f'(t)G0(u(t,a)) - F1(r)Gl(u(T\a))f(t)g(u(t,a))} dt.

By Lemma 4.9, lima—oo A(T\a) = 0. Solving fi(a) from the algebraic equation (4.10)
yields that

fi{a) = Fti^GMr.a)) + 0a + ̂ (r^G^u^a))]^ + 2A(7».

Therefore,

lim /3(a) = lim lim

a + F1(T')G1{u(T%a))Y

= Hm lim
T—*oo o-*—oo

by the assumption (H6) and Lemma 4.9. This proves (4.9).
Since when (H5) holds, p(a) is continuous in ,4", so that the range of fi(a) when

a runs over A' contains the set (a + 2/i£i,oo). D
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Lemma 4.11. / / (Hl)-(H7) hold then

Proof. We need only show that 0(a) > a + 2/iPi for all a € A~. In fact, if (H7)
holds, then

p\a) - a2 = 2 / R /'(*)G0(u(*,a)) > 2 / , * / R /(«)*(«(*,«)) = 2/iSi(/?(a) + a),

which implies that /?(a) > a + 2/i<ft. D

Clearly, Theorem 3.1 follows from Lemmas 4.1-4.11.

Remark 4.1. There is another way to prove part of Theorem 3.1 which in some
sense is easier than what we have presented. We outline it here. For each m > 0 and
T € R, let u = u(*, m, T) be the solution of (3.2) with the initial condition u|t=T = — m
and uf\t-T = 0. Then, one immediately knows that u takes its maximum at t = T,
u" < 0, and ^(m.T) = limt-iocV exists. In addition, 0 < a" = /^ / (O^C^) ^
sup^/Joo/W* w ^ c ^ implies that limj—ooa~(m,!T) = 0 uniformly for all nz > 0.
The proof of Lemma 4.5 yields that a+ is finite and a similar proof as that for part (6)
of Lemma 4.2 yields that limr—oo la^m, T)\ = oo for each m > 0. Thus for any given
positive constant a0, a topological argument shows that, for any M > e > 0, there
exists a continuum 7 in the (m,T) space intersecting the lines m = e and m = M,
such that any pair (m,T) on 7 satisfies a~(m,jT) = a0. The same proof as Lemma
4.10 shows that a+(m,T) -+ — (ao + 2/i<7i) when (m,T) is on 7 and m —» —00. Using
the explicit bound of a"", one knows that T on 7 is uniformly bounded from below,
which, together with the identity (4.7) and the fact that the solution can be close to
the t axis for an arbitrarily long period of time if m is small enough, (m, T) varies on
7, the value of a+ varies from —(QO + 2/102) to —00. This furnishes a proof of the
second statement in Theorem 3.1.

5 Direct Physical Implications

Let u be an arbitrary radially symmetric solution produced in either Theorem
3.2 or 3.3. It will be convenient to use z = x1 + ix2 to denote a point in R2. We
understand
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Set
<f>{z) = exp(\u(z) + iNaxgz),

V ' (5-1)
A\ (z) = — Re{id* In <t>], ^2(2) = — Im{i#* In </>}.

5.i. The Chern-Simons Model.

From a solution u obtained in Theorem 1, we can use (5.1) to construct an N-
vortex solution of the self-dual Chern-Simons equation (2.2). For any given /? >
2N + 4, let u be such a solution that (3.7) is fulfilled. Then it follows from (2.2),
(2.3), and (5.1) that the magnetic flux is

_ / _ JL

4TT

K2 JO

= n[\\mrur(r) — lim rur(r)] = 2?r7V +

The first term on the right-hand side equals to the flux of a topological JV-vortex
solution. The electric charge is just *c$. Furthermore, the energy density (2.1) has
the Bogomol'nyi decomposition (Jackiw & Weinberg 1990)

where Ejk is skew-symmetric with £12 = 1. On the other hand, in view of (5.1), we

have
\Djtf = 2u2

re\ r = |x|. (5.2)

