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Relaxation in BV x L= of functionals depending on strain and
composition

Irene Fonseca, David Kinderlehrer, and Pablo Pedregal
Dedicato a Enrico Magenes

Abstract. We show that if w(A,m) is a quasiconvex function with linear growth then the relaxed
functional in BV(QRM)XL=(Q,RY) of the energy

‘{ y(Vu,m) dx
with respect to the L! x L=(weak*) topology has an integral representation of the form

Flum) = Ia v(Vum)dx + Jw“((u"—u*)@v) dHy, ) + | v (dC(w))
u)

where Du = Vu dx + (u* - u")®V dHN.1LX(u) + C(u). The proof relies on a blow up argument and
on a recent result obtained by Alberti showing that the Cantor part C(u) is rank-one valued.
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1. Introduction

In this paper we obtain an integral representation in BV(Q,R™) x L=(Q,R%)
for the relaxation F(u,m) of an energy functional

E(um) = J v(Vu(x),m(x)) dx
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with respect to the L1 x L=(weak*) topology.

One motivation for this question is the analysis of coherent thermochemical
equilibria among multiphase and multicomponent solids (see [AJ], [JA], Larché and
Cahn [LC1,2]). This is explained in detail in [FKP]. For example, in the case of
ttl\lvofspecics in equilibrium in a matrix and a precipitate, the pertinent functional has

e form

Iuc) = J\y(Vu,c) dx
subject to the constraint

1_[cdx = 01Q1I,

where u denotes the deformation of the material and ¢ the concentration of one of
the two species.

Kohn [K] obtained a formula for the relaxation of / in the case where
composition is uniform, i. e. Y(F,c) =: y*(F), and for two linearly elastic phases
with identical elastic moduli. In more general situations, the composition is not
uniform (see [LC2]) and so we must address the problem of finding the effective
energy in the case where it depends on the chemical composition c. When linear
growth in the deformation is admitted, functionals of the sort considered here then
arise.

In the scalar case n = 1, loffe [I] studied the lower semicontinuity of E in

1
Wll(weak) X L;,. (see also [Am] for a new proof of this result). Here,

generalizing E to the case where ¢ may take vector values m and assuming that
N, n > 1, we want to obtain an integral representation for the relaxed functional F

in BV(Q,RMxXL=(Q,RY) of the energy E, where

Fm):= inf {liminf };\y(Vuk,mk)dx : (upmy) € Wh x L=,
{ug){mg} "k -
ug —uin L1 and my & minL“‘}.

Throughout this work we will assume that y is jointly quasiconvex in Vu and
convex in m, namely

(H1) w: M xRd — [0,4) is a Borel measurable function such that

y(AA) < i—-‘l)—;‘!\y(A + VLA +m) dx

for all (A\) e M xRdand ({,;m) € Wy™(Q, R?) x L=(Q, RY) with [ mdx = 0.
Q
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In addition, y grows at most linearly,

H2) cilAl-c; € YAN) < g) (1 +1Al) wherecy,c2>0and ge LTOC(Rd).

So, for example, under these hypotheses the functional determined by y is weakly
sequentially lower semicontinuous in W1.= x L*=, cf. [FKP]. Indeed, relaxation in

WLP x L4 under the hypotheses (H1) was obtained in [FKP]. Our objective here is
to determined the relaxed functional when the admissible functions come from BV

X L.

Although most of the results and proofs in this work are inspired by those

in [FM1,2], we note that the relaxations of y(Vu,m) and y(Vu,u) present
several different features. In particular, in the support of the singular part of Du, the
function m, being only Lebesgue measurable and not necessarily related to u in any
way, may not be well defined. We recall that the distributional derivative Du is
represented by

Du = Vu dx + (u* —u~)®v dHn_; LEZ(u) + C(u).

Here Vu is the density of the absolutely continuous part of Du with respect to the
Lebesgue measure dx, HN- is the N-1 dimensional Hausdorff measure, (u*—u-)

is the jump of u across the interface X(u) with "generalized normal" v and C(u) is
the Cantor part of Du. For details we refer the reader to [EG], [Z].

We expect, as usual, that the integral representation of F will involve the

integration of the recession function, (2.1) below, on X(u) U supp C(u).
However, if m is not well defined on this set what kind of representation are we to
expect? This question is naturally solved by the convexity and growth assumptions

imposed on y. Indeed, we will show on Lemma 2.2 that

A — Y=(A,A) isconstant
whenever rank A < 1, and due to Alberti's [Al] result we know that

d(Du)
rank dD()! <1

on X(u) U supp C(u). Denoting by y*=(a®b) the constant value of this function of
A, we will obtain (see (2.2) and (6.1))
F(um) = d[ w(Vu,m) dx + z(' y=((u- — u)®V) dHn.1(x) + ‘{ y=(dC(w))

u)

(1.1)
where (u,m) € BV(Q, RM) x L=(Q, RY).
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2. Preliminaries The recession function

We start by studying some properties of the recession function (see [FM2])

veAm): = limsup M .
t— oo

2.1)
Lemma 2.1.

a) cilAl £ y=(AA) < g)IAl and y=(A\) is positively homogeneous
of degree one in A;

b) Y™ satisfies the quasiconvexity/convexity condition (H1).

Proof. a) is clear. To prove b) let (AA) e M xRd, (p,m) € W10’°°(Q,]R“) X
L=(QRY) with {mdx =0, and let
Q

(tcA,m)

. YtkA,m)

for some tx — +oe.

By (HI)

!(ikﬁ_v“l). < I'QI‘ITE‘J"’““A + V(tx9), A + m) dx

= T'Ql_l't_k' f[w(tk(A +Vo),A + m) dx.
Defining
Hix) = g(M+lImil)(1+11A+ VX)),

we deduce that
v=(A)) < limsup ml-rr.; J V(tk(A +V )\ + m) dx

ko e
= L f Hwax - timinf o= | [H-L wA +Ve)A +m)] dx
S 1Qla Jrint TaT gt Ty ¥ ®),
which, by Fatou's Lemma, yields

VAN S f tim sup tk\v(tk(A +V0)A + m)dx
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< 57 JveAa+Versmax. QD
D

Lemma 2.2. If rank A =1 then the function A — Y=(A,A) is
constant.

We divide the proof of this result into two lemmas.

Lemma 2.3. Fixv € SN-1, Then the function f:RPx R4 — [0,+)
defined by

fad) = Y= (@dv,A)

is convex.

Proof. Let (a,A) = 6(aj;,A1) + (1 - 6)(az,Ay) for some O € (0,1). LetQ be a

unit cube centered at the origin with two faces perpendicular to v and let {n;} bea
family of cut-off functions such that

i) nj = 1 inQj:= {xe Qldist(x,0Q) 2 1/j};

i) n; = OonaQ
iii) IvVnjl. < G;.
Define
A(x) = A +x(kxv)(A1-A2) -4,
kx-v
B = @-D@Vx + | [10dt @1 -2,

@)

where ) is the characteristic function of the interval (0,0) extended to R
periodically with period one. Notice that

Px(x)N;(x)

1. &x & 0 inL~Q);

2, J Ac(x) dx = 0;

3. Vo(x) = (a2-a)®@v+ykx.v)(aj—a) ®v % 0 inL=(Q) and
J kx)dx o O;

4. ¢l € Wi (QRM);

5. th{ =1j Vok + px®Vn;,
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By Lemma 2.1 b) the function y* satisfies the convexity condition (H1) and so

fad) = y=@®v\) < J' y=(a®v +Vol, A+Ax) dx

Jw"(a@v +Vor,A+Ax) dx + f y=(a®v +V<pi,k+kk) dx
AQ

\Lw"(a@v +V ok, A+Ax) dx
= Ik + IIkJ + Iy

As {lAg llo + llgg Il o} is bounded, by Lemma 2.1 a) we have
supk | Ik j| < Cmeas(Q\Q) — 0.

