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SEMI-LOCAL CLASSIFICATION OF GEOMETRIC
SINGULARITIES FOR HAMILTON-JACOBI EQUATIONS

SHYUICHI IZUMIYA* AND GEORGIOS T. KOSSIORIS**

0. INTRODUCTION

In this paper we describe the geometric framework for the study of generation
and propagation of shock waves in Rn appearing in solutions of Hamilton-Jacobi
equations

•• ,z n ) ,

where H and <f> are C°°-functions. Hamilton-Jacobi equations play an important
role in various fields e.g., calculus of variations (see e.g., [30]), optimal control theory
(see e.g., [13]) and differential games (see e.g., [12] and references cited therein).

The geometric solution y of (P) has been defined in [18], [20] in the framework
of one-parameter Legendrian unfoldings and it is constructed by the method of
characteristics. Although y is initially smooth there is in general a critical time
beyond which characteristics cross. The geometric solution past the critical time
is mult i-valued, that is singularities appear. The classification of singularities of y
has been studied in [18] (see also [20]).

The theory of viscosity solutions (see [7]) has provided the right weak setting for
the study of (P). Existence and uniqueness of the solution of (P) in the viscosity
sense have been established in [8]. The single-valued viscosity solution is continuous
and coincides with the smooth geometric solution until the first critical time. After
the characteristics cross, the viscosity solution develops shock waves i.e., surfaces
across which the gradient of the viscosity solution is discontinuous. The shock
surfaces are referred to as singular surfaces in the literature of optimal control and
differential games (see e.g., [5], [16]).

The viscosity solution of (P) in a neighborhood of the first critical time has
been constructed in [25] (see also [27], [24]) by selecting a continuous single-valued
branch of the graph of the geometric solution. The shock surface of the weak
solution corresponds to the intersection of the branches of the graph of the multi-
valued geometric solution. In order to study the evolution of the shock surface we

^Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060, Japan
••Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, USA

Typeset

University Lthtme§
Jarnegie Mellon University
Pittsburgh, PA J5^ t^3890



follow the evolution of the intersections of the branches defining the shock. The
case n = 1 has been studied in [24] (see also [25]) where the global structure of the
shock waves has been described.

The goal of the present work is to study the bifurcations of the branches of the
graph of the geometric solution in case n > 1. We present the correct topological
setting. We formulate the problem in terms of multi-Legendrian unfoldings and we
obtain the generic list of the bifurcations of the branches of the multi-valued graph.
In this work we only present a discussion on how to obtain the generic pattern of
shock waves from the obtained classification list. The constructions of the shock
surfaces will be presented in a future paper [21].

The geometric interpretation of a smooth solution to a first order equation was
introduced by S. Lie as the maximal integral submanifolfd of contact hyperplane
fields (see [14]). The notion of the multi-valued geometric solution to first order
equations has appeared e.g., in Lychagin [26] in the context of i?-manifolds and in
Oshima [29] in the context of Lagrangian submanifolds. Evolution equations have
been considered by Izumiya in [18], [20] where the geometric solution has been de-
fined in terms of one-parameter Legendrian unfoldings, i.e., smoothly parametrized
Legendrian submanifolds in t that satisfy the Hamilton-Jacobi equation. For the
definition of Legendrian submanifolds see [2], [3]; cf. Section 1.

The method of constructing the weak solution by selecting the proper single-
valued branch was introduced by Tsuji ([32], [33]) for Hamilton-Jacobi equations
and by Guckenheimer ([15]) for conservation laws. Nakane in [27] has constructed
the weak semi-concave solution past the first critical time in case that H is convex
with respect to Vy = (JjS • • • , ^̂  )• The case of scalar conservation laws in Mn

past the first critical time has been studied by Nakane in [28].
The geometric framework we introduce herein for the study of shock waves

for viscosity solutions of (P) apply to several types of equations e.g., geometric
Hamilton-Jacobi equations (see [6], [23]), conservation laws (see [22], [28], [15]) and
Monge-Ampere equations (see [34]).

Geometric Hamilton-Jacobi equations

(P.) tf
describe the evolution of the interface Tt = {x : y(t,x) = 0} (see e.g., [4]). The
interface moves with normal velocity depending on its normal vector Vy/|Vy|.
Equation (Pg) arises in different contexts; geometric optics (see e.g., [11]), flame
front propagation (see e.g., [31]) and crystal growth (see e.g., [6]). Cahn, Taylor
and Handwerker in [6] study the evolution of a polyhedral interface of a crystal
described by (P^) by studying how the characteristics cross.

In [23] we study the singularities for the geometric solutions of the equation

* ) = *



introduced in [6]. In [22] we study the singularities for the geometric solutions of
single conservation laws

A dfi(y)

where /»'s are C^-functions.
In Section 1 we describe the framework of the geometric theory for a general first

order partial differential equation introduced in [26]. In Section 2 we describe the
geometric theory for (P) where we consider the time t as a parameter. A geometric
solution of (P) is defined as an one-parameter Legendrian unfolding (see [18], [20])
that lies on the hypersurface

E(H) = {(t,x,y,s,p) € J*(R xRn,R)\a + H(t,x,p) = 0}.

We describe the representation of the geometric solution in terms of generating
families according to Arnol'd-Zakalyukin theory ([1], [36]). In order to study the
singularities of the geometric solution we have to prove that Legendrian unfold-
ings is the correct class of solutions. In Section 3 we present the realization the-
orems that associate to any Legendrian unfolding a Hamiltonian H. According
to Theorem 3.1 to any Legendrian unfolding there corresponds a Hamiltonian H.
Such correspondence of Legendrian unfoldings to Hamiltonians permits the use of
classification techniques for Legendrian unfoldings in the context of singularities
of the geometric solution of (P). Theorem 3.5 establishes the correspondence of
non-degenerate Hamiltonians (strictly convex or concave Hamiltonians) to P-stable
Legendrian unfoldings.

Generic lists of the singularities of the geometric solution of (P) have been given
in [18]. In Section 4, in order to describe the evolution of intersections of branches
of the geometric solution we formulate the problem in terms of multi-Legendrian
unfoldings which we describe in terms of multi-generating families. In Section 5
we obtain the classification theorem for multi-Legendrian unfoldings. Finally, in
Section 6 we discuss how we construct the shock waves for viscosity solutions from
the obtained generic list of bifurcations. These constructions are undertaken in
[21].

