NAMT
 93-011

Relaxation in $\mathrm{BV} \times \mathrm{L}^{\infty}$ of
 Functionals Depending on Strain and Composition

Irene Fonseca
David Kinderlehrer
Pablo Pedregal
Carnegie Mellon University

Research Report No. 93-NA-011

February 1993

Sponsors
U.S. Army Research Office

Research Triangle Park
NC 27709
National Science Foundation 1800 G Street, N.W.
Washington, DC 20550

TMAV 11O-Ep

Universty Libiaries Camegie Mellon University

Relaxation in $\mathbf{B V} \times \mathbf{L}^{\infty}$ of functionals depending on strain and composition

Irene Fonseca, David Kinderlehrer, and Pablo Pedregal

Dedicato a Enrico Magenes

Abstract. We show that if $\psi(A, m)$ is a quasiconvex function with linear growth then the relaxed functional in $\operatorname{BV}\left(\Omega, R^{n}\right) \times L^{\infty}\left(\Omega, R^{d}\right)$ of the energy

$$
\int_{\Omega} \Psi(\nabla \mathrm{u}, \mathrm{~m}) \mathrm{dx}
$$

with respect to the $L^{1} \times L^{\infty}\left(\right.$ weak $\left.^{*}\right)$ topology has an integral representation of the form

$$
F(u, m)=\int_{\Omega} \Psi(\nabla u, m) d x+\int_{\Sigma(u)} \Psi^{\infty}\left(\left(u^{-}-u^{+}\right) \otimes v\right) d H_{N-1}(x)+\int_{\Omega} \Psi^{\infty}(d C(u))
$$

where $\mathrm{Du}=\nabla \mathrm{udx}+\left(\mathbf{u}^{+}-\mathbf{u}^{-}\right) \otimes v \mathrm{dH}_{\mathrm{N}-1} \mathrm{~L} \Sigma(\mathrm{u})+\mathrm{C}(\mathrm{u})$. The proof relies on a blow up argument and on a recent result obtained by Alberti showing that the Cantor part $\mathrm{C}(\mathrm{u})$ is rank-one valued.

Table of Contents

1. Introduction 1
2. Preliminaries The recession function 4
3. The density of the absolutely continuous part 8
4. The density of the jump part 14
5. The density of the Cantor part 17
6. Relaxation 24
Acknowledgements 39
References 39

1. Introduction

In this paper we obtain an integral representation in $\operatorname{BV}\left(\Omega, \mathbb{R}^{n}\right) \times L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ for the relaxation $F(u, \mathrm{~m})$ of an energy functional

$$
E(\mathrm{u}, \mathrm{~m})=\int_{\Omega} \Psi(\nabla \mathrm{u}(\mathrm{x}), \mathrm{m}(\mathrm{x})) \mathrm{dx}
$$

with respect to the $L^{1} \times L^{\infty}\left(\right.$ weak $\left.^{*}\right)$ topology.
One motivation for this question is the analysis of coherent thermochemical equilibria among multiphase and multicomponent solids (see [AJ], [JA], Larché and Cahn [LC1,2]). This is explained in detail in [FKP]. For example, in the case of two species in equilibrium in a matrix and a precipitate, the pertinent functional has the form

$$
I(u, c)=\int_{\Omega} \psi(\nabla u, c) d x
$$

subject to the constraint

$$
\int_{\Omega} c d x=\theta|\Omega|
$$

where u denotes the deformation of the material and c the concentration of one of the two species.

Kohn [K] obtained a formula for the relaxation of I in the case where composition is uniform, i. e. $\psi(\mathrm{F}, \mathrm{c})=: \psi^{*}(\mathrm{~F})$, and for two linearly elastic phases with identical elastic moduli. In more general situations, the composition is not uniform (see [LC2]) and so we must address the problem of finding the effective energy in the case where it depends on the chemical composition c. When linear growth in the deformation is admitted, functionals of the sort considered here then arise.

In the scalar case $\mathrm{n}=1$, Ioffe [I] studied the lower semicontinuity of E in $W^{1,1}$ (weak) $\times \mathrm{L}_{\text {loc }}^{1}$ (see also [Am] for a new proof of this result). Here, generalizing E to the case where c may take vector values m and assuming that $\mathrm{N}, \mathrm{n}>1$, we want to obtain an integral representation for the relaxed functional F in $\operatorname{BV}\left(\Omega, \mathbb{R}^{n}\right) \times L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ of the energy E, where

$$
\begin{aligned}
F(u, m) & :=\inf _{\left\{u_{k}\right\},\left\{m_{k}\right\}}\left\{\liminf _{k \rightarrow \infty} \int_{\Omega} \psi\left(\nabla u_{k}, m_{k}\right) d x:\left(u_{k}, m_{k}\right) \in W^{1,1} \times L^{\infty},\right. \\
& \left.u_{k} \rightarrow u \text { in } L^{1} \text { and } m_{k} *>m \text { in } L^{\infty}\right\} .
\end{aligned}
$$