Fix j . From 3) it follows that ¢y — 0 in L= and so choose k(j) large enough so
that

1
N lle < JT-Q-\Q_JI
for k 2 k(j). Then, by Lemma 2.1 a)
IMgG)i! S CIQWQ;! + j! and ligglleo | QQjI — 0 asj—> +oo.
The convexity of f follows from the fact that

klim L = 0y=(a;®V,A1) + (1 - O)y*=(a2®V,A2)
— oo

=0 f(aj,A1) + (1 - 0) f(az,A2). QED

Lemma 2.4. Let E:RMxRd — R, =&(a,L), be a convex function
such that E(ao,.) is constant for some ag € RP. Then the function E is
independent of \.

Proof. Suppose that mg = £(ag,A) forall A. Given (a,A") we have
= E(ap,A) 2 &(a,\) +a(aA)(ap-2a)+B@A)A-A)

where (a(a,A"), B(a,\")) belongs to the subdifferential of £ at (a,A"). Letting | A |
— +o0 we conclude that B(a,A") = 0 and so we may deduce that

E@Mr) 2 &(a,A)
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for all A, A' and thus they must be equal. QED

Proof of Lemma 2.2. As y>(,,A) is positively homogeneous of degree one,

v20,A) = 0 forall A
The result now follows from Lemmas 2.3 and 2.4.

The proof of (1.1) is divided into two parts. In the first part, carried out on
Sections 3, 4 and 5, we show that the representation in (1.1) is a lower bound for F

i. e. if uyx e WLI(Q;RM) are such that uy — uin L}(Q;R"), with u e BV(QRD),
andif my %> m in L=(QRY) then

liminf [ w(Vug,mp) dx 2 J\y(Vu,m)dx + zjw‘”((u"—u*)@v)dHN_](x)
u

k> o )

+ ([ v=(dCv)). (2.2)
C(u)

Finally, in Section 6 we assert equality in (2.2) using the same reasoning as in
[FM2] (see also Ambrosio, Mortola and Tortorelli [AMT]).

To prove (2.2) we use the blow up argument introduced in [FM1]. It is
then reduced to verifying the pointwise inequalities (2.3), (2.4) and (2.5) below.
Assume, without loss of generality, that

liminf | y(Vug,mg)dx = Im | y(Vuygmg)dx < +ee
k— oo k> o

and uy € C;(RN;R“) (see Proposition 2.6 in [FM1] and also Acerbi and Fusco

[AF]). As vy is nonnegative there exists a subsequence, which for convenience of

notation is still labelled {ug,my}, and a nonnegative finite Radon measure p such
that

y(Vug,my) & p.

Using the Radon-Nikodym Theorem, we can write p as a sum of four mutually
singular nonnegative measures

B = Hadx + Llut —u- [HN-ILXZ () + 1 ICQ)! + ;.
We claim that

Ha(x) 2 y(Vu®x)m(x)) for dx a.e.x € Q, 2.3)
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Y (U—(x) - u*(x))®V(x))
0 2 0 — w0l

and

for lut—u1HN_ILY(u) ae. x € Z(u) (2.4)

nx) 2 y2(A®)) for IC@u)la.e.xe Q, 2.5)

where (see [Al] and [ADM)]) for IC(u)! a. e. x € Q and open, convex neighborhood
G of the origin,

A() := lim Dwx+eG) _ lim C(u)(x+eG)

= = ax)®v(x).
e—0 IDW)I(x+eG) €0 IC(u)l(x+eG)

Then, considering an increasing sequence of smooth cut-off functions n;j, with 0 <
Mj < land supj M;j(x) =1 in £, we conclude that

Jim [y(uemodx 2 lim inf ‘! M W(Vug,my) dx

= J n; du(x)

ZJT]jua(x)dx + 2_1[ N ¢ lu* - u-l dHNC1(X)) + (I njn dIC(u)I(x)
u)

> d[ nj y(Vum) dx + 2([ 7 Y™( - w)BY) dHN-1(0) +Jn,- v>(dC(u)).
u

Letting j — +o0, (2.2) follows from the Monotone Convergence Theorem.

3. The density of the absolutely continuous part

Using the technique developed in [FM1] we prove (2.3), namely

Ha(x0) 2 W(Vu(xq),m(xp)) fordx ae.xp€ Q.
By the Besicovitch Differentiation Theorem (see [EG]) the limit

Ha(xo) := lim H(B(x0:€))

dx ae.,xg€ Q,
e-0 | B(xo,€) |

exists and is finite and by standard results of the theory of BV functions
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im ! N/(N-1) (N-1)/N
lim ¢ {,B(m), o x{ () - u(x0) - Vutx0)-(x0 - ) dy}
= 0. 3.1

Here, and in what follows, we denote the N-dimensional measure of a set E by
| E I. Choosing one such xg which is also a Lebesgue point for m, define the
homogeneous function

up(x) := Vu(xq) x.

We abbreviate B = B(0, 1), we consider a subdomain B' cc B. Let ¢ € Co(B)
be a cut-off function such that 0 < ¢ < land @(x) = 1ifxe B'. Then

Ha(x0) H(B(x0.8))

lim
e-0 eNIB I

- o9 aue0

lim N|
e=0 € B(xo,e)

lim sup lim J‘ (0}
£-0 k—oo €N
B(xo.E)

lim sup lim 7—113—, A[ 0(x) Y(Vug(xo+ex),my(xo+ex)) dx
€930 ke

2 lim sup lim sup %—I li[\|I(Vwk,g(x),mk(xoﬁ»:x)) dx (3.2)
€0 k—eo !

where

We(®) = uk(xp+€x) —u(xo)'

By (3.1) and by Holder's inequality

o ek )
lm fim e - ol lg) = lm i 200 — u(x0) = Vu(xo) (x-x0)! dx
= 0,

and if {(pj}; is a countable set dense in L1(Q,R9), for fixed m

lim lim 'J(mk(xo +£x) - mo) Q) dx | =
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Iim | |(m(xg + €x) - m(x ix)dx1 =0.
lim J( (x0 + £X) — m(x0))Pj(X)

Using a diagonalization procedure we will show that

Ha(xg) 2 lim supl—%-‘ J\V(ij-,lj) dx where (3.3)
Jeo !

vji = up inLI(B;R") and A; & m(xq) inL=(B;RY).

Indeed, assume that

lim sup lim sup T'% B[\y(Vwk,,g(x),mk(,q,ﬂ.:x)) dx
€0 k—eo d

N 1
= lim lim sup 7w Vwi e (X),mi(Xo+&;x)) dx.
g—0 k—-)oopl B lB‘[W( k’el( ) k( 07e; ))

Forj =1and forall i choose kj(1) so that for all k = k;(1) one has

I J (my(xo+€iX) — m(x0))-@1(x) dx| <

im | d[ (my(xo+€ix) — m(x0))-91(x) dx | + 1/i
K—yoo
and
= JW(VWk,ei(X)-mk(XO+€ix)) dx

< limsup ; 113 | J Y(Vwi g (x),my(x+€ix)) dx) + 1/.