Thus (3.7) gives us \Dj<j>\2 =O(r""(2+^) for large r > 0 and the integral over R2 of the
last term in the expansion of € vanishes. Therefore, by virtue of (2.2), we have the
total energy

In summary, we can state

Theorem 5.1. For given integer N > 0 and any 0 > 2N+4, the Chern-Simons sys-
tem allows a non-topological N-vortex solution which realizes the following prescribed
asymptotic decay properties

\Dj*\* = <Kr~«»% Fik=0(r-fi) for large \x\ = r > 0
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and the corresponding values of energy, electric charge, and magnetic flux

E = $, Q = K$, $

Moreover, the radially symmetric topological N-vortex solution is uniquely determined

by the vortex location.

5.2. Finite-Energy Cosmic Strings.

In Sect. 3, we remarked that (2.8) also permits solutions with positive values.
Here we show that such solutions cannot carry finite energy. In fact, we shall prove
that the original self-dual Einstein-matter-gauge equations (2.6)-(2.7) have a finite-
energy radial cosmic string solution with the winding number N > 1 if and only if
(2.8) has a negative radial solution (with the same N). As a consequence, we are
able to arrive at the important conclusion that the existence of a symmetric self-dual
cosmic string with winding number N is equivalent to the condition

2*NG ± 1, *NG < 1. (5.3)

This result is stated as follows.

Theorem 5.2. Consider the radially symmetric solutions of the equations (2.6)-

(2.7) so that the 2-surface is conformally flat, (M,{gjk}) = ( R M ^ j * } ) , and that

the zero of <f> is the origin ofR2 with multiplicity N > 1. Let K be the Gaussian

curvature of the surface. Then the finite energy condition

J Sevdx< oo, J K evdx<oo (5.4)

is equivalent to the bound \<j>\ < 1. In other words, there exists a symmetric cosmic

string solution with winding number N > 1 if and only if N satisfies (5.3).

Proof. Since a radially symmetric solution verifies the representation (5.1) with
u = u(r) (r = \z\) and u satisfies

V - 1), r>0,
(5.5)

limruf(r) = 2N
r * 0

(see (2.8)), where u = In |^|2, it suffices to establish the equivalence of (5.4) with

u(r) < 0, r > 0. (5.6)

25



Assume first that (5.4) is true. Let us verify (5.6).

Suppose otherwise that there is some r0 > 0 to make u(r0) > 0. Since u(r) < 0 for
r > 0 small, we may assume ro to be the smallest such number at which tz(ro) > 0.
Obviously u(ro) = 0. Because u(ro) cannot be a local minimum of u and r = ro
is an isolated zero of tx, we see that there exists some 6 > 0 so that tx(r) > 0 for
r € (ro, r0 + 6). The maximum principle prohibits the existence of an rr > r0 to make
u(ri) = 0. Thus u{r) > 0 for all r > r0.

As a consequence, we can strengthen the above observation by the statement
ur(r) > 0 (r > 0). In fact, if there were some rx > 0 so that ur(ri) = 0, then rx ^ r0.
Thus u(ri) < 0 if ri < r0 or u(ri) > 0 if r\ > r0. However, either case would violate
the maximum principle applied to (5.5).

Thus the equation (5.5) says that (rur(r))r > 0 when r > r0. Therefore rur(r) >
rotxr(ro) = o > 0 for all r > ro, which implies that

u(r) > a[\nr — lnr0], r > r0.

Using the expression (5.2), we find

| D ^ | 2 > 2a2rZara-2, \x\ = r > r0.

Recall the definition of £ in Sect. 2.2. Since S > \e^\Dj(f>\2, we arrive at

€ e^dx > 2* f°° C^Z'T*-1 dr = oo,
J

/ 2
JH

namely, the solution does not carry a finite energy.
Suppose next that (5.6) holds. Then, according to Theorem 3.3, either 2irNG < 1

or irNG < 1 < 2'KNG. Let us first deal with the former case. In this situation, a
negative solution will satisfy either (3.6) or (3.7) with /9 > 2(1 - irNG)/*G. We shall
now concentrate on (3.6) because the latter case has been worked out in (Spruck &
Yang 1992b).