Acknowledgment. This work was partially supported by the Army Research Of-
fice and the National Science Foundation through the Center for Nonlinear Analysis
and by the Japan Association for Mathematical Science. The authors are grateful
to the Director of the Center for Nonlinear Analysis M. Gurtin for his support.

1. GEOMETRIC FRAMEWORK FOR HAMILTON-JACOBI EQUATIONS

In the present paper we treat Hamilton-Jacobi equations in the framework of
the geometric theory of first order partial differential equations described e.g., in
[26]. In this section we briefly describe the geometric framework and present the
necessary notation.



Let J1(Rn,R) be the 1-jet bundle of functions of n-variables which may be
considered as R2n+1 with a natural coordinate system (xi,. . . ,xn,2/,pi,... ,pn),
where (xi , . . . , xn) is a coordinate system of Rn. We also have a natural projection
7T: Jx(Rn,R) -• Rn x R given by 7r(x,j/,p) = (x,y).

An immersion germ i : (Lo,uo) -+ J^R^R) is said to be a Legendrian immer-
sion germ (i.e., Legendrian submanifold germ) if dimL = n and i*6 = 0, where
0 = dy — X)?=i Pi • dxi. The image of x o t is called ihe wave front set of i and it is
denoted by W(i).

We also consider the 1-jet bundle Ja(R x Rn,R) and the canonical 1-form 0 on
that space. Let (t, x i , . . . , xn) be a canonical coordinate system on R x Rn and

(t, x i , . . . , xn, y, a, pi , . . . ,pn)

the corresponding coordinate system on Ja(R x Rn,R). Then, the canonical 1-form
is given by

n
Q = dy — y^Pt • dx* — 5 • dt = 0 — s • dt.

We define the natural projection II : Jl(R x Rn,R) -4 (R x Rn) x R by
II(t,x,y,5,p) = (t,x,y). We call the above 1-jet bundle an unfolded 1-jet bundle.

A Hamilton-Jacobi equation is defined to be a hypersurface

E(H) = {(t,x,y,s,p) € Jl(R x Rn,R)|s + ff(t,x,p) = 0}

in Ja(R x Rn,R). A geometric solution of E(H) is a Legendrian submanifold L in
J1(RxRn ,R) lying in E(H).

We say that a generalized Cauchy problem (GCP) (with initial condition V) is
given for an equation E(H) if there is given an n-dimensional submanifold i: V C
E(H) such that i*0 = 0 and XH $ T(L') at any point of V where XH is the
characteristic vector field given by

d r̂-̂ s un u /V"̂  U£1 TJ\ u U£1 u \""* U£1 u

ut *r^ op% oXx T"̂  Qpi oy ot us T~^ OX% op\

We have the following existence theorem:

Theorem 1.1. (Classical existence theorem [26]). A GCP i: V C E(H) has
a unique solution, that is, there is a Legendrian submanifold L C E(H), V C L
and any two such Legendrian submanifolds coincide in a neighbourhood of V\

In order to study (P) we need a more restricted framework. For any c 6 (R,0),
we define

E(H)C = {(c,x,y,-13r(c,x,p),p)|(x,y,p) € Ja(Rn,

4



Then, E{H)C is a (2n + l)-dimensional submanifold of JJ(R xR n ,R ) and 0 C =
S\E(H)C = dz — 53?=i Pidzi gives a contact structure on E(H)C- We define a map-
ping ic : J1(Rn,R) -> E(H)C by tc(x,y,p) - {c,x,y,-H(c,x,p),p). The mapping
ic is a contact diffeomorphism and the following diagram is commutative:

We say that a generalized Cauchy problem (with initial condition V) associated
with the time parameter(GCPT) is given for an equation E(H) if a GCP i: V C
E(H) with t(L') C E(H)C for some c € (R,0) is given.

Remark. The Cauchy problem (P) is a GCPT. The initial submanifold is given
by

{ § | J c E(H)0.
The problem of studying the singularities of the graph of the geometric solution

is formulated as follows:

Geometric problem. Classify the generic bifurcations of wave fronts of

*t\ : L n E(H)t -> Rn x R

with respect to the parameter t (i.e., the generic bifurcations of wave fronts of
geometric solutions along the time parameter).

Following [18], in order to study the singularities of the geometric solution we
identify geometric solutions with one-parameter Legendrian unfoldings. Such a
characterization, which is given in Section 3 permits the use of the available sin-
gularity theory of one-parameter Legendrian unfoldings. In the next section we
present the necessary background material that we use in Section 3.

2. ONE PARAMETER LEGENDRIAN UNFOLDINGS

We now describe the notion of one-parameter Legendrian unfoldings. Let R be
an (n + l)-dimensional smooth manifold, ft : (i2,uo) —• (R>*o) be a submersion
germ and I : (i£,uo) —* J1(Rn ,R) be a smooth map germ. We say that the pair
(/z,£) is a Legendrian family if It = |̂̂ x""1(t) is a Legendrian immersion germ for
any t € (R,t0). Then we have the following simple but very important lemma.

Lemma 2.1* Let (/x,/) be a Legendrian family. Then there exist a unique element
h e C™(R) such that t*B = h • d/x, where C™(R) is the ring of smooth function
germs at UQ.

Define a map germ C : (R,UQ) - ^ J ^ R X Rn,R) by

C(u) = (fi(ti), x o l(u), y o /(u), h(u),p o l(u)).



