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FINITE ELEMENT METHODS FOR THE TIME-DEPENDENT
GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY

QIANG DUf

Abstract. The initial-boundary value problem for the time-dependent Ginzburg-Landau equa-
tions that model the macroscopic behavior of superconductors is considered. The convergence of
finite-dimensional, semi-discrete Galerkin approximations is studied as is a fully-discrete scheme.
The results of some computational experiments are presented.
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1. The time-dependent Ginzburg-Landau equations. The steady state
Ginzburg-Landau model for superconductivity (see, e.g., [6] or [18]) was extended
to the time-dependent case by Gor'kov and Eliashberg in [13]. The latter model is
defined by the differential equations

(1.1) riitt

and

dA i
(1.2) — + curl curl A + V$ + — (V>*VV>-V>W*) +M 2 A = curlH in fi x [0,T],

ut ZK

the boundary conditions

(1.3) (-VV> + AV0*n = O on Tx [0,71,

(1.4) cu r lAxn = H x n onTx[0,T] ,

and

(1.5) E -n = 0 on Tx [0,71,

and the initial conditions

(1.6) V(x, 0) = Vo(x) and A(x, 0) = A0(x) in ft.

fDepartment of Mathematics, Michigan State University, East Lansing, MI 48824. Part of this
work was completed while the author was visiting the center of nonlinear studies, Carnegie Mellon
University..
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2 QIANG DU

In (1.1)-(1.6), all variables have been nondimensionalized following standard practices;
see, e.g., [6] or [18]. fi denotes an open bounded set in Rd , d = 2 or 3, with boundary
F, T a positive constant, rj) = j |̂e**^ the complex, scalar-valued order parameter,
A the real, vector-valued magnetic potential, and $ the real, scalar-valued electric
potential. Also, K and rj are positive material constants and H is the vector-valued
external magnetic field; these, along with geometric information, serve to specify the
model. It has become customary to refer to (1.1) and (1.2) as the time-dependent
Ginzburg-Landau equations.

The existence and uniqueness of solutions of the time-dependent Ginzburg-Landau
equations have been considered in [2], [4], and [9]. Numerical studies using the model
are given in [8], [10], [16], and [17]. Studies connected with these equations have
also appeared in the theoretical physics literature; see, e.g., [14]. In this paper, we
consider numerical methods and their analysis for the approximate solution of the
time-dependent Ginzburg-Landau equations; spatial discretization is effected by finite
element methods; a backward Euler scheme is used for the temporal discretization.
Many of the results given below have been previously reported on in [5]; here we
provide details and proofs.

Physical variables of interest are related to the dependent variables ipy A, and 3>
of the model by the relations:

\ip\2 = density of superconducting charge carriers;
h = curl A = magnetic field;
E = grad $ + dA/dt = electric field; and
j = |^|2[A — (l//c)grad</>] = current.

In particular, in the nondimensionalization being used, ip = 0 represents the non-
superconducting state, \rp\ = 1 a superconducting state, and 0 < \rp\ < I a, mixed, or
intermediate state.

We assume that |^o(#)| < l,a.e., which implies that the magnitude of the initial
order parameter does not exceed the value at the superconducting state. The external
field H is assumed to be time-independent.

In the remainder of this section, we introduce some notation that will be used
in the sequel and give a brief discussion of gauge choices. In §2, we discuss semi-
discrete Galerkin approximations, first in the context of general finite-dimensional
approximations, and then, specifically, in the finite-element context. In §3 we discuss
fully-discrete approximations, and then, in §4, we provide the results of some numerical
experiments.

Throughout, for any non-negative integer s, H8(£l) will denote the Sobolev space
of real-valued functions having square integrable spatial derivatives of order up to s in
the domain Q. The corresponding spaces of complex-valued functions whose real and
imaginary parts belong to HS(Q) will be denoted by 7is(Q). Corresponding spaces of
vector-valued functions, each of whose d components belong to i/*(fi), will be denoted
by H*(Q), i.e., H*(fi) = [Hs(Q)]d. Norms of functions belonging to #5(fi), H*($2),
and ft'(£l) will all be denoted, without any possible ambiguity, by || • ||,. For details
concerning these spaces, one may consult [1]. A similar notational convention will
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hold for the Lebesgue spaces LP(Q) and their complex and vector-valued counterparts
CP(Q) and LP(Q), respectively. We will sometimes use || • ||j9 to denote the norm
defined on the space B. We will use the convention that (•, •) denotes the standard L2

inner-product in real function spaces, while for complex valued functions

f

in

We will also make use of the following subspaces of

and
Hi(div;fi) = { Q € H 1 ( « ) : divQ = 0 in Q and Q • n = 0 on T} .