Throughout this work we will assume that ψ is jointly quasiconvex in $\nabla \mathrm{u}$ and convex in m, namely
(H1) $\Psi: \mathbb{M} \times \mathbb{R}^{\mathrm{d}} \rightarrow[0,+\infty)$ is a Borel measurable function such that

$$
\psi(\mathrm{A}, \lambda) \leq \frac{1}{|\Omega|} \int_{\Omega} \psi(\mathrm{A}+\nabla \zeta, \lambda+\mathrm{m}) \mathrm{dx}
$$

for all $(A, \lambda) \in \mathbb{M} \times \mathbb{R}^{d}$ and $(\zeta, m) \in W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right) \times L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ with $\int_{\Omega} m d x=0$.

In addition, ψ grows at most linearly,
(H2) $\quad c_{1}|A|-c_{2} \leq \psi(A, \lambda) \leq g(\lambda)(1+|A|)$ where $c_{1}, c_{2}>0$ and $g \in L_{l o c}^{\infty}\left(\mathbb{R}^{d}\right)$.

So, for example, under these hypotheses the functional determined by ψ is weakly sequentially lower semicontinuous in $\mathrm{W}^{1, \infty} \times \mathrm{L}^{\infty}, \mathrm{cf}$. [FKP]. Indeed, relaxation in $\mathrm{W}^{1, \mathrm{p}} \times \mathrm{Lq}$ under the hypotheses (H 1) was obtained in [FKP]. Our objective here is to determined the relaxed functional when the admissible functions come from BV $\times L^{\infty}$.

Although most of the results and proofs in this work are inspired by those in [FM1,2], we note that the relaxations of $\psi(\nabla \mathrm{u}, \mathrm{m})$ and $\psi(\nabla \mathrm{u}, \mathrm{u})$ present several different features. In particular, in the support of the singular part of Du , the function m, being only Lebesgue measurable and not necessarily related to u in any way, may not be well defined. We recall that the distributional derivative Du is represented by

$$
\mathrm{Du}=\nabla \mathrm{udx}+\left(\mathrm{u}^{+}-\mathrm{u}^{-}\right) \otimes v \mathrm{dH}_{\mathrm{N}-1} L \Sigma(\mathrm{u})+\mathrm{C}(\mathrm{u})
$$

Here $\nabla \mathrm{u}$ is the density of the absolutely continuous part of Du with respect to the Lebesgue measure $\mathrm{dx}, \mathrm{H}_{\mathrm{N}-1}$ is the $\mathrm{N}-1$ dimensional Hausdorff measure, ($\mathrm{u}^{+}-\mathrm{u}^{-}$) is the jump of u across the interface $\Sigma(u)$ with "generalized normal" v and $C(u)$ is the Cantor part of Du. For details we refer the reader to [EG], [Z].

We expect, as usual, that the integral representation of F will involve the integration of the recession function, (2.1) below, on $\Sigma(u) \cup \operatorname{supp} C(u)$. However, if m is not well defined on this set what kind of representation are we to expect? This question is naturally solved by the convexity and growth assumptions imposed on ψ. Indeed, we will show on Lemma 2.2 that

$$
\lambda \rightarrow \psi^{\infty}(\mathrm{A}, \lambda) \text { is constant }
$$

whenever rank $\mathrm{A} \leq 1$, and due to Alberti's [Al] result we know that

$$
\operatorname{rank} \frac{\mathrm{d}(\mathrm{Du})}{\mathrm{dlD}(\mathrm{u}) \mid} \leq 1
$$

on $\Sigma(u) \cup \operatorname{supp} C(u)$. Denoting by $\psi^{\infty}(a \otimes b)$ the constant value of this function of λ, we will obtain (see (2.2) and (6.1))
$F(u, m)=\int_{\Omega} \psi(\nabla u, m) d x+\int_{\Sigma(u)} \psi^{\infty}\left(\left(u^{-}-u^{+}\right) \otimes v\right) d H_{N-1}(x)+\int_{\Omega} \Psi^{\infty}(\mathrm{dC}(u))$
where $(u, m) \in \operatorname{BV}\left(\Omega, \mathbb{R}^{\mathrm{n}}\right) \times \mathrm{L}^{\infty}\left(\Omega, \mathbb{R}^{\mathrm{d}}\right)$.