Recursively, for all j 2 2 and for all i choose kj(j) > kj(j —1) so that forallk >
ki()

| J (my(xo+€ix) — m(x0))-@;j(x) dx I

< Im | d[ (mx(xo+€iX) — m(x0))-9i(x) dx | + 1/
K—yco

l d[ (m(xo+&ix) — m(x0))-@j(x) dx | + 1/i
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Now consider the diagonal subsequence kij(i) and define

L) = my (o +Ex),  Vi(K) = Wie(X).
Then I 1 < Im I I 1 14

Hvj-— < k Wixe: — + 14

vi—uolilg) < lm lwice; —uoll !(p)
and so

Lim |l vi—-uollLl(B) = 0. (3.4)

1—>o0 ‘
Also, since xg is a Lebesgue point of m,

Ai & m(xg) in L=, (3.5)
By (3.2) and as k;(i) = k;(1),

Ha(x0) 2 lim suP[,—é—, IW(VVi,li)dx - 1/i]
1—o0 B

lim supﬁla—I Jw(Vvi,M) dx
1—)o0 '
proving (3.3).

Next, using the "slicing method" we are going to modify { A; } and { vj }
near dB' so that we can apply the convexity hypothesis (H1).

By (3.3) and the growth condition (H2) the L1 norms of {I Vv;l} are
uniformly bounded in B', i. e.

sup [IVvixidx < C.
Bl
Let Bj= {x € B': dist(x,0B) < 1/j} and divide B into two annuli S(lz) and S(zz). It
is clear that for each i there exists an annulus S € {S(lz) , 8(22) } so that
g[ IVv;(x)l dx < C2

and as there are only two annuli and infinitely many indices, we conclude that one
of the annuli, S; = {xe B'l oy < dist(x,0B") < B3}, satisfies

I |Vvi2(x)l dx < C2
S2



Relaxation in BV 12 2/18/93
for a subsequence {i2}. Let N2 be a smooth cut-off function, 0 <13 <1,M,=0
in the complement of {xe B'|dist(x,0B') < B2}, N2 =11in {xe B'": dist(x,0B’) <
oz} and IVl = O(1/1 S, I). By (3.5)

12_”” m | m(xp) - B ,anlxzdx | =1 m(xo) | |l—| B fnzdx |
and so, by (3.4) choose i(2) € {i2} large enough so that

J‘lvi(z)—uoldx < !2- and

| m(xo)—ﬁi.—, fnz M) dx |
IB i J"Z dx |

Next, divide B3 into three annuli S(13), S(23), S(33). For each i3 there exists an annulus

< Im(xg)l+1.

S e {S3) Sy S, } so that

Jleiz lax < C/3

and as there are only three annuli and infinitely many indices i, we conclude that
one of the annuli S3= {xe B" a3 < dist(x,0B") <B3} satisfies

[wviglax < cn

for a subsequence {i3} of {i2}. Let N3 be a smooth cut-off function,0 <N3 <1,
N3 = 0 in the complement of {xe B" dist(x,0B') < B3}, N3 =1 in {xe B"
dist(x,0B") < a3} and Il Vn3 Il = O(1/1 S3 I). By (3.5)

13 =400

. 1
fim Im(xo)—%—,g[naxgdx | =1meo) 1 |1-7gey Jnax |

and so, by (3.4) choose i(3) € {i3},i(3) >i(2), large enough so that
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1 1
rs;-'sj I viz)y —uoldx < 3 and
3

| m(x0) - 137 ﬂ[ﬂs Aic3) dx |

1 < Im(xg) | + 1.
| 1 “TB 1 BIT\3 dx |

Recursively, we construct a sequence i(j) such that

JleiG)ldx < ?.—, |Slj|.['vi(j)—u0|dx < % , and (3.6)
f J
3
l m(xg) —rfal—'-l Jnj AiG) dx|
< Im(xg) |+ 1.

1
II_T—B-'—IBInjXm

We set
_ m(xo)—,--l%.--| B['nj iy dy
Ax) == (1-m;(x)) n +M;(%) AiG)(X)
-3 [niay
B
Vi) = (1 =1;x)ug(x) + Mx)Vig)(X)-
Clearly

Bj A dx = IB'Im(xo), Il Ajlle S Im(xo)l+1+M and vj|ap' = uo.
Thus, by (3.3), (H1) and (H2)

1400

Ha(xo) 2 lim sup o J'\y(Vvi,ki) dx
. 1 - - -
J J

2 o W(Valxo)m(xo)
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~ Cg(Im(xg) | +1 +M)J (1 + IVuxo)l + IVvigy | + IV Ivigj) — uol) dx
4]

— Cg(m(xg !+ 1)I B; I (1 + Vu(xo)!)
and from (3.6) we conclude that

HaG0)2 [ B] W(Vulxo)mxo) + OCLf).

The result follows once we let j — +e and |B\B'| — 0.

4. The density of the jump part

Here we prove (2.4), precisely, that

y=(u—(x0) — u*(x0))®v(x0)
la*(xg) — u-(xg)!

L(xp) 2 for lut—ulHN-1LX(u) a. e. xg € X (u).

It is well known that (see [EG}, [FM2], [Z]) for HN-1 a.e. X9 € X(u) we have

O Gm = [l -ut) 1N = 1 utxo) - w (o)l

N-1
€0 £7 ¥ (u)n(xo+eQu(xg)

@ im - [1u@) - utxo) NN-D gy = o,
€0 €7 {y e B(x0k):(y-x0)-v(x0)>0}

lm [1u(y) - u-xg) NIN-Ddy = 0, and
€0 €% {y e B(xo.):(y-x0)-V(x0)<0}

_ H(x0+eQu(x)
lim
e—0 | ut — u- | HN_ L) (xo+€Qu(xy)

(i) C(xo) =

exists and is finite, where Qy(xq) denotes a unit cube centered at the origin with two
faces perpendicular to the unit vector v(xg).

Writting Q = Quxg) Q*:—l—-:-—aQ, with 0 <8 <1,let @ e Co(Q be
suchthat0 <@ <1,¢9 =1 0onQ* and let & — 0 be such that

1

im ————  [mdy
k= | X0 + €xkQ | xg+exQ

Yo =

exists. By (i) and (iii),
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fim K(xo+€xQ)
k= | ut — u- | HN- LX) (Xe+eQ)

1 . 1
T lut(x0) — u(x0) | ko g N xm!deu(x)

E(x0)

1 1 X—X0 dx
T tro) —w(xo) 1 S0P M 1 b8, YV a0 ma))

1
I ut(xp) — u-(xp) |

hm n sup hm ex®(Y)W(Vup(xg+ery),mp(xp+exy)) dy

1
I ut(xg) — u=(x0) | hlr(n_::lp h;n sup I ex¥(Vup(xo+exy),mn(x0+eky)) dy
4.1)

We define

ut(xg) if y.v(xp) >0

unk(y) := un(xo+exy) and uo(y) 1={ u(xg) if y.v(xp) £0

As u; — u in L1, by (ii) we obtain

im Bm [lupi(y)-uo()ldy = lm [lu(xo+exy) - ut(xo) I dy
k—00 n—e0 Q k—-)cOQ-Q-

+ lm jlu(xo+ey) u-(xq)ldy = O. 4.2)

k—oo

On the other hand, by (4.1)

C(xp) 2 1 lim sup hm SUP €x j v (—Vun,k(y),mn(Xo+€ky)) dy

lut(x0) — u=(X0) | koo

and, as in Section 3, by (4.2) and (H2) we use a diagonalizing argument to
construct sequences

Ax % yo inL*~ and l(vk—uollLI(Q)—-)O,Q‘[IVvkldx < C

such that
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1 . 1,
Lixo) 2 I u*(x0) — u=(xp) | hin_,ﬂl P& f \p(evak,lk) dy .
0

Let wy = px = up, where {px} is a mollifiying sequence. Then

IVwille = OKk) if k-v(xg)l < 1k and Ilvk—wkIILl(Q) - 0.