We note that (||divQ||2 + ||curl QHg)1/2 and ||curlQ||0 define norms on H*(fi) and
Hn(div;fi), respectively, that are equivalent to the standard H1(Q)-norm ||Q||i; see,
e.g., [11].

To take into account the time-dependence, we define the following spaces: for any
given T > 0 and given Hilbert space 5 ,

L P ( 0 , T ; £ ) = If : /(-,*) G £ , V < € (0,T) a.e. , £ | | / (- , t) l& * < o o j .

Spaces such as L°°(0,T;B) and Hm(0,T]B) are defined in a similar manner. In
particular, we let S = L2(0,T;L2(fi)) and

V = L°°(0, T; Hi(O)) H H^(0, T; L2(fi)).

Also, we let S = £2(0,T;£2(Q)) a nd

V = £°°(0, T; Hl(Q)) 0 W^O, T;

For convenience when considering finite element approximations, we assume that
Q is a bounded convex polygon or convex polyhedron in Rd, where d = 2 or 3. Results
may be extended to domains with smooth boundary if curved finite element spaces
are used.

The time-dependent Ginzburg-Landau model (1.1)-(1.6) lack uniqueness and thus
are not well-posed. However, they possess a gauge invariance property, see, e.g., [4],
which, among other things, implies that the physical variables of interest are indeed
uniquely determined from (1.1)-(1.6). Also, one can choose a gauge in order to obtain
mathematically well-posed equations. Such a procedure was thoroughly discussed in
[4] where several possible gauge choices were given. Here, we focus our attention to
the gauge that eliminates the electric potential $. This is one of most frequently used
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gauge choice in numerical simulations; see, e.g., [8], [10] and [17]. In this gauge, the
time-dependent Ginzburg-Landau equations are given by

(1.7) , ^ + f i v + A) ^ - ^ + 1 ^ = 0 in ft

and

dA i
(1.8) -^- + curl curl A + — (^ VV> - tpVrp*) + M2 A = curl H in

We also have the boundary conditions

(1.9) V ^ n = 0 onT,

(1.9) cur lAxn = H x n on T ,

and

(1.10) A - n = 0 onT,

and the initial conditions

(1.11) V(x,0) = ^o(x), A(x,0) = Ao(x), and divA(x,0) = 0 in

Again, see [4] for details. In the gauge currently being used, the vector potential A
need not be divergence free, though for the steady state solution, we do have div A = 0;
see [6].

2. Semi-discrete in space finite element approximations. We now study
semi-discrete Galerkin finite element approximations of the time-dependent Ginzburg-
Landau equations in the zero electric potential gauge. The global existence and unique-
ness of strong solutions in this gauge has been proved in [4]. By semi-discrete, we mean
that discretization is effected only with respect to the spatial variables.

2.1. Weak formulation. The solution (^, A) € V x V of equations (1.7)-(1.11)
satisfies the following weak formulation:

) = 0

and

-£(A, A)+(curl A, curl A) + (|V>I2 A, A)
(2-2)

= (H,curlA)
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together with initial condition xl>o G ?i1(fi) and Ao G Hn(div;fi) . Such initial con-
ditions make sense for functions belonging to V x V that satisfy the weak equations.
For convenience, we assume that the applied field H G H1(fl) and is independent of
t. It was shown in [4] that for any T > 0, (2.1)-(2.2) have a unique solution in V x V.

To study the existence and uniqueness of the solutions of the above system, the
following modified problem was introduced: find (V>£, A£) G V x V such that

dt \K(2.3)

-j-(Ac, A)+(curl A£, curl A) + e(div Af, div A) + (|^£|2AC, A)
(2.4) dt

VAGHJI

with the same initial conditions are those for (2.1)-(2.2), so that the initial conditions
are independent of e. Here, e > 0 is an arbitrary parameter. Note that the modified
system (2.3)-(2.4) reduces to the original system (2.1)-(2.2) when e = 0. It was also
shown in [4] that, for any T > 0 and e > 0, (2.3)-(2.4) have a unique solution in V x V.
Moreover, for any T > 0, as e —• 0, solutions of (2.3)-(2.4) converge (weakly in V x V)
to the unique solution of (2.1)-(2.2).