We can easily show that £ is a Legendrian immersion germ. If we fix 1-fonns 0
and 0, the Legendrian immersion germ £ is uniquely determined by the Legendrian
family (/z, £). We call £ a Legendrian unfolding associated with the Legendrian family
(fat). In order to study bifurcations of wave fronts of Legendrian unfoldings, we
introduce the following equivalence relation. Let d : (<R,u») —* J*(R x Rn ,R) (i =
0,1) be Legendrian unfoldings. We say that CQ and C\ are P-Legendrian equivalent
if there exist a contact diffeomorphism germ

K : (Ja(R x Rn,R),2o) -> (Ja(R x Rn ,R

of the form

and a diffeomorphism germ $ : (R,uo) - • {R,u\) such that K o £ 0 = A ° ^-
In order to understand the meaning of P-Legendrian equivalence, we introduce

the following equivalence: We say that two wave front sets W(Co) and W(C\) have
diffeomorphic bifurcations if there exists a diffeomorphism germ

$ : (R x (Rn x R),n(z0)) -* (R x (Rn x R),II(zi))

of the form *(t,x,y) = (faifyfafaXiV^M^v)) such that *(W(£)) =
If £o and £i are P-Legendrian equivalent then these wavefronts have diffeomorphic
bifurcations. By the theorem of ZakaJyukin [36; Assertion , Section 1.1], the con-
verse is also true for generic Legendrian unfoldings. We can define the notion of
stability with respect to the P-Legendrian equivalence in the same way as for the
ordinary Legendrian stability (see [1],[36]).

Motivated by Arnol'd-Zakalyukin's theory ([1],[36]), we can construct generating
families of Legendrian unfoldings. A function germ F : ((R x Rn) x R*,0) —>
(R,0) is called a a generalized phase function germ if d2F\0 x Rn x R* is non-
singular, where d2F(t,x, q) = ( f£( t , * , * ) , . . . , $£(t , x, q)). Then C(F) = d2F~*(0)
is a smooth (n + l)-manifold germ and 7Cp : (C(JF),0) —• R is a submersion germ,
where 7rjr(t,x,g) = t.

Define map germs $ F : (C(F),0) -+ Jx(Rn ,R) by

8F
, g ) , — ( t ,

and $ F : (C(F),0) - • Jx(R x Rn,R) by

dF OF
, x, q) = (t, x, F(t, x, g), — ( t , x, g), — ( t , x, g)).

Since | f = 0 on C(F), we can easily show that ($F)*0 = ^\C(F) • dt|C(F).
By definition, $ F is a Legendrian unfolding associated with the Legendrian fam-

ily ('*F,$F)- Following the lines of Arnol'd-Zakalyukin ([1],[36]), we can show the
following proposition.



Proposition 2.2. All Legendrian unfolding germs are constructed by the above
method.

We define a function germ F : ( R x ( R n x R ) x R f c
) O ) - * (R, 0) by F(t, x, j/, q) =

F(t, x, q) - y. We call F a generating family of$p. We also consider an equivalence
relation among generating families of Legendrian unfoldings. Let

Fi: (R x (Rn x R) x R*,0) - • (R,0) (t = 0,1)

be generating families of $pr We say that FQ and F\ are t-P-K-equivalent if there
exists a diffeomorphism germ

$ : ( R x ( R n x R ) x R*,0) - (R x (Rn x R) x R*,0)

of the form

such that

where {Fo)s{t x q) denotes the ideal generated by FQ in the ring £(t,Xyy,q) of function
germs of (£,£, y^q) -variables at the origin. The definition of the stable t-P-K-
equivalence is given in the usual way (see [1],[36]).

For a generating family F of $j?, we define

; df df .
+ ^ 1'

and P-^-cod/ = dimR5(Xfyfg)/Te(P-/:)(/), where / = F|0 x (Rn x R) x Rk. We
also say that F is a P-K-versal deformation of f if

( « ) ^ x (Rn x R) x R*)R + T.(P-/C)(/).

Then we have the following proposition whose proof is like that of the ordinary
theory of Legendrian singularities ([1],[36]).

Proposition 2.3. (1) Let Fi (i = 0,1) be generating families of $pr Then
and $pl are P-Legendrian equivalent if and only if Fo and F\ are stably t-P-K-
equivalent.
(2) Let F be a generating family of $jp, then $j? is stable with respect to the P-
Legendrian equivalence if and only if F is a P-K-versal deformation of f.

We can classify generic Legendrian unfoldings under the P-Legendrian equiv-
alence for n < 4 by means of the classification of one parameter perestroikas of
wave fronts. In [36] Zakalyukin has given a generic classification of function germs



F : (R x R(n+a> x R*, 0) -> (R, 0) under the stable t-P-/C-equivalence. Since the set
of function germs F(<5x,y,g) which satisfy ^ ^ 0 is an open subset, then such a
function germ is stably t-P-/C-equivalent to one of the germs in the following list :

r-1

± 92 + £ x*9* - » (1 ̂  »• ^ n)

r-1

( Dr) 9i92 i 92~ "̂" x ^ •c*92~* "̂" ^i9i ~~ y (4 5s ** ^ *0
i=2

r-2

t=l

r-2

3 4 2J. 2
9l ' 92 • 9l92^ • ^49l92 T #392 • ^ l9 l • ^292 "" V-

Since for the germs lA\ and lA2 the corresponding map d2-F|0 x (Rn x R) x Rk

is not submersive, these germs can be removed from the list of generating families
of Legendrian unfoldings. Thus we have the following :

Theorem 2.4. Forn < 5, the generic Legendrian unfolding is P-Legendrian equiv-
alent to one of germs of the following type :

°Ar (1 < r < n), °Dr (4 < r < n), lAr (3 < r < n), lDr (4 < r < n), XE6.

We can explicitly list all generating families in case n < 2 as follows :

Corollary 2.5. Forn < 2, the generic Legendrian unfolding is P-Legendrian equiv-
alent to one of germs of the following type:
n = 1 :

9? - y ;
A. 9

n = 2 :

4 i i 2 - . .

9i • ^i9i • ^29i "" y ?
5* + 9i(^ i ^2) "̂ " ̂ i9i "" y 5
^»5



3. REALIZATION THEOREMS

In this section we identify the geometric solution of a (GCPT) introduced in
Section 3 with the notion of one-parameter Legendrian unfoldings. Let i : V C
E(H)0 C E(H) be the initial condition of a (GCPT) and let L be the unique
solution. Since XH $ TE(H)C, then L is transverse to E(H)C in E(H) for any
c e (R,0). It follows that Lc = L D E(H)C is an n-dimensional submanifold of
E(H)C and it satisfies QC\LC = 0 (i.e., Lc is a Legendrian submanifold of E(H)C).
If we consider the local parametrization of L, we may assume that L is the image
of an immersion germ jC:(RxR n ,0 ) -> E(H) such that C\(c x Rn) is a Legendrian
immersion germ of E(H)C. Hence the coordinate representation of £ is given by
C(t,u) = (t,x(t,u),y(t,u)^H(t,x(t,u),p(t,u)),p(t,u)).