As in Section 3 we use the "slicing method" to obtain sequences

1
Yo-yoF] Qinj i) dy

A) = (1-7;x) 1 *+ 1) Aig)(x)
1 - 1Q* 1 QJ; n j dy
vi®) = (1=1))Wig)X) + M)ViG)(X)-

where

Q= {x € Q*: dist(x,0Q*) <1/j}, jlvvkﬁ)ldx s Clj,
Sj

|yo 1 Ql* , QIT\j AiG) dy|

1 .
751 ] k) - Wl dx < 15, PR — < lyol + 1,
S - jdy
1 Q* | Q*
and
1 . , 1oz 7.
S0 2 Ty ey PSP & Qf*"’(s—jv"yxl) dx . (43)
Note that
1
Yo-—j QF 1 Qi'ﬂj 7»1(3) dy
[Xax = 1Q*1y0, Rjlage) = g := :
and so

() = aj+6j(x) where

Qlej(x) dx= -1Q*I(aj—yo) and 6jlaQ+(x)=0.

Also VVj = Vwj(j) on 9Q* and so it is periodic. From the Q*- periodicity of 6j
and nj we deduce that
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§
<
1o . 1o— - .
=Q!\|I('Evaj,aj +0)dx = nlim»o QI w(ngj(lx),a_ﬁOj(lx)) dx

and since
0;(ix) — 'I% fﬂ,-dy = yo—4a; in L= weak* asi— +o and
Q*

vj(ix) — ,—é;——, (QI Vvjdyx inWhlasi— 4oo,
by (2.3) we conclude that

1o= 1 1 - 1
—VV5,Aj T THI Vv. dy, aj + 77z | 0;(y) dy)) dx
QI\V(EjVVJ Xj)dx 2 IQ‘ \V(ej Q¥ | JQ* Vi @y, 3j+q Q* 'Q'[ i(y) dy))

1
= 1Q "’(Z,-Tc‘zlrl (1 (x0) - w(X0)®V(x) | Q* IN-DN, y).

Finally, from (4.3) and Lemma 2.2 we have

C(xo) 2
: 1 *h(—— (u*(xq) — u- N-DN
lljriil:‘p I ut(xg) — u-(xg) |'Q N’(QIQ*I (ut(xg) —u (x0))®Vv(x0)IQ*| ’YO)dx

1
lut(xg) — u—(xp) |

1Q* FIN y=(u*(x0) — u=(x0))®V(x0)).

Now it suffices to let 1Q* | — 1.

5. The density of the Cantor part

We prove (2.5), that is, for IC(u)l a. e. xg€ Q

nxe) 2 y>=(A(x0)

where A(.) is the rank-one matrix a® v (see [Al]). Let Q = (-1/2,1/2)N and
Q(xq,€) = xo + £Q. For IC(u)l a. e. xp € Q
A(Xo) .= lim D(U)Q(XO,E) = lim C(u)Q(Xo,E)’
e—-0 ID)IQ(x0,€) e-0 1C(u)IQ(x0,€)
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Duj(Q(xo€))
am = b
e>0 1C(u)l(Q(x0,8)

and (see [FM2]) thefollowing hold:
n(xp) = bm W(Q(x0,€))

/&D“'ﬁ%’ﬁ?)(x )ldx =0,
e»Ol Q(Xo,©) | Q08
IA(x0)l - [,A(x0)=a®v,

. 2DUlfQBn E». |Duj(Q(x0.€)
hm','"V" —oandhm'— = +00. (5.1)
e»0 Nl e»0 e
Also, by [FM 2], Lemma 2.13, we may assume that
to yininy D> (Q(x0,\Q(X<,18)) . _ o (5.2)

t—=l- e»0 IDu 1(Q(x0,8)

We suppose that A(xo) = a®eN- Let t€ (0,1),ye (t, 1) andlet £k -4 0 be such
that

Tig ~ lim sup lim sup2—t—¢  fv(Vup,my)dx and
kx- read 'YUAna O

Xp £k
1
= bm ——= m dx
Yo = JEm e |, {Q“
exists. Since
lim lim T J' I up(x) - UXQ)I dx = 0
£—=0 n—0e' =& X0+ Q¢

o 1 . 1 ] _
o e Touloa D, | n(X)-U(X)-n@;%gM y)-uyldy | dx =0,

lim lim | J(mk(xo + ex) - m(x0))<Pj(x) dx | =0,

e"0n>00 (j

writing vqjc(z) := uy(xo + Ef@) and using a diagonalization procedure asin Section

2, weconstruct sequences A* *A yoinL® and I v*-u(xo) " LAQ) —* 0sUch
that
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' < . 5.3
n(xo) 2 h&ﬂlp mﬁ[\v(ng,xk) dz, (5.3)
o |
kh_‘}‘,,,le(st) .[Q vi(z)-ax—[u(xo+exz) el +(j2 eku dylldz = 0

(5.4)
where ay = [{ vi(z) dz.

After extracting a subsequence, we may assume in (5.3) that lim sup is limit. We
set

N-1

_ & 1

uk(z) = DulQs) [u(xo +&x2) - TQey | Xo+(£e: dy] and
BE-I

wi(2) = DuQs) [vi(z) —axl.

Then
J u(z) dz = 0, Duxl(Q) =1,

and so { Ek } is equi-integrable and by (5.4) we conclude that

Il ug—wi lILQ) = 0 as k — +eo.

By (5.1),
i IDul(xok-i- exQ) =5 oo,
&N
and (5.3) reduces to
nGxg) 2 lim — Awuwwk,m dz. 5.5

k—oo Uk

On the other hand we have that

Di(Q = 220+ e&Q) | eey and Dy - Dip-AgAd(Q) = 0,

IDul(xq + €xQ)
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the latter from [FM2], Proposition A.1, and this implies that
Dug-e;(Q) — O forall i=1,.., N-1.

Thus, it is possible to find a sequence of smooth functions Ex(x), which are
functions fx(xN), such that

NE—ukliLlQ) — 0, as k—> +oo,
and fora.e.t€ (0, 1)

VEx(tQ) — Duk(1Q) - 0. (5.6)

Fix 1 € (t, v) for which (5.6) holds. Choose & >0 such that (1 -3)t > t and we
may assume that

DulQ(o 80X t5:0)

5.7)
IDul(Q(x0.£x))

DEI(tQwe(1 -$)Q < Duyl (QWQ) =

Note that

fi(1/2) — fx(-7/2) ®en.
T

FVR0Q = 3 [Veay - Jrace -
T ™1
(5.8)

AsAx & yoinL~ and wy-& — 0inL!, by (5.5) and using the "slicing
method" will modify wy and Ay on the layer TQ\ t(1-0)Q so that

nxe) 2 limsup~ | WV dz + O(1-t) (5.9)
k—eo Py ¢

1
"17Q |
Exq), for some k(i), on 9(1Q).

where Ay * yginL®> C[ Ak dz = yo, AklarQ) is constant and vk =
T

We partition TQ\i(1 - 8)Q into two layers Sy, , Sy, with

: 1tQ\t(1 -8)Q|
I s{z) | = 5

and due to (H2) and (5.9) we choose
S, = {xe TQ\t(1 - d)Q: a3 < dist(x,0(TQ\t(1 - d)Q)) <P2} € {S(lz) , 832) } such

that, for a subsequence,
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[vwi@enax < on.
S2