Let u be a solution of (5.5) satisfying (3.6). Then (3.7) holds with 0 = 0 and
ur(r) > 0, r > 0.

Consider the comparison function

, r>0, (5.7)

where C > 0,6 > 0 are constants. Set w — u + v. Then

(5.8)
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where A = A(u) € [0,1]. Using the facts that 2vNG < 1 and u(r) -» 0 as r-» oo, we
can find some ro > 0 so that

Inserting this information into (5.8) gives the elliptic inequality

wrr + -wr < 62r~2u;,62r~2

Choose C > 0 in (5.7) sufficiently large so that

w(r0) = ti(r0) + Crob > 0. (5.10)

Applying (5.10) to (5.9) and using the boundary behavior w(r) —> 0 (as r —• oo), we
get w(r) > 0, r > ro. In summary, there holds the decay rate estimate

- C(b)r~b < u(r) < 0, r > 1. (5.11)

Note that, in (5.11), b > 0 is arbitrary. Thus u vanishes at infinity faster than any
power function of the type r"° (a > 0). Therefore, for any a > 0, e"(r) - 1 =O(r~°)
for large r as well. Inserting this information into (5.5), using (3.7) (with /? = 0), and
integrating, we obtain the same type of decay rate for ur:

Ur(r) = -- r p*-**NGe2wGlu-e*)(eu _ j) df> = Q^-a) for a n y fl > Q (5

r Jr

In terms of u, we easily obtain from Sect. 2.2 the expressions

rf = -47riVGlnr + 2TTG(U - cv), /i: = 7rG[u2e^ + (eu - I)2],

Thus, in view of u < 0, we see that the 2-surface where the strings reside always has
a positive Gaussian curvature and, as r —> oo, there hold the following estimates for
the physical fields

ev = 0 (r- 4 *" G ) , M2 - 1, |£>^|2, Fjk, K = O ( r - ) , (5.13)

where a > 0 is arbitrary. Consequently (5.4) is verified.

Finally, we assume vNG < 1 < 2xNG. Then a negative solution u of (5.5) will
satisfy (3.7) with 0>O. If 0 > 0, we easily derive the estimates as r —• oo:

e\ Fjk = CXr-2^2"-"3)), M2 = O(r-"), \Dj<j>\2, KJ> = O(r-<2+">). (5.14)
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However, K > nG/2 (say) at points far away from the location of the string. This
fact implies that the 2-surface is not asymptotically Euclidean.

On the other hand, if ft = 0, then ur(r) > 0 for all r > 0 because rur(r) is a
decreasing function in view of the property u < 0 and (5.5). Thus limr—«> u(r) exists
and is non-positive. Applying this fact to the integral in (5.12) yields directly the
bound

rur(r) = CKr2*1-2*7^)) for large r > 0.

Therefore we arrive at the estimates at |x| = r = oo:

e\ Fik, KtP = O(r~4*"G), \tf = 0(1), \D^ = O(r~2^NG-»). (5.15)

Both (5.14) and (5.15) lead to (5.4). D
Remark 5.1. The expressions (5-13)—(5.15) give us the asymptotic behavior of

the physical fields and the geometry of the conformally flat 2-surface (R2, {e^j*}). In
particular, since the canonical volume /p2 tv dx < oo when irNG < 1 < 2TTNG, we
find that the finite-energy condition implies that the space cannot be asymptotically
Euclidean at infinity.

Remark 5.2. In terms of /? given in (3.7) and the winding number TV, the values
of the energies of the matter-gauge sector and the gravity sector may all be obtained
explicitly. Here we choose not to pursue these calculations.

Remark 5.3. The condition (5.3) is a rather peculiar obstruction to the exis-
tence of the U(l) self-dual cosmic strings which are produced from gravitational and
electromagnetic interactions. On the other hand, when nuclear forces are put into
the coupling, cosmic strings with an arbitrary winding number may exist. This dras-
tic distinction has been observed in the Einstein-Weinberg-Salam system where the
interactions of gravitational, electromagnetic, and weak forces are considered (Yang
1992).
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