Let 7T : Jl(R x Rn ,R) -> Jl(Rn,R) be the canonical projection defined by
7r(£,x,y, s,p) = (x,y,p). Then the map germ I = 7ro£ satisfies that £t = 'Kr^O ^
a Legendrian immersion germ for any t € (R, 0). Hence £ is a Legendrian unfolding
associated with (7Ti,7r o £) , where TTI is the canonical projection TTI : ( R x R n , 0 ) —•
(R, 0). This completes the proof of the first part of Theorem 3.1. The proof of the
second part is given in [18].

Theorem 3.1. (1) The local solution of the generalized Cauchy problem associated
with the time parameter for the Hamilton-Jacobi equation

is a Legendrian unfolding

C : (R x Rn,0) -> Jl(R x Rn,R).

(2) Let
£:(RxRn ,0)^J :(RxRn ,R)

be a Legendrian unfolding associated with (TTI,/). Then there exists a C°°-function
germ H(t,xi,... ,x n ,p i , •.. ,pn) such that C is a local solution of the generalized
Cauchy problem associated with the time parameter for Hamilton-Jacobi equation

s + H(t,x,p) = 0 ,

where the initial condition is given by /(0,u).

The above theorem guarantees that the class of Legendrian unfoldings supplies
the correct class to describe the geometric solutions of (GCPT) for Hamilton-Jacobi
equations. Thus, generic results for the singularities of Legendrian unfoldings can be
translated to generic results in the class of all Hamiltonians and all initial conditions.
However, we must also concern ourselves with what are the types of singularities
that the geometric solution to a given Hamilton-Jacobi equation might exhibit.
Representation Theorems 3.1-3.2 address this question.



Let i : (£,uo) —¥ J ^ R ^ R ) be a Legendrian immersion germ. We define an im-
mersion germ %: (RxL,(0,uo)) -> J 2 (RxR n ,R) by t(*,u) = (t,z(<z),i/(ti),O,p(tz)),
where i(u) = (x(Tz),y(ti),p(u)). Since t*6 = i*0-O = 0, i is a Legendrian unfolding
associated with (7Ti,7f oi). We call i a trivial Legendrian unfolding induced by t. Let
C : (R x Rn ,0) -* J*(R x Rn,R) be a Legendrian unfolding. We say that C has a
trivial bifurcation if C is P-Legendrian equivalent to a trivial Legendrian unfolding
£|0 x Rn. Then we have the following theorem.

Theorem 3.2. Let s + fT(t,x,p) = 0 be a Hamilton-Jacobi equation and C :
(R x Rn ,(0,0)) - • J*(R x Rn,R) be a P-Legendrian stable Legendrian unfolding
associated with (TTJ,/). If C has a trivial bifurcation, then there exists a Legendrian
unfolding C! such that C is a geometric solution ofs + JET(t,z,p) = 0 and C, CJ are
P-Legendrian equivalent.

Proof. Let G : (R x (Rn x R) x R*,0) -> (R,0) be a generating family of the
Legendrian unfolding C Since cfeGlO x Rn x R* is non-singular, the set

<f>g = {(0,*,-J5T(0,*, ^ ( ^ « ) ) ^ ( * t f f ) ) l ^ ( * . 9 ) = 0 t = 1,...,*}

is an initial condition for the (GCPT), where g = G|0 x R n x R*. By the arguments
of the proof of the first part of Theorem 3.1 we can construct a Legendrian unfolding
C! which is the local unique geometric solution around <f>9.

We now choose a generating family F : ( R x ( R n x R ) x R*',0) -> (R,0) of C!.
By definition, Image $p|t = 0 is equal to <f>g, so we may assume that k = k1 and
/ , g are P-£-equivalent, where / = F|0 x R n x R*, / (x ,y,g) = / (x ,g) - y and
fl(*>y,0)=0(*i9)-y-

By Proposition 2.3, F is a P-fC-vevsal deformation of / . Since £ has a trivial
bifurcation, §E|0 x (Rn x R) x R* € TC(P-/C)(/), and hence 5 ( x , y ^ = Te(P-)C)(f).
Therefore, it follows that €(x,y,q) = Te(P-lC)(g) and G is also a P-AC-versal defor-
mation of g. By the uniqueness theorem of P-/C-versal deformations (see [10], [17]),
F and G are t-P-/C-equivalent. This completes the proof.

We remark that °Ar, °Dr-type germs in Theorem 2.4 can be realized as geometric
solutions for any Hamilton- Jacobi equation. However, if a Legendrian unfolding has
a non-trivial bifurcation, the situation is different as follows:

Example 3.3. Consider the equation : s +pn = 0 (i.e. H(t,xyp) = pn).
Let F(t,x,y,9) be the generating family of the Legendrian unfolding $jr. Sup-

pose that $jr|t = 0 is an initial submanifold of the (GCPT) for s + pn = 0. Then
we have

f | x R" x R* + £ | 0 x R» x R* S 0 mod (§L |£) w

It follows that ^ | 0 x R n x R f c 6 Te(P-K)(f), where / = F|0 x Rn x Rk. Thus F
cannot be a P-/C-versal deformation of / , so that, for example, lAr, ^r-type germs
in Theorem 2.4 cannot be realized.
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Of course, since the above example is a linear equation, the characteristics never
cross, so there are no shocks if the initial condition is a smooth function.