Let 12 be a smooth cut-off function, 0 M2 <1, N2 =0 in the complement of
{xe 1Q: dist(x,0(tQ\t(1 - 9)Q) < B2}, M2=
{xe 1Q: dist(x,0(TQ\t(1 - 8)Q)) < o} and IIVnall =O(1/1S21). As

1
- Ardx | =lyglll = —— dx |
Jim im | yo | ng“z xdx | =1yp thl,c'[m x

choose k(2) large enough so that

1 1
l—s-ﬁsilwk(z)- §k(2)|dx < 2 and

1
- A d
| yo 170 Iténz k) dx |

1 < iyol + 1.
1 - I N2 dx |
17Q L
Next, divide TQ\1(1-3)Q into 3(3) 3(3) 833), with IS( ! = [ ‘tQ\t(13- 3)Q |

One of these, S3, must verify

[1vweiax < o
S

for a subsequence of the previous one. Let 13 be a smooth cut-off function, 0 <13

<1,m3 =0 "outside" S3,Mm3 =1 "inside" Sz and Il Vn3ll = O(1/1 S3 I). Choose
k(3) >k(2), large enough so that

—_— 1
I S3 '5'3[ Iwk3) - Ek@)ldx < 3 and

1
- Ax@3) d
| yo 17Q Ifé'ﬂs k(3) dx |

1
ax |
Qt«{m i

< lyol + 1.

Recursively, we construct a sequence k(j) such that

1
SIIVwk(dex < Jg, ﬁﬁsjlwk(j)— Exg)ldx < -:- and
J J
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| yo-r—a—l nj Akg) dx |
| j, ; | £ lyot + 1.
1- X
QL Qu "
West
_ Yo-m‘énj k(j) 4y
Aix) = (1-mj()) +Mj(x) AxG)(x),
IT'IJ dy
ItQ
VIK) 1= (1—TjX)) EkGy®) + MixIvigH(x).
Clearly
N | f— . — T o
Xj i yo in L——J Ajdz=yo, *7j'dxQ) **congant, Il Aj Il
'AtQ I A
Im(xo)l + 1 +M and vk = “k on 9(xQ). By (5.9) and (H2) '
I f [f" .

Teo) £ jimeg I WMFVWKAK) dz * jimlegry b VIXKVIWKAK) dz

]

A lim i[ ! V([ikO)Vj,X]j) dz

- Co(lyd + 1+M)J (1 + IVSG) + IVwig)l + IVTTjl Iwig) - 4O0)0 dx

dj
-Cg(lyol +1) (1 +|VEGhdx 1.
TQ\T( - 6)Q
By (5.7) and (5.2) we conclude that

Nnxg) 2 ||m — { V(HKG)VV I, XJ) dz - Cg(lyd + 1+M)(I xQ\x(I - 8)Q !

(D.:Q

| Dul(Q(x0,ek)\Q(Xg-tek))
IDu 1(Q(x0,ek))

— Cg(tyoh + (1 TQve(1 - §)Q!
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IDuI(Q(xo,ek) \ Q(xo.tex)) ]
| Dul(Q(x0,ek))

»~

= Jim V(HKO)Wj Xj) dz + O(1 -1).

i

x|

J
@ g

Note that

E(x) =

(fk(tlz) :fl_c("‘m ®en )x + P(x),

with <p axQ-periodic function, and soby (HI) and (5.9),

TIxg) 1> lim sup - TNy (n (L2l e T12) gop vy 1+ O(] -t).
K A X

As \|/(., yo) is quasiconvex, then (see [D]) it is Lipschitz continuous hence by
(5.6)and(5.8)

llm gup | v( k(-XLZ-)——f-le(—LLZ)OeNo) _= \}JM-MXQ) Q)l

< limsup -0 1A(X0)-VA(TQ)I
koo X

L
e Ik sup 1A(x0) - Duk(xQ)l

= E hm 1.5yp IA(x0) - U(X?‘ ! %XQ)
IDul(xo + QQ)

< £iim sup Dul(Qx0.£0) \ Qxp. 1)) = Ol —t)yTn.

N koo Dul(Q(x0,k))

We conclude that

Tixo) ™ lim supLxN v(*A(x0),yo) + 0O(1-t),

which by Lemma 2.2 yields

Tixg) ~ V°°(A(x)) + O(I-t)
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and the result now follows by letting t -» 1.

6. Relaxation
We want to show that
F(um) £ f\[/(Vum)dx + f\[f~((u~-u")®v) dHy-i(x) + fV°°(dC(u))
a Y () o
(6.1)
We will follow the proof of the relaxation section on [FM2] (see also Ambrosio,

Mortolaand Tortorelli [AMT]) making the necessary adaptations. It isdivided into
four steps and we begin by considering

F(um:A) := inf lim inf Jr\/Vuk,mk dx : (uk,mk) €
( ) wdlng { WL, I/( ) ( )

WU(A:R)XL~(A:RY),Uk -> u in L*and mg #* minL=}

whenever A ¢ Cl isan open set.
Sepl. By (H2)

F(um;A) < glldUo) (I Al + Dul(A)). (6.2)
Also we claim that F(u,m;A) is a variationa functional with respect to the L*
topology. We recall that F(u,m;A) is said to be a variational functional with
respect to theL* topology if
(i))F(u,m;A) isloca, i. e.

F(um;A) = F(v,h;A)

for every u, v € BV(A; R") verifying u = v ae.in A andm, h€ L°°(A;R%
suchthat m = h ae inA.

(i) F(u,m;A) is sequentialy lower semicontinuous, i. e. if Uk, u € BV(A; R"),
Uk -4 uin L*(A:R"), mk, m€ L°°(A;RY) and mk ~ m inL®, then

F(um;A) < liminf F(uk,n;A)
K30

(iii) F(u,m;A) isthetraceon {A c 12 A isopen} of a Borel measure on the set
B(Q) of all Borel subsets of Q. De Giorgi and Letta [DGL] introduced the

following criterion to assert (iii). A setfunctiona: {A cQ: Aisopen} —>
[0, +°0] isthe trace of aBorel measureif

@ a(B) £ a(A) forallA,B€X = {U eft: Uisopen} withB c A;
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b)) o(AUB) 2 o(A) + a(B) forall A,B e Xsuchthat ANB = &,
©) a(AUB) £ o(A) + o(B) forallA,Be X;

@ a(A) = sup {a(B):B cc A} forallAe X.
The proof of (i) is trivial.

To show (ii) one needs to use a standard diagonalization procedure. Indeed,
suppose that ugy — u in L1, my * min L> and let {@;} be a countable set dense
in L1(Q). Assume that

PmgA) = fm  [y(Vuj.m)) dx
J¥eo
A
where qu-‘ —ug in L1 and m}‘ ¥ my in L= as j =»+co. For every k, i,
choose j(k,i) such that for all j 2 j(k,i)
| J (m}‘ -my)-eidx| < 1k

We may assume that j(k,.) is increasing.

Next, for all k let p(k) be such that for all j 2 p(k)
luof — wll , < 1k
J L =

Choose s(k) 2 p(k), j(k,k) such that

| Flug,miA) — jA Y(Vekpmb a0 | < 1k

Clearly
u:(k) — u inLl
and foralliandk=21i
|J(m:(k)—m)«q>idx| < |J(mk-m)-<pidx| +1k - 0.
Hence

. o kK _k o .
FmA) < liminf j'A Y(Vuggymegy) &) = liminf FluemgA)
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We prove (iii) using an idea developed by [AMT] in Theorem 4.3. Parts (a)
and (b) are trivial. To obtain (c) and (d) we prove that if A, B, C are open subsets

of Q with Bcc Ccc A then

F(um;A) < F@umC) + F(um;A\B). 6.3)
Suppose that (6.3) holds. To show (d) fix € > 0 and let B cc A be such that

lA\B! + IDul(A\B) <
By (H2) we have

€
g(imi)y

FumA\B) < ¢

and so, if C is such that B cc C cc A, by (6.3) we conclude that
FumA) £ F@umC)+¢€

proving (d). In order to obtain (c), for t € (0, 1) we define the sets
A= {xe AUB:tdist(x,A\B) < (1-t)dist(x,B\A)},

and B; : = {x e A UB: tdist(x,A\B) > (1 -t)dist(x,B\A)}
St := {x € A UB: tdist(x,A\B) = (1-t)dist(x,B\A)}.