2.2. Finite-dimensional Galerkin approximations. In [4], we studied ab-
stract finite-dimensional Galerkin approximations of the system (2.3)-(2.4). Let An

and Zn be n-dimensional subspaces of Hn(fi) and Til(Q) respectively such that

| J An is dense in Hn (fi) and (J Zn is dense in Jil (Q).

A standard Galerkin-finite dimensional approximation is defined as follows: find
(V£(0, An(0) € Zn x An such that

(2.5) (V^n(0), V^n) + (#(0) , ^n) = (V^(0), V^n) + (^(0), ^n) Vt̂ n G 2 n ,

(2.6) (VAn(0), VAn) + (An(0), An) = (VA(0), VAn) + (A(0), An) VAn G An ,

( ^ n | 2 - l ) ^ n , ^ n ) = 0 V ̂ n G 2 n ,

and

~(An,An) + (curlA
(2-8) r^- - M ^

+ * 1 V ~ V ^ ' ^ A " ) } = (H, curl An) V An G An .
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Note that we are defining discrete initial conditions by H1 -projections.
We now quote a result of [4] concerning the solutions of (2.5)-(2.8).
THEOREM 2.1. Given T > 0, if tpo € ^(Q), \i>o(x)\ < 1 a.e., and Ao E

Hn(div;ft), for any e > 0 and n > 0, there exists a unique solution (V>£,A£) to
(2.5)-(2.8) in [0,T]. Moreover, ( ^ , A n ) is uniformly bounded in V x V , independent
of n and e and, for any e > 0, the sequence (xph,An) converges weakly in V x V
(and therefore strongly in S x S) to the unique solution (rfi€,A€) of (2.3)-(2.4) as
n —• oo. In addition, for any e > 0, the sequence ( f t ,An) converges strongly in
£2(0,T;«i(Q))x 1,2(0,TjHHfi)) to (rP<,A<) asn-+oo.O

As was mentioned above, in [4], it was also shown that solutions of the modified
problem (2.3)-(2.4) converge to the solution of the original system (2.1)-(2.2) as e —• 0.
Furthermore, once can easily check that the steady state equations of both problems
are identical.

2.3. Semi-discrete Galerkin finite element approximation. Let A^ and
Zh be C° finite element subspaces of Hn(fi) and ^ ( f i ) , respectively, defined on
a regular quasi-uniform mesh, parametrized by a parameter h that tends to zero.
These spaces are constructed in a standard way and h is some measure of the size of
the finite elements in the mesh. We assume that the subspaces satisfy the following
approximation properties:

(2.9) inf | |^-^fc| | i-»O as ft—•O V xj) G

and

(2.10) inf | |A-A f c | | i -*0 as ft-^ 0 VAGHi(fi) .

One may consult [3] for conditions on the finite element partitions such that (2.9)-
(2.10) are satisfied.

Therefore, by the Theorem 2.1, we have:
COROLLARY 2.2. Assume that the approximation properties (2.9)-(2.10) and the

hypothseses of Theorem 2.1 hold. Then, given T > 0, for any e > 0, the semi-
discrete finite element approximation (xp€

h,A€
h) exists in [0,T]. Moreover, (xp€

h,A€
h) is

uniformly bounded in V x V , independent of ft and e. Furthermore, for any e > 0,
the sequence (rpe

h1A
€
h) converges weakly in V x V (and therefore strongly in S x S) to

the unique solution (ipe,A€) of (2.3)-{2.4) as n —• oo. In addition, for any e > 0, the
sequence (V£,A£) converges strongly in ^ ( o ^ j W ^ f i J J x L ^ O . r j H 1 ^ ) ) to(^,A*)
as n —> oo. D

2.4. Asymptotic behavior of the finite element approximations. We now
examine, for given ft > 0 and e > 0, the asymptotic behavior of the semi-discrete finite
element solution (tft€

h, A
€

h).
A nondimensionalized form of the Ginzburg-Landau free energy functional is given

*" " * - l ) 2 + | cur lA-H|2j dQ.
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Now, let

(2.11) &(^A) = 0W,A) + £ /|divA|2dQ.
J
/|divA|2

Jn

The dynamical system (2.7)-(2.8) is a gradient system by the definition in [15], since
the functional Qt serves as a Lyapunov functional. Hence, it is straightforward to
obtain the following result.