Example 3,4. Consider the equation : 8 + p3 = 0 (i.e. n = 1 and H(t,x,p) = p3).
We now consider the function germ /(x,g) = q4 + xg, then ^ = 4g3 + x, so

that <f>f = {(-4g3,-3g4,g)|g € (R,0)} is a Legendrian submanifold of Ja(R,R)
whose generating family is given by /(x, y, q) = /(x, q) - y = q4 + xq — y. Since
to = to °<t>f = {(0>-4g3,-3g4,-g3,g)|g € (R,0)} C -E(#)o is the initial condition
for the (GCPT), we can get a Legendrian unfolding (£, 0) C E(H) by the method of
characteristics. Let G(t, x, y, q) = G(t, x, q)-y be a generating family of (£, 0), then
p(^5!/?9) = 0(2>9) - y = ^(0,*, V,q) is * generating family of £0. By the proof of
Theorems 19.4 and 20.8 in [1], there exists a diffeomorphism germ ¥ : (R x R, 0) -+
(RxR,0) of the form ¥(x,g) = (x,if>(x,q)) such that goty(x,q) = /(x,g). Define a
function germ F : (R x R x R,0) -> (R,0) by F(t,x,g) = G(t,x,^(x,g)), then the
Legendrian unfolding $/r is equal to $ G =: £• I* follows that $jr is the geometric
solution of E(H) and ^ | t = 0 + ( | f | t==0)3 = Omod ( j f |tao>£(.iWif). Since F|t==0 = / ,
we have ^ | t = 0 + g3 € (4g3+x)5(, w f). It is easy to show that §E| t e 0 € Te(P-lC)(f).
Since F and G are t-P-X:-equivalent, ^ | t=o = ^f |t=o 6 TC(P-/C)(^). This formula
shows that G cannot be a JP-/C-versal deformation of p. However the generating
family of type ^ 3 : q4 + xq + tq2 — y is a P-JC-versal deformation of /(x,y,g),
so that G is not t-P-/C-equivalent to the germ of type IA3. Thus the Legendrian
unfolding of type IA3 cannot be realized as a geometric solution of 5 + p3 = 0.

Hence, we assume a kind of non-degeneracy condition on the Hamiltonian func-
tion germ. We say that a Hamiltonian function germ IT(t,x,p) at (to,xo,po) is
non-degenerate if the matrix (flf.Ji (<o^o?Po)) is positive (or negative) definite.
Then we have the following realization theorem.

Theorem 3.5. Let H(t,x,p) be a non-degenerate Hamiltonian function germ at
(*o>zo,po) and C : (R,UQ) —> (J*(R x Rn,R),(to^o^yo^o?Po)) be a P-Legendrian
stable Legendrian unfolding associated with (/x,^). Then there exists a Legendrian
unfolding C! which is a geometric solution of the Hamilton-Jacobi equation
s + fT(t,x,p) = 0 such that C and £ are P-Legendrian equivalent.

Proof. Without loss of generality, we assume that (t0, £o,yo) = (0,0,0). Let G :
(R x (Rn x R) x R*, 0) -• (R, 0) be a generating family of the Legendrian unfolding
C. Since GfeGJO x Rn x R* is non-singular, the set

*, = {(0,x,-JJ(0,x, ^ ( ^ « ) ) . ^ ( * , « ) ) I ^ ( ^ « ) = 0 t = 1,.. . ,*}

is the initial condition for the corresponding (GCPT), where g = G|0 x Rn x Rfc.
By the arguments of the last part of §1, we can construct a Legendrian unfolding
£' which is the local unique geometric solution around <f>9.

We now choose a generating family F : (R x (Rn x R) x R*',0) -> (R,0) of C!.
By definition, Image $jr|t = 0 is equal to <f>g, so that we may assume that k = k'
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and /, g are P-JC-equivalent, where / = F|0 x R n x R*, /(x, y, q) = /(x, q) — y and
g(x,y,q)=g(x,q)-y.

If P-/C-cod p = 0, then P-JC-cod / = 0, so that / is already a P-KL-versal defor-
mation of itself. Hence, for the same reason as in the proof of Theorem 3.2, F is
t-P-AC-equivalent to G.

We now assume that P-K-codg = 1, so that P-JC-cod/ = 1. If
Te(P-K)(f), then we can get the required assertion by the uniqueness of the P-K-
versal deformation as in the previous case.

Suppose that ĵp|t=o € Te(P-lC)(f) for any generating family F of C!. Since
is a geometric solution of s + H(t,x,p) = 0, we have a relation

dF.

so that

Therefore

mod ( — , . . . , —

where /o(?) = /(0??)- We may assume that /o € SDÎ , where 9Jlg is the unique
l d l f £maximal ideal of £q.

We now consider the Taylor polynomial of fT(t,x,p) of degree 2 at (t,x,po) with
respect to p = (pi,... ,pn)-variables as follows :

n 8H.

-(t,z,po)(Pi - Po,»)(Pj - Po,i) + higher term.

If we set t = 0, x = 0, and p* = 4£(0, q), then

|
1 Q2 TT flf Qf

+2 5 2 ^ a p - ( x ' p o ) ( a x - ( o ' 9 ) " ^ ^ ^ ^ " ̂  + higher term-

Since F(t,x,g) is a generalized phase function germ, rank(af~^ lt=o) = fc- Then

we may assume that Q^Jx (0) = £y for t, j = 1, . . . , k and ^|(i,x)=(o,o) € SXJl| for

12



I = fc+1,... ,n. It follows that ^(O,O,g)-pot
IT is non-degenerate, the quadratic form ]£i=i

On the other hand

, where ip(q) € SDtJ. Since
tgj never vanishes.

It follows that

#(0 ,0 , | ^ ( 0 , g ) ) € </(*,<*) - y, (1, ^

and

5 E S-'0'0
l<tj<n r r j

^

For any linear isomorphism A : Rn —• Rn, we have a relation

Since

and the vector space

is an invariant under the action of the linear isomorphism A, then any quadratic
form of q = (g i , . . . , g*)-variables is contained in the above vector space. If there
exists a quadratic form of q-variables that it is contained in (/o, ^-)sq mo
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then all quadratic forms are contained in it for the same reason as above. In this
case, since the vector space (/o, ^)sq modQJt̂  has at most dimension fc, then k
should be 1 and /o is an A2-type function germ. It follows from Theorem 2.4 that
F(t, x, q) is of °A2-type, so that this case is contained in the case of P-fC-cod ( /) = 0.