Since (LN + IDul)(US)) < +e-, where LN denotes Lebesgue measure, and the sets
{S}are pairwise disjoint, there exists tg € (0, 1) such that (Ln + IDul)(S¢,) = 0.
Given € > 0, by (H2) choose Kj cc Ay, K2 cC By, such that

F(um; (AUBNKUK?)) <e

and let K; cc Hj cc Ay, K2 cc Hy cc By, By (6.3), (a) and (b) we deduce
that

F(um; AUB) < F(um; H; UH2) + F(um; (AUBN(K1UK2)
< F(um; A) + F(um;B) +&.

We prove (6.3). Let
FumAB) = lm f v(Vu,m))dx, Fum; C) = lim f y(Vul,m?) dx
k—oo k—wo
A\B C
where uj —u in LAB), uf - uin LI(C), m! %= m in L=(A\B) and



Relaxation in BV 27 2/18/93
2 .
m; 2 min L=(C).

In order to obtain admissible sequences for (u,m) in A U B, using the slicing
method we are going to connect m: to m% and u,l‘ to uz across C \B.We partition

=, 1 2 ; ; —
C\B into two layers S3) , S() with lS{z)l = | C\BI/2 and due to (H2) and the fact
that { \|I(Vul2‘, rni) } is bounded in L1(C), we choose S; = {xe C\B: a2 <

dist(x,0(C\B) <P} € {S(lz) , sz)} such that, for a subsequence,

f IVullc(x)ldx < const./2, fqui(x)ldx < const./2.
S> Ss

Let M7 be a smooth cut-off function,0 <mM2 <1,M2 = 0 in the complement of

{xe C: dist(x,0(C\B)) < B2}, N2 = 1 in {xe C |dist(x,0(C\B)) < a2} and IVl =
O(1/1S3l). Choose k(2) large enough so that

1 1 2
I_S?J‘luk_ ukldx < 1/2.
S2

Recursively, we construct a sequence k(j) such that

1 2 1 1 2 .
f Vup ! dx < C/k, f Vuyg!dx s Ck, 57 f gy — Vi 4% < 1.
5; Sj S|

]

We set
N o= 3 m 2 v o= den)ol . +miud
j = (A=M)myg) + Njmyg), Vj = (1T Uy + M Ugg)-
Clearly &j % m in L=(AUB), vj— uinLI(AUB).Let M := sup{limj.

limgll). By (H2)

F@um; AUB) £ liminf J‘ V(Vvj(x),Aj(x)) dx

o= AUB
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< lm f\y(Vul., 1 ydx + mf (Vo2 m2.)dx +
oo kG k) i | YV k™)
A\B C
+Cg(M)Hmsupf(l+qul.|+IVu2-l+an-llul. —uZ,. 1) dx
= k() k() i kG) ~ Vi)

3

= F(um;A\B) + F(u,m;C).

Step 2. We claim that if u € BV(Q; R"), m € L=(Q;R9) then

F(u,m; Q\X(u)) < y(Vum)dx + Y= (A(x)) dIC(u)i(x). 6.4)
u) Q\2(u)

By Step 1, F(u,m;.) is a Radon measure, absolutely continuous with respect to LN
<+l Dul. Thus (6.4) holds if and only if

_g_)(dqu)zm;. x0) < y(Vu(xq), m(xg)) fordxae.xpe Q,and  (6.5)

%(&’Trr;”z(m) < y2(A(xg)) forIC(u)lae. xpe Q. (6.6)

-We start by showing (6.6). Let {ux} be the regularized sequence defined in the
following way. Let px € C:(]RN) be an approximation of the identity and ug(x) =

(u*pr)(x). Writing
Du = Vudx + Dgu, 6.7)

for LN a.e. xg € £ we have

1
————  |im(x) - m(xo)l (1+ Vu@)h dx = O, 6.8
e-0 | B(x¢,€) | B(X-L;n (x) = m(xp)! (1+ IVu(x)!) dx 6.8)

i DsulBooe) _ o o DulBoe)

= 0, exists and is finite, 6.9)
e-0 | B(xp,8) | e—=0 | B(xp,8) |
i ‘,[ Y(Vu()mxe) dx = W(Vu(xo).m(xo) , and 6.10)
| B(x0,8) |
Sl-Fl(%z(xo) exists and is finite.

Choose a sequence of numbers € € (0, dist(x(,02)). Then
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( -.): . F(u,m; B(xq,e
dFt(li,xm, xo)=]1m( (X0,E))

e-0 | B(xp,€) |

< liminfliminf ————  [y(Vu,m) dx. 6.11)
-0 k—oeo | B(X0.€) | Bixpe)

Following [AMT], Proposition 4.6, we introduce the Yosida transforms of v,
given by :

V,(mA) = sup{y(Am) - Aim - mi(1 +/Al): m'e Rd}, A > 0.

Then

@  wvy(Am) 2 y(Am) and y)(A.m) decreasesto Y(m,A) as A — +oo;
i@ yaAm) 2 yp(Am) ifA <7, (Am)e Mx R%

(i) hAm) - y(Am) < Alm - mi(1+IAl), (Am)e Mx R

(iv) the approximation is uniform on compact sets. Precisely, let K be a compact
‘subset of R4 and let & > 0. There exists A > 0 such that

YA m) < y(Am) £ yAm+3(1+IAl), (Am)e Mx K.
Fix >0andlet K= B(0,llmll.). By (i), (ii) and (iv)

Y(Vug(x);m(x)) < v, (Vuk(x),m(x))

<, (Vuk(x),m(xq)) + A Im(x) — m(xp)l (1 + Vu(x)))

< y(Vuk(x),m(xg)) + 8(1 + IVug(x)) + A(Im(x) - m(xp)! (1 + Vug(x)l).
(6.12)

Taking into account that Vug = px«Vu + px«Dgu and that y(m(xg), .) is a Lipschitz
function, by (H2) and (6.11) we have

dF(u,m; . P 1
—— < liminf lim inf ———— +V , dx
G200 S tim i lim inf — (XO’E)I[B( x{ Y@ Vu)R)m(x0)

+ C IDgu I(B(x0,e+1K)) + (A& + 8) I B(x,€) | + (A€ +8) Dul(B(xg,€ + 1K)

+2  Jim) - mxo)l (1 + IVuk&h dx ].
B(xo.€)

Since
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im  [y(eeVoEmxd = [y(Vux),m(x) dx,
k—e> B(xp£) B(xo£)

Du | B(xo.€ + 1)) = [Dul (B(xg,€)) = IDul(B(xq,E))

for a.e. g, invoking (6.9) and (6.10) one deduces

dj%l(xo) < y(Vu(xg),m(xq)) + C

e e oy s 1

+ A liminf lim inf ——— I - I +1IV Hdx .
i i e x({e)m(x) m(xo)l (1 + IVux()l)
(6.13)

To prove (6.6) it remains to show that the last term converges to zero. By (6.8)