LEMMA 2.3. The w-limit set of the system (2.7)-(2.8) is a subset of the equilibrium
points which consists of solutions of the following equations:

\K h h h ' K h J \\\ h\ fc» )

and

(curl A£ - H,curl Ah) + e(div A€
h,div A'1) + (\ip€

h\
2A'h, A'1)

3. Fully-discrete approximations. Semi-discrete approximations only deal
with spatial discretization and the resulting equations form a system of ordinary dif-
ferential equations. Fully discrete approximations involve a discretization of these
ordinary differential equations. Here, we will study the implicit Euler method. An
interesting feature of this full discretizaiton is the existence of a discrete Lyapunov
like functional that may be very useful for long time integration.

3.1. The implicit Euler method. Let to = 0, and tn+i = tn + At where At is
the step size in time. The initial approximation is given by the H^projection of the
given initial data, i.e., define (V>o> A§) G Zh x Ah by

(3.1) (V^,V^*) + W%Jh) = (V^(0),V^) + (^(0),^) VV> € Zh

and

(3.2) (VAg,VAh) + (A£

Then, for n = 0,1,. . . , we let

( ^ ^ ) =o
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and

( ^

(3.4) +e(di

= 0 VA^GA^.

THEOREM 3.1. For any /i > 0, At > 0, ana1 e > 0, Mere eziste a solution to the
system (3.3)-(3.4) for any n. Moreover, for all n = 0,1,...,

Proof The solution of (3.3)-(3.4) is a critical point of the following minimization
problem:

min j£(iph,Ah) over (V>\ A*) G Zh x Ah ,

where

Obviously, there exists a minimizer for this finite dimensional minimization problem.
Hence, the solution to (3.1)-(3.2) exists. The inequality in the theorem follows from

Jnh(^+ 1 ,Ajt+ 1)<J«*(^,Aft)<^(^,Aft) Vn = 0,l D

COROLLARY 3.2. Given initial data and T > 0, there exists a constant C > 0
such that, for any h > 0, At > 0 and (n + 1)A< < T, any solution ( ^ + 1 , A*+1) to
the system (3.3)-(3.4) satisfies

(3.5) | | A » + f c /

(3.6) | | ^ +

(3-7) \

(3.8) HAJt+1||o<C,

(3.9) l|A*+1|| /
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ll(3.10)
A,

(3.11) \\Ah
n+1\\o,4<Cmm{h-V*,(log\h\y/4e-V4} (d = 2),

(3.12) ||A£+1||o,4<Cmin{/r-3/4,e-3/8} (d = 3),

(3.13) ||A*+1||o,oo < Cmm{h-\ (log\h\)We-W} (d = 2),

(3.14) ||A*+1||o,oo<Cmin{fc-3/a,A-i/2c-i/2} (d = 3),

(3.15)

Proa/. Inequalities (3.5)-(3.7) and (3.10) follows immediately from the previous
theorem. (3.5) implies (3.8), which in turn, implies (3.9) by the inverse inequality

Similarly, one gets (3.11)-(3.15) from the previous estimates, the inverse inequality

and the discrete imbedding inequalities:

and for d = 3

3.2. Uniqueness of the approximate solution. Next, we discuss the unique-
ness of the solution to (3.3)-(3.4) for a given value of n. In general, the solution may
not be unique; however, if one seeks a solution that actually minimizes the functional
Jn , then some uniqueness results may be obtained. First, we have the following result.

LEMMA 3.2. Let C > 0 be a constant. If At and Ath~d/2 are sufficiently small,
then for any e > 0, the functional j£ is convex for any (xf;h,Ah) in the set

Z » x A * | | | i^ | |o,4<C, | |A f c | |0<C\
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Proof. Let (xph,Ah) be in the set M. Then for any (4>h,Ah), we have, for At
sufficiently small,

<*2

•X

and

>, A" + i/A*)|(o,o)

- 2 + -^T)

2e|div A*|2 + 2|cur

•"A*)|(o,o)

|o • h-d/*\\k*\\0

1 / 2 i / 2

/ d2 1/2

1/2

1/2

Thus, for Ath~d/2 sufficiently small, the functional Jn is convex on the set M. D

From the convexity of the functional and the estimates (3.9)-(3.15), we have the
following result.

COROLLARY 3.3. If Ath~d/2 is sufficiently small, then for any e > 0, the func-
tional Jn has a unique global minimizer which is a solution o/(3.3)-(3.4). D

We see from the above proof that for any e > 0, h > 0, and At > 0,
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Hence, we have the following result.

COROLLARY 3.4. There are no local maxima for the functional Jj?. •

In case e is taken to be a positive constant, independent of ft, then, the above
proof may be modified to show that if At is small enough, then the global minimizer
of Jk is unique for any h > 0, i.e., we do not need to assume that Ath~d/2 is small.