We may assume that any quadratic form of q-variables is contained in

Since /C-cod (/0) is finite (for the definition of /C-finiteness, see [35]), then there
exists r € N such that 9Jt£ C (/o, 7&)€q- By the same arguments as those of the
previous paragraph, we can assert that every monomial of q-variables of degree 3
is contained in the vector space

If there exists a monomial of degree 3 which is contained in (/o, ^)s
then k should be 1 and /o is an ^- type function germ. It follows that

By Theorem 2.4, F(t, x, q) should be of °.A3-type, then this case is contained in the
case of P-/C-cod (/) = 0.

For °At or lA/-type germs, we get same normal forms as in Theorem 2.4 without
the assumption n < 5 (cf. Theorem 2.2 in [36]). We can continue this procedure
up to degree r — 1. Eventually, it remains the case that every polynomial of degree
r — 1 is contained in the vector space

Since 2K£C(/o,^)*4, then

It follows that

so that we have £(x,q) = Te(P-K)(f) by the Malgrange preparation theorem. This
contradicts the fact that P-/C-cod (/) = 1. This completes the proof.

Remark. The method of the proof is analogous to that of Theorem 4.2 in [19].
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4. MULTI-LEGENDRIAN UNFOLDINGS

As we discussed in the introduction, in order to study how the shock waves for the
viscosity solution of (P) evolve, we study the evolution of intersections of branches
of the graph of the corresponding geometric solution. We classify the bifurcations
of the branches of the graph by classifying the bifurcations of singularities of multi-
Legendrian unfoldings which are expressed in terms of multi-germs.

Let & : (R,uo) - • (J*(R x Rn,R),z>) (i = l , . . . , r ) be Legendrian unfold-
ings with TL(zi) = 0 where zu...,zr are distinct. We call ( £ i , . . . , £ r ) a multi-
Legendrian unfolding. Let ( £ i , . . , , £ r ) and (££,.. . ,££.) be multi-Legendrian un-
foldings. We say that these are P(ry Legendrian equivalent if there exist contact
diffeomorphism germs

of the form

and a diffeomorphism germ \& : (-R,uo) —• (R^uf
0) such that Ki od = ££o\I> for any

i = 1,. •. ,r. It is clear that if two multi-Legendrian unfoldings are P(r)-Legendrian
equivalent, then there exists a diffeomorphism germ

$ : (R x (Rn x R),0) -+ (R x (Rn x R),0)

of the form $(t,z,j/) = (^i(t),^2(«,x,j/),^3(t,x,y)) such that *(Uj=1W(£i)) =
Uj=1W(£i). Thus the above equivalence describes how bifurcations of wavefronts
(i.e. graphs of solutions) interact.

By Proposition 2.2, there exist generating families

Fi: (R x (Rn x R) x Rfci,0) -+ (R,0)

of £», i = 1 , . . . ,r. We may choose those generating families for which fc = fcj =
. . . = kr. We call F = (F i , . . . , Fr) a multi-generating family of the multi-Legendrian
unfolding ( £ i , . . . , £ r ) . We also consider an equivalence relation among multi-
generating families of multi-Legendrian unfoldings. Multi-generating families F =
(JFi,..., Fr) and F' = (F{,..., F'r) are t-(P-lC)(ryequivalent if there exists a diffeo-
morphism germ

*<: (R x (Rn x R) x R*,0) - • (R x (Rn x R) x R*,0) (i = 1 , . . . ,r)

of the form

such that

We also define the notion of stable t-(P-K)(r)-equivalence in the same way as the
stable t-(P-K)-equivalence (see Section 2). We have the following theorem which is
a corollary of Proposition 2.3.
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Proposition 4.1. LetF = (Fu...,Fr) andF1 = (/},...,F^) be multi-generating
families of multi-Legendrian unfoldings ($Fu • • • > $F r) &nd ($F{> • • •> $ F ; ) respec-
tively. Then ($FX » • • • > $F r) °rcd (^F^ - • • > $ F ; ) a r e P(TyLegendrian equivalent if
and only if F and F' are stably t-(P-fC)(ry equivalent.

According to the above proposition it is enough to give a classification of generic
multi-generating families under the (P-/C)(r)-equivalence. For this we need to ex-
tend the results of the previous section to multi-generating families.

For generating families Fi of $/r., i = 1 , . . . , r, we define a subspace of £{x^y,q) by

m / p r wfv /dfl r, ,dfr 2, .Qf df Of.
T c(P ( r )-/C)(/) = ( — J ^ ^ X . . . X (—Jr)£imvq) + < _ , . . . f _ , _ ) S { x y )

and (P-X:)(r)-cod/ = dimR^x,y,g)/Tc((P-X:)(r))(/), where/, = /i|0x(R»xR)xR*.

We also say that F is a (P-IC)(ryversal deformation of f if

By the versality theorem in [10], we have the following uniqueness result.

Theorem 4.2. Let F and G be (P-K)(ryversal deformations of f and g respec-
tively. Then F and G are t-(P-K)(ry equivalent if and only if f and g are (P-/C)(r)-
equivalent.

Our objective is to classify multi-generating families F = (jFi,...,Fr) which
are (P-£)(r)-versal deformations of / = F|0 x (Rn x R) x Rk. Then we need a
classification of multi-germs / of (P-/C)(r)-cod/ < 1. The following estimate of
codimensions is useful for such a classification.

Lemma 4.3. £ i = i K-cod(f0^ < (P-K){r)-cod(f) + n + 1. Here, /C-cod(/0,») =

Proof. We have ^ - c o d ( / 0 i t ) = dimKS{x^q)/(^Ji)e(x yq) +m^y)S{x^q), so tha t

Te((P-)C){r))(f)

<(P-AC)(r)-cod(/) + n + l.
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We say that multi-function germs /o = (/o,i>-••>/(),?•) and 00 = (0o,i>--- >0o,r)
are £(r)-equivalent if /0,i and po,t are ^-equivalent for i = 1 , . . . , r. For the definition
and properties of the AC-equivalence, see [35]. We now define

We also define the notion of /C(r)-versal deformation of /o as follows : Let F =
(Fi, . . . ,^V) be a ^-parameter deformation of / 0 (i.e. F; : (R* xR f c ,0) - • (R,0)
is a function germ such that Fi\0 x R* = /0,i for any i = 1,. •. ,r.) We say that
F = ( F i , . . . , Pr) is o, K(ryversal deformation of a multi-germ /o if

We also define the discriminant set o / F a s follows :

where

Z)̂ t. = {w6 RM\Fi(u,q) = g ^ ( ^ « ) = ••• = Q^(U^) = 0 for some g € (R*,0)}.