1
—_— Im(x) -m(xg)ldx = 0
e-—»OIB(xo,e)IB(x{,e) (x) = m(xo)

and by the dominated convergence theorem (with respect to the measure [Dul)

lim sup I Im — m(xg)! | Vug Idx < lim sup f (Im — m(x@)!*px) IDul(x)

k—o B(x,€) k= B(xo,£+1/n)
< lim sup Ilm—m(xo)l*pk(x) Dul(x) + 4limll,, IDul(B(xg,e+1/kx)NZ(u))
k=0 B(xo,e+1/KN\Z(u)
< lim sup | Im —m(xp)! IDul(x)+ 4 lmll.IDul B(x0,£)NZ(u))
k= _
B(xp.6+1/k\E(u)
< | Im—m(xg)! Dul(x) + 4 Iimll, IDsul(B(xq,€)). 6.149)
B(x0.£\E(u)

Taking into account that [Dul(dB(xq.€)) = O for a.e. € and that

[ Im — m(xg)! IDul(x) < I im — m(xg)llVu(x)l dx + 2 limlle IDgul(B(x9,€)),
B(x0.) B(x0.£)

we obtain from (6.8) and (6.9) that

lim sup lim sup——-l—— J Im(x) - m(xg)! IVuxyx)Idx = 0,
E—oo k- | B(x0,€) | B(xp,€)

and (6.6) follows from (6.13).
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Next we prove (6.7), where usng Radon-Nikodym Theorem we write 1Dul =
IC)l + |x, where\i and IC(u) | are mutually sngular Radon measures. Asm is
bounded and measurable, consder a Borel measurable function mi such that mi =
m for dx a. e. inil. Let m2 bethe projection of mi onto B(OlImlloo). Then m2 isa

Borel measurable function which is bounded by Ilimlloo. In particular m2e
Lee(ftIC(u)l). For xo€ Q IC(u)l a.e, we have that

HEX08) . . o, jim —RUBKOE) . gigsand isfinite
e->0 ICU)I(BX08) e»o ICU)(BXoE) ’
(6.15)
. e" _
R T (6.10)
im ——&=J Imy(X) - mxy(Xo)l ICWI(X) = 0O, (6.17)
e -»0 IC(u)l(B(xo,e)) B(x0")
w A * C(u)(B(x,e)) . , .
AX) = hm exists and isarank-onematrix of norm
e ->0 IC(u)I(B(x,e))
1 one, (6.18)
liminf f\K°°(AX)) dIC)l) = \"*(A(Xg)), and (6.19)
e"O I1C(ul(B(x0,€) g(x0,e)
dF Qv )

dlC(ﬁfXO) exists and isfinite.

Asbefore, using (6.12) and (6.14) one sees that

g%%_\_ ])@(@3 = tn F(u; B(xp,e))
dic)l e o ic)(B(x0,8)

£ liminfliminf 1 T\,u(Vuk,m) dx
er0 ko  IC(u)l(B(x0,e)) gX i¥)

= liminf lim inf 1 f\i/(Vuy,mZ) dx
e-»0 k-*» IC(u)l(B(xo€) g &{"

1 J\ir(Vuk,m2(x0)) dx
IC(U)(B(xo8) BHJ)

< liminf lim inf g
e > k-»
+@+ie) JIVuldx+(8+XE) I B(X0e) |

B(x0,€)

+ X JImy- myx)l (L +Vuel)dx]
B X0



Relaxation in BV 32 2/18/93

< liminf liminf ———— I\II(V“k(X)»mZ(XO)) dx

€50 ke IC@)IB(X0.) B(xpe)

(3 +A¢) [ IDul(B(x0,)) + | B(xq:€) I]

lim sup 1
€0 ICW)IB(x0.£)

. 1
+ A limsup —— | J |m2(x) - mz(xo)l IDul(x) +
e -0 IC)IB(xp,.t)) B \EM)

+ [ Imae0) - ma(xo)| dx +4 limiliDul Blxo,)NE@))].
B(x0£)

By (6.15) - (6.17) and, due to the rectifiability of the jump set, as
IC()I(B(x0,£)NX(u)) = 0 we conclude that

dF(u; . < liminf lim inf 1
—l(d IC(0)] Xp) < s_)l(r)l m COIB ey @B (X&S))[ B x‘_’):;)v(Vuk(x),mz(xo)) dx

+A j Imy(x) — ma(xg)! IC(u)l(x) + 2A limlle p(B(x0,£))
B(x0.€)

+ 4 limll, IDulB(xg,€) N X(w) ] +Cd

o 1
< liminfl f———— 4% R dx + Cd.
e m0 ke IC@)IBX0L) B(,i;‘)’ k() ma(x0)) dx +
(6.20)

Now we use Ambrosio and DalMaso's argument in [ADM], Proposition 4.2.
Define

B4 = sup WA ma(x0) — YO.my(x0))

Then g is Lipschitz continuous, positively homogeneous of degree one and the
rank-one convexity of y(.,m2(xg)) implies that

g(A) = y=(A,mp(xg)) wheneverrank A<1.
Thus, by (6.20), (6.16) we have
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dF(u; .) : e e s s 1
2 < liminf lim inf ——M 0, Vuy)ldx + Cd
d IC(u)] X0) S ek In IC@)IB 0 x{i\;’( m2(x0))+g(Vup)]

= . [ g(Du) + c8

mintf———
e -0 ICW)I(B(x0,€)) B(xp.)

1
lim inf —mm8m™m™—— A diC) + g(d ]+C8
I o e BtaT) o x{ﬁ){g( (x)) dIC(u)! + g(d)

and so, by (6.15), (6.18), (6.19), by Alberti's Theorem 2.11 and by Lemma 2.2
we conclude that

dF(u; . .. 1
( lim inf ————— : dIC()!
Tice < lmintm—e | ] Y000 A) dCE +

CuB(x0£))] + C5
= y=(A(xq)) + C8.

It suffices to let 8 — 0+.

Step 3. We show that

Flum;X(u) < z(f)W”((U‘(X)—W(X))@V(X)) dHN-1(x) 6.21)
u

for every u € BV(; RD), m € L=(Q;R4Y). The proof is divided into three parts
according to the limit function u :

l.u(x) = aye(x) + b(l1 -xg(x)) withPerq(E) < +o;

2.ux) = X ajXE;(x) where { Ei};__: forms a partition of £ into sets of finite
perimeter ;
3. General case, u € BV(Q; Rn).

1.Let u(x) = ayg(x) + b(l1 -yxg(x)) with Perg(E) < +co. We start by
proving that for every open set A ¢ 2

Fama) £ [yOmeyax+  [y=(@-bov) dHxa®. 622
Z@nA
a) Suppose first that

b ifxv>0
ux) = { .
a ifxv<O
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|&§ft A =a+ AQ, be an open cube with two faces orthogonal to v. Fix y € R and
ine

my(x) = § mx -_lflx.v|>I/k
Iy if Ix-vl £ 1k

b if x-v > 1k

Uelx) = if Ix-vl < 1k

a if x-v <- 1k
|[(a- b)®V]x + |(a + b) if Ix-vl < 1k

Asuk —> u inL' andm* ** m inL% weconcludethat (6.22) holds since

Fum:A) £ liminf Jy(Vukmfc) dx

Fa

= )Z] V(O,m)dx + [iminf [ \|/§(a - b)®v,y) dx
Ix-v|<l/k

= J\[/(Om) dx + " ((a-b)®V) HN-I1(APII(U)) .
A

b) Consder u asin a) and let A ¢ Q bean arbitrary open set in R". Let n bethe

plane n={ x-v = 0}. Itisclear that'
n=|

A=y (VAp

where A, isman increasing finite collection of non-overlapping (i. e. with digoint
interiors) cubes Q of theform a* + eQv with edge length bigger than or equal to n
and such that