LEMMA 3.5. Let e > 0 and K > 0 be given constants. Thent for At sufficiently
small, the functional j£ is convex for any (iph,Ah) in the set {(xl>h,Ah) € Zh x

Proof Let (^>\ A*) be in the set {\\il>h\\i < K > llA1li < K)- Then> f o r a ny
h h ) j we have

-L - 2 + - ^ - ) | ^

2 - 2

Here we have used the assumption that At is sufficiently small. Similarly,

•^Jn(^h +A^ f c iA* + I/A*)|(O|O)

= / [W 1 ! 2 + x")|A^|2 + 2e|divA^|2 + 2|curl A^|2
Jfi At
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and

^ , A* + i/A*)|(o,o)

K

+ 2||(-

I + uh\\l)]< C 11IC—^ . . , . .„ A

M2

i/A*)|(OfO)J

I -7-zJn('&h + fJ>i>h, Ah + J/Ah)-r-rJn(iph + U1ph > Ah + l/Ah) ) \(Q O) •
\dfiz dvl J v ' J

Above, C is a generic constant, independent of A* and ft. Thus, for At small, the
functional j£ is convex on the set {HV^Hi < K , ||Ah | |i < K) when e is a given
constant. D

Similarly, we have the following result.
COROLLARY 3.5. Let e > 0 be a given constant. Then, for At sufficiently small,

the global minimizer of the functional Ju is unique. D

3.3. Discrete-in-time approximation. In the proof of the above lemma, no
use of any inverse inequality [3] was made. In fact, the same proof is valid for the
solution of the following problem which, by itself, is a time-discretized version of the
original time-dependent Ginzburg-Landau equations:

At J \K K(3.16)

and

' A ) + ( c u r l A n + i ~ H > c u r l A )

(3.17) + e(div An + i , div A) + (| V-n+i |2An+i, Ah)

+ ( ^ ( ^ + i V ^ + i " V>»+i V ^ + 1 ) , A) = 0 . V A € A.

Let
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Then, we have the following result.
PROPOSITION 3.6. For any At > 0 and c > 0, there exists a solution to the

system (3.16)-(3.17) for any n. Moreover, for all n = 0 ,1 , . . . ,

+ 1 dil

Proo/. The solution is a critical point of the following minimization problem:

min Jn{ij>,A) over ( ^ , A ) G 2 X A D

Similarly, we have the following results.
LEMMA 3.7. Let e > 0 and K > 0 be given constants. Then, for At sufficently

small, the functional Jn is convex for any (V>, A) in the set {(V>, A) 6 2 x A | ||Vi|i <
K, ||A||i < K). D

COROLLARY 3.8. Let e >0 be a given constant. Then, for At sufficiently small,
the global minimizer of the functional Jn is unique. D

3.4. Asymptotic behavior. We now examine, for given h > 0, At > 0, and e >
0, the asymptotic behavior of the finite element solution (^J,Aj). By compactness,
it is straightforward to deduce the following result.

LEMMA 3.9. If At is sufficiently small, the limit set of the sequence {(^n, A&)}
is a subset of the solution set o/(2.12)-(2.13). D

Unfortunately, the solution set of (2.12)-(2.13) does not consist of only isolated
points, even for e > 0. The reason is that if ( ^ , Ah) is in the set, so is (\il>h, Ah) for
any complex constant A such that |A| = 1. This corresponds to the U(l) symmetry
of the solution space of (2.12)-(2.13). One can show, however, for almost all /c, there
are only finite number of isolated solutions to (2.12)-(2.13), modulus the U(l) sym-
metry. It remains to be seen whether this will imply that the sequence {(^n, A&)} is
convergent for almost all K.

3.5. Error estimates for the backward Euler scheme. Here, we give an
error estimates for the backward Euler scheme (3.1)-(3.4). We assume that the so-
lutions to continuous problem (2.3)-(2.4) as well as the semi-discrete in time scheme
(3.16)-(3.17) have enough regularity and the finite element spaces have the best ap-
proximation property [3], i.e., for some integer m, if h is sufficiently small, then

(3.18) inf
tphe2

and

(3.19) inf
Ah€A

THEOREM 3.10. For any T > 0 and c > 0, ifh and At are sufficiently small and
the solution (tp€, A€) to the problem (2.3)-(2.4) is sufficiently smooth, then there exists
a constant C > 0, independent of h and At, such that

(3.20) ||tf'(-,<»)-^||i
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and

(3.21) ||A<(., tn) - An | | i < CAt + fcm f V n = 1,2,..., JV = [T/A*].