We have the following lemma.

Lemma 4.4. J/ a multi-generating family F is an one-parameter (P-K,)(ryversal
deformation of f = F|0x (Rn xR) xRfc, then it is an (n+2)-parameter(K)(ryversal
deformation of f0 = F|0 x (0 x 0) x Rfc.

We summarize the strategy for the classification, which will be presented in the
next section, as follows :

Step 1. We classify multi-germs /o = (/o, i , . . . , /o,r) with (/C)(r)-cod (/o) < n + 2
under the (/C)(^-equivalence, where (JC)(r)-cod (/o) = X)fei ^"c°d(/o,t)-

Step 2. We construct (n+2)-parameter (/C)(r)-versal deformations F of the normal
forms /o = ( /o, i , . . . , /o,r) obtained by Step 1. We fix each germ F and we consider
a smooth function germ t : (Rn + 2 ,0) -+ (R,0). By the theorem in Zakalyukin [36,
part 2.2], we can classify t under coordinate changes of Rn+2 which preserve the
discriminant set Dp. This classification generically corresponds to the classification
of F under the (P-JC)(r)-equivalence which preserves the projection on the t-space
(i.e. the t-(P-/C)(r)-equivalence).

Step 3. We can check that each normal form obtained by Step 2 is a (P-/C)(r)-
versal deformation when we consider t as a parameter. Thus we can detect normal
forms of generic multi-Legendrian unfoldings by the P(r)-Legendrian equivalence.
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5. CLASSIFICATIONS

In this section we pursue the strategy we referred to at the end of the last section
in case n=l or 2. Since a generalized phase function germ F satisfies d2F(0) = 0,
we may assume that AC-cod(/o,«) > 1 for a multi-germ /o = (/o,i,---5/o,r)- It
follows from Lemma 4.3 that r < n + 2. By Corollary 2.5, we have the following
classification.

Lemma 5.1. For n < 2 and generic multi-generating families F = (F\,..., Fr) of
multi-Legendrian unfoldings, the corresponding multi-germs /o = (/o,i. • . , /o,r)
(/C)(r)-equivalent to one of the multi-germs in the following list :
n = l ;

n = 2 ;

lql) (9i?i
r = 4; (q\,q\,q\,q\).

The case of r = 1 has already been classified in Corollary 2.5, so we do not
consider this case. For the case r > 2, we can easily construct a £(r)-versal defor-
mation for each multi-germ by the usual method. Then the corresponding list is as
follows :
n = l ;

q\,

(1)

(2) (q\ + tti,i,«

(3) (ql + uiti,ql + U2,i

n = 2 ;

(4) (
(5) (ql + u1A,ql + u2li
(6) (q\ + ui,i, q\ + u2)i + u2,29l

(7) (?i+«i, i +ui,2gi,9i +u2)i

(8) (ffi+tti,i»9i +U2,i»
(9) (?i + tti,i,g} + u2)i,9? + u3,i

(10) (? + « 9 + « 2 i 9 + « 3 i 9

Let G(txi , i , . . . , ui ) M l , . . . , u r , i , . . . , urtftr, g i , . . . , qk) be a /C(r)-versal deformation
of a multi-germ g = ( p i , . . . , P r ) , where m = fC-codfi for i = l , . . . , r . Define a
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multi-germ G by

u • • •,Qk)

for n = n + 2 - YZUi W- W e n o w consider a function germ t : (Rn+2,0) -+ (R, 0) on
the (ui fi,. . . ,ui fMl , . . • ,tir4,... , tir^^ui,. •. ,uM)-space. We can apply the theorem
of part 2.2 in [36], so we get the following :

Proposition 5.2. (Zakalyukin [36]) Suppose that n < 4,

91 ^Q ^ ^o

and
t|Ul 1==...=Ur|4r==o w a Morse function germ.

Then there exists a diffeomorphism germ (f>: (Rn+2,0) —• (Rn+2,0) preserving the
discriminant set DQ such that to<j> is equal to U\ or ±u\ Ml ± • • • ± ur ̂ r ± (txi)2 ±
••-±M2.

We notice that a submersion germ t : (Rn+2,0) —> (R,0) which satisfies the
assumption of the proposition is generic. We can detect generic normal forms of
multi-Legendrian unfoldings as follows.

Theorem 5.3. Suppose that n < 2. Then a generic multi-Legendrian unfolding
is P(r)-Legendrian equivalent to one of the multi-Legendrian unfoldings defined by
multi-generating families in the following list:
n = l ;

r = l ;
% : q\-y\
°A2 : q\ + xigi - y ;
M3 : q\ + q\t + xiqx - y.
r = 2 ;

%) : (ql-x-y,ql+x-y);
% ? 2 ?

r = 3 ;

n = 2 ;

y ;
+x2ql-y ;

- y ;
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*D4 : q\ ± q\ + fit + x2q2 + *i9i - V-
r = 2 ;

°iii) : (ql+x1+x2-y,ql+x1-x2-y)',
%) : (g

2+t±s2±*2-y,<?
2-y);

- y ) ;
{x2-xl)ql-x2-y,q\+xlql-y)

= 3;

r = 4 ;
% % % % : (g? +1 + X! +x2 - y,q\ - y,q\ +x1-y,ql+x2- y).