HN-T@Q nn) = 0. (6.23)
Thus, by Step 1 (iii) and applying a) to a decreasing sequence of open cubes whose
intersection isthe closed cube Q one has

Fium; Q)< JV(Om)dx + JY~((a-b)®v) dHN-I(x)

Q Ku)nQ
and so

F(um;A) <> lim F(um; uAn) < lim X F(um; Q)
n—o0 N=}ed o

Qe

! We use the notation UA := {x: thereexists Y € A such that x e Y}.
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<imX [[yOomdx+ [y=(a-b®V)dHN1()].
N—yoo _

QeAn Q TnQ
By (6.23) and Lebesgue's Monotone Convergence Theorem we conclude that

F(um;A) < liminf [ )[ vOmydx +  [y=((a-b)®v) dHN-1(x)
n=e UAp Zu)(VAp)

J\V(O,m) dx + [y=((a-b)®V) dHN_1().
S(u)NA

¢) Now suppose that u has polygonal interface i.e. u = ¥ga + (1 — xg)b where E is
a polyhedral set i.e. E is a bounded, strongly Lipschitz domain and dE = Hj U ...
U HMm , Hj are closed subsets of hyperplanes of the type { x-v; = a;}. Let A be
an open set contained in Q and letI = {i e {1,...M}: HN.1(HinA)>0}. fA N
T) = J,i.e. if card I =0 then u e WLI(A;RP) and it suffices to consider ux =
ue WLI(A;RM), my = m, with (6.22) reducing to

F(u;A) < A[\y(o,m) dx.

The case card I = 1 was studied in part b) where E is a large cube so that Z(u)NQ2

reduces to the flat interface {x-v =0}. Using an induction procedure, assume that

(6.22) istrue if card I =k, k M - 1. We prove it is still true if card I = M.
Assume that

JdENA = HNnQuU.UHMND

and consider S := {x € RN: dist (x, H;) = dist (x, H2 U ... U HM)}. Note that
HN_1(S N Z(u)) = 0 because HN_j(Hi N H;j) = Ofori#j. Fix >0 and let

Us = {x € RN: dist(x,S) < 8},
U = {x € RN: dist(x,S) < §, dist (x, H1) < dist (x, U ... U HW},
U, = {x € RN: dist(x,S) < §, dist (x, Hy) > dist (x, Hz U ... U Hw)).

Let

Aj={xe A:dist (x,H)) < dist(x, Hyu .. UHM)].
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Clearly Ai isopen and Ai n (H2u ... KIHM) =0. We apply the induction
hypothesisto Ai and to A\AT := A2 to obtain sequences Uk e WACAMR"), Vk €
WU(A,;R"Yme L-(Ai;Rd)AKE L~(A,;R% such that u, -» u inLI(Ai;R"),
Vi-* U inLHAMR"), 1% ** m in L~(Ai;RY), A* *+ m inL~(A2;R%) and

lim Jy(Vukmy)dx £ f\J(Om)dx + fv~((a-b)Ov) dHy-i(x) + |,
kA Al Ku)nAi -

lim  I\[f(VVi,X) dx £ J\/©Om) dx+  fv~((a- b)®v) dHN-i(x) + |.
Ky~ A, A, Ku)7"A,

We will use the "dicing method" to connect uy to vi. Let pk be mallifiers and
define

w®) = (Pk*u)(x) = Jpk(x-y) u(y) dy.
B(x,I/k)

Asp”™ 0, upp p =5(0,1) and

fpdx = 1,
B(U)

we have
HVwklloo < Ck, supp Vwi ¢ {x € R™: dist(x,E(u)) <, /k}. (5.23)

Let

, . . Qg
a = -Mwi-vidlLiaiy,  Li i= K[+ Hwllii + [vkllii], Sk = K

where[n] denotesthelargest integer lessthan or equal ton, set Uj" = UE,-’ where 5i

=(l-ak+iX),i=1,..., Lk, and consder a family of cut-off functions
9EW{/~U7),0< s 1, <pi=1inUT_, IIVeH IL :O(i\) fori=1...Ly.

Define
UrCx) = (1 - AX))wk(x) + <pi(X)ux(X),x€ AL
Then

U‘:\ - Wy unaAlns.
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vufe = vue inuzj, vike = vwi in AI\UT and

VUjj* = Vwk + (pi(V(UK - wK)) + (Uk - wk ) ®/<pi in UMUTZj .
Due to the growth condition (H2) we deduce that

YUl mk) dx < [ w(Vermodx)
Al
Al

+C Jf(I+IW|<-u|<I’\-jIVWkI + IVul)dx + C J(I+1Vwl)dx

1 1-1

and averaging this inequality among al the layers Uj\Uj j and by (5.23) we
abtain
L
%f\:iiL AVuipmk)dx A Ja VEVIMK)dX

+ A= f(I+IVwl + 1Vvl)dx

+ A flwc- vkIrdx +C (1 +n) ix € UGOAI: disZ(u) < Ik}
Q

Thus, there mug exist an index i(k) € {1,..., 1*} for which

k= ue® 5 uin LIGARR®),

and taking into account that X(u) isa union of finitely many closed subsets of
hyper planes

r -
limsup | y(Vuk,mk)dx ~  J\|[f(O,m) dx
k-»- Al Al

+  J¥°°((a-b)ov) dHy_i(x) + | + CHN_l(U;nAlr'\Z(u)).
I
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Similarly, we may construct a sequence vk such that

Vk = wk ondAanS, vk — u in Li(Az; RD),

lim sup Iw(VVk,lk) dx < J'\v(O,m) dx

+ | v=(a-b)®v) dHN-1(x) + 5 + CHN-1 (UynA2nE(w)).
Z(NAz

We set
B = XA, u(X) + XA,(X) Vk, Sk i=XAMk + XA, Ak

Clearly & € WLI(A;RM), & — u in L1(A;R?) and so

FumA) < liminf Aj W(VEL,sk) dx
k—o

< lim sup J y(Vug,mg) dx) + lim sup J‘\V(Vf'k,lk) dx
k Al k—oo A,

—300

<[wOmydx + [y=(@a-b)@V)dHN-1(x) + &+ CHN-1(UsNAINZ(W)).
A YA

As HN_1(SNZ(u)) = 0, letting § — 0 we obtain (6.22)

f) Finally, if E is an arbitrary set of finite perimeter in €, by De Giorgi's
approximating lemma there exists a sequence of polyhedral sets Ey such that

|EXAE| — 0, Perq(Ex) — Perq(E).

On the other hand, y — y=((a — b)®y) is a convex function (and so continuous)
and positively homogeneous of degree one. Setting

ug = ayg, +b(l - XE ),
by Step 1, (i), (iii)

F@um;A) < liminf F(ugx,m; A)
k—eo

< liminf [ ,! w(0,m) dx + ‘J y=((a - b)®V) dHN-1 (%) ]
k~300 T(um)NA
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= J vOm dx + _ [y=((a-b)®V) dHN_1(X) -
J(u)nA
This inequality together with Step 1, (iii) yields
FumZ()) < inf {F(umA): AcQ, Aisopen, T(u) c A}
<inf { ‘J\v(O,m) dx +  [y=((a-b)®v) dHn-1(x) : A € Q, A is open,
SnNA
S cA)

)\l"‘((a - b)®v) dHN-1(x)
u

and we conclude (6.21). The cases 2 and 3 are now obtained as in [AMT]
Proposition 4.8, Steps 1 and 2, respectively.
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