Prw/. First,

and
A«(-,tn) - A* = A«(-, t n) - whA<(tn) + irhA<(tn) - A n ,

where 7rhxp€(tn) G £/» and whA€(tn) G A/» are the standard elliptic projections of
^c(*,tn) and A c(- , t n) , respectively. By the approximation properties and standard
finite element theory, for given integer k > 0,

ll#(tfe(-> *n) - **tfe(<n))||i < cft« , V n = 1,2,..., N = [T/At]

and

Now, we consider eft = jrfcV£(*n)-V'n a n d Cn = ?r' 'A£(tn)-AA. Setting i>h =
and Ah = C^+i - Cn in (3.3) and (3.4), yields

^ + 2 ^ + ^ 2 + = AtfH

and

^ I I C n \ i - CnA||g + 2^2 (||curlC*+1 - curlC*||g + e||divCn
A

+1 A g )
+ 1

+ ± (||curlC*+1||2 + *||div

where fit and gn denote the remaining terms. Using Sobolev imbedding theorems,
the approximation properties, and the uniform bounds on the solutions given earlier,
it is not difficult to show that there exists a constant C > 0 such that, if At and h are
sufficiently small, then for n = 1,2,..., N = [T/At], we have

\fH\ < c

and

The estimates in the theorem now follows from the discrete Gronwall inequality and
the triangle inequality. D

Note that the above results can be easily extended to the case where a variable
time-step is used. A similar error estimate for the time-dependent G-L equations has
also been given in [7], in which a different gauge from ours was choosen.
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3.6. Higher-order in time discretization. Similar to the backward Euler
methods, higher order in time discretization can also be formulated and analyzed. For
example, the following scheme yields a second-order in time discretization:

(3.22)

and

(%^,A*) + (c«,lAa-H,
(3.23) V 2 m J

, 2K

where

and

This scheme is similar to the one-leg multi-step method for numerical solution of
ordinary differential equations. Uniform bounds on the discrete solutions and higher-
order error estimates may be obtained similar to the earlier discussion. Here, let us
simply state the following result.

LEMMA 3.11. For any h > 0, At > 0, and c > 0, let ($j, Aft) be a critical point
of the following minimization problem:

min j£(tph,Ah) over (iph, Ah) € Zh x Ah .

Then, (2$! - ^ft,2Aft - Aft) is a solution to the scheme (3.22)-(3.23).
By the above lemma, we see that the actual implementation of the above second-

order method does not involve more work than the implementation of the first-order
backward Euler method. Higher order schemes may be useful in a better resolution
of the initial transient period.

4. Computational example. Numerical experiments have been performed on
a Sun Sparcstation using a two-dimensional finite element code. More extensive re-
ports on the experiments will be given in future papers. Here, let us describe a simple
experiment in which the time-dependent Ginzburg-Landau equations are solved using
the fully discrete Backward Euler scheme on a two-dimensional square box. The code
uses piecewise biquadratic polynomials on a uniform spatial mesh. A Newton lineariza-
tion is used for the nonlinear algebraic equations that must be solved at each time
step. The resulting linear systems are solved for by the conjugate gradient method.
For the results reported on here, the Ginzburg-Landau parameter is K = 3 with an
external field H = 1.5. The solution for these values should correspond to a vortex
state. For the particular experiment described here, initial conditions correspond to
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tpo = 0.8 + 0.6i, Ao = (0,0), i.e, a perfect superconducting state. Figure 1 gives
contour plots of the magnitude of the order parameter. Vortices that correspond to
where \j> = 0 first start to form near the midsides and then settle down in the interior.
For comparison, Figure 2 gives a couple of plots of the computed magnetic field curl A
with a grayscale. Lighter regions correspond to cores of the vortex, the magnetic field
reaches maximum at the center of the vortices. Finally, Figure 3 gives the decay of
the Free energy and the magnetization. We have performed many other numerical
simulations of the vortex dynamics and "flux pinning", using the time-dependent G-L
models and their variants, more details will be given in future reports.

TIME= 0.4 TIME=4.0

TIME=7.2 TIME= 100.0

Figure 1. Magnitude of the order parameter
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TIME=7.2 TIME=32.8

FREE ENERGY

Figure 2. Magnetic field

MAGNETIZATION

- t

Figure 3. Free energy vs. time and Magnetization vs. time.
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