Proof. Let G ( « i , i , . . . ,Mi , M n . . . ,w r , i , . . . , u r , M r , 9 i , . . . ,gfc) be a /C(r)-versal defor-
mation of a multi-germ g = (gi,*..,gr)i where fa = /C-cod/j for t = 1 , . . . , r .
Define a multi-germ G by

r ,q\ ,

_ ^ 1

Let F(t, x, y, g) be a multi-generating family of a P(r)-Legendrian stable multi-
Legendrian unfolding. Then F is a (P-AC)(r)-versal deformation of a multi-germ F,
so that F is a (£)(r)-versal deformation of a multi-germ /. If / is (£)(r)-equivalent
to g, then F and G are (P-AC) (r)-equivalent (i.e., there exist diffeomorphism germs

$i: (Rn + 2 x Rfc,0) -• ((R x Rn x R) x Rfc,0) (i = 1 , . . . ,r)

of the form

such that Sb*(F)e(u>f) = (G)e{Ut9))' By the remark after Proposition 5.2, we may
assume that V'l satisfies the assumption of Proposition 5.2, so that there exists
a diffeomorphism germ <f> : (Rn + 2 ,0) —> (Rn + 2 ,0) preserving the discriminant set
Uj-jDQ. such that ipiocfris equal to Hi or ±UiiMl ± • • • ±ur,Mr ± (ui )2 ± • • • ± (txM)2.
Here, the discriminant set UjL^Dg. is the wave front set of a multi-germ of a
Legendrian submanifold in J1(En+1$,R) C PT*Rn+2 , where PT*Rn+2 is the pro-
jectivization of the cotangent bundle T*Rn+2. (See [36]). Then we can construct the
unique contact lift <j> of <j> preserving the multi-germ of the Legendrian submanifold.
That is, (<f> x l*k)*G(u,q) = G(<f>(u)^q) gives the same multi-germ of the Legen-
drian submanifold given by G. We can choose the coordinates of (R x Rn x
as follows

t = ^ o <f>(u)

(x,y) = (i{>2 0 <f>(u)
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where u = (ui,i,. • • ,ui ,M n• . . ,Ur, i , . . . ,u r ,M r ,ui , . . . ,uM). By the above equality we
can represent the coordinates u by the coordinates (t,x,y). This procedure gives
the normal forms as follows : Let G be a germ of the form

In this case we have r = 2 and n = 1, so that ^ = 1^2 = 1 and fi = 1. It follows
from Proposition 5.2 that t = u\ or t = ±tii,i ± u2,\ ± u\. If t = ui, we can adopt
the coordinates U14 = x — y and ti2,i = — x — y. If t = ±ui,i ± U24 ± n*, then we
can adopt the coordinates U14 = ±t — U24 — uj, ui = x and U24 = y. Finally, we
get the normal forms of type °{°A\ °A\) and 1(°i4i °ili). For other germs, we can
get the normal forms by repeating the steps in the above calculations. Since these
calculations are straightforward we omit the details.

Finally, we can easily check that each normal form is (P-/C)(r)-versal.

6. DISCUSSION

In this section we discuss how we can construct the viscosity solution by using
the classification Theorem 5.3 and hence study the geometric structure of the shock
waves. The first time the characteristics cross the geometric solution becomes
singular and a singularity of type ^ 3 appears. See Figure 1. We construct the
unique viscosity solution past the first critical time by selecting a continuous single-
valued branch of the geometric solution. The proof that the so constructed function
is the viscosity solution was given in [25] without making any assumption on the
convexity or concavity of the Hamiltonian H. The case of a convex Hamiltonian,
where the weak solution is defined in the class of the semi-concave functions, was
studied in [27].

FIGURE 1 FIGURE 2

The graph of the viscosity solution for a given time t past the first critical time
is shown in Figure 2. The projection of the intersection of the two branches 5i(t)
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and 52 (t) on the x-plane is the shock surface IV In order to follow the evolution of
Tt we study the evolution of the intersection Si (t) D S2(t) which is described by the
semi-local classification Theorem 5.3. The global structure of shock waves in case
n = 1 for H = H(p) was studied in [24] by using classical techniques. Here, we only
discuss how to construct the viscosity solution from the geometric solution in case
n = 1, H = H(t,x,p) using the obtained classification list. These constructions as
well as the constructions in case n > 1 for H convex will be presented in [21]. A
shock is a piece-wise smooth curve x in the (x,t)-plane parametrized by t across
which dy/dx is discontinuous. The speed of the shock wave is given in terms of the
Rankine-Hugoniot condition

dX = H(t,x,yx(x(t)+,t))-H{t,x,yx{x(t)-,t))

d ( ( ) ) ( ( 0 )

and the viscosity solution satisfies the viscosity criterion ([8, Theorem 1.10], [24,
Appendix]) across the shock curve. This is the analogue of the shock-entropy con-
dition for the distributional solution of conservation laws (see [9], [27]).

\ •

\-A
(a)

-v y -

(c) (d)

FIGURE 3

Figure 3 depicts the bifurcations of the graph for r = 2,3 that involve the inter-
action of more than two branches. In case °(°Ai °Ai) (Figure 3a) the intersection
of the two branches corresponds to the shock point and the graph of the viscosity
solution is either the minimum or the maximum value of the two branches depend-
ing on whether yx(x{t)^t) are in a neighborhood where H is convex or concave.
The corresponding shock is called genuine shock and it is defined by two incoming
waves. See [24], cf. [9]. In Figure 3a the solution that corresponds to the minimum
value is shown by a full line. Figure 3a excludes the possibility that a singularity
IA3 might appear in one of the branches. This implies that a shock does not split
into two forward shocks.

In case of 1(0A\0Ai) (Figure 3b) the intersection points do not correspond to
shock points. E.g., when H = H(p) this would imply that the two incoming waves
defining the shock will have the same speed at the separation time and the shock
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speed will be zero. The shock curve will degenerate to a line restricted between the
two incoming waves.

Case IA2 °A\ (Figure 3c) is more complicated as a point of intersection corre-
sponds to a shock point until the time the two branches separate. The graph of the
viscosity solution until the separation time is either the minimum or the maximum
of the two branches. After the two branches separate we continue the viscosity
solution by connecting the two branches by a rarefaction-wave-type solution. The
time the two branches separate the genuine shock turns into a contact discontinuity
(see [24], cf. [9]). The contact discontinuity is defined from one side by an incoming
wave while from the other side it emits outgoing rarefaction waves.

Case °i4i °Ai °A\ describes the interaction of two shocks. The viscosity solution
is either the minimum or the maximum of the three branches. The graph of the
viscosity solution in case of a minimum is shown in Figure 3d by a full line. The
two shocks that the viscosity solution exhibits meet at one point and they continue
as a single forward shock.
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