2. Preliminaries The recession function

We start by studying some properties of the recession function (see [FM2])

$$
\begin{equation*}
\psi^{\infty}(\mathrm{A}, \mathrm{~m}):=\limsup _{\mathrm{t} \rightarrow \infty} \frac{\psi(\mathrm{tA}, \mathrm{~m})}{\mathrm{t}} \tag{2.1}
\end{equation*}
$$

Lemma 2.1.

a) $\quad \mathrm{c}_{1}|\mathrm{~A}| \leq \Psi^{\infty}(\mathrm{A}, \lambda) \leq \mathrm{g}(\lambda)|\mathrm{A}|$ and $\Psi^{m}(\mathrm{~A}, \lambda)$ is positively homogeneous of degree one in λ;
b) $\quad \Psi^{\infty}$ satisfies the quasiconvexity/convexity condition $(\mathrm{H} 1)$.

Proof. a) is clear. To prove b) let $(A, \lambda) \in \mathbb{M} \times \mathbb{R}^{d},(\varphi, m) \in W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right) \times$
$L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ with $\int_{\Omega} m d x=0$, and let

$$
\psi^{\infty}(A, \lambda)=\lim _{k \rightarrow \infty} \frac{\psi\left(t_{k} A, m\right)}{t_{k}} \quad \text { for some } t_{k} \rightarrow+\infty
$$

By (H1)

$$
\begin{gathered}
\frac{\psi\left(t_{k} A, m\right)}{t_{k}} \leq \frac{1}{\Gamma \Omega T_{k}} \int_{\Omega} \psi\left(t_{k} A+\nabla\left(t_{k} \varphi\right), \lambda+m\right) d x \\
=\frac{1}{\Gamma \Omega T_{k}} \int_{\Omega} \psi\left(t_{k}(A+\nabla \varphi), \lambda+m\right) d x .
\end{gathered}
$$

Defining

$$
\mathbf{H}(\mathbf{x}):=\mathrm{g}\left(|\lambda|+\|\mathrm{m}\|_{\infty}\right)(1+\|A+\nabla \varphi(x)\|)
$$

we deduce that

$$
\begin{gathered}
\psi^{\infty}(A, \lambda) \leq \limsup _{k \rightarrow \infty} \frac{1}{|\Omega| t_{k}} \int_{\Omega} \psi\left(t_{\mathbf{k}}(A+\nabla \varphi), \lambda+m\right) d x \\
=\frac{1}{|\Omega|} \int_{\Omega} H(x) d x-\liminf _{\mathbf{k} \rightarrow \infty} \frac{1}{|\Omega|} \int_{\Omega}\left[H-\frac{1}{t_{k}} \psi\left(t_{\mathbf{k}}(A+\nabla \varphi), \lambda+m\right)\right] d x
\end{gathered}
$$

which, by Fatou's Lemma, yields

$$
\psi^{\infty}(A, \lambda) \leq \frac{1}{|\Omega|} \int_{\Omega} \limsup _{k \rightarrow \infty} \frac{1}{t_{k}} \psi\left(\mathrm{t}_{\mathrm{k}}(\mathrm{~A}+\nabla \varphi), \lambda+\mathrm{m}\right) \mathrm{dx}
$$

$$
\leq \frac{1}{|D|} \int_{D} \psi^{\infty}(A+\nabla \varphi, \lambda+m) d x
$$

QED

Lemma 2.2. If rank $A=1$ then the function $\lambda \rightarrow \psi^{\infty}(A, \lambda)$ is constant.

We divide the proof of this result into two lemmas.
Lemma 2.3. \quad Fix $v \in \mathbb{S}^{\mathrm{N}-1}$. Then the function $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \times \mathbb{R}^{\mathrm{d}} \rightarrow[0,+\infty)$ defined by

$$
f(a, \lambda):=\psi^{\infty}(a \otimes v, \lambda)
$$

is convex.
Proof. Let $(\mathrm{a}, \lambda)=\theta\left(\mathrm{a}_{1}, \lambda_{1}\right)+(1-\theta)\left(\mathrm{a}_{2}, \lambda_{2}\right)$ for some $\theta \in(0,1)$. Let Q be a unit cube centered at the origin with two faces perpendicular to v and let $\left\{\eta_{j}\right\}$ be a family of cut-off functions such that
i) $\eta_{j}=1$ in $Q_{j}:=\{x \in Q \mid \operatorname{dist}(x, \partial Q) \geq 1 / j\} ;$
ii) $\eta_{j}=0$ on $\partial \mathrm{Q}$;
iii) $\left\|\nabla \eta_{j j}\right\|_{\infty} \leq \mathrm{Cj}$.

Define

$$
\begin{aligned}
& \lambda_{k}(x):=\lambda_{2}+\chi(k x \cdot v)\left(\lambda_{1}-\lambda_{2}\right)-\lambda, \\
& \varphi_{k}(x):=\left(a_{2}-a\right) \otimes v \cdot x+\frac{1}{k} \int_{0} \chi(t) d t \cdot\left(a_{1}-a_{2}\right), \\
& \varphi_{k}^{j}(x):=\varphi_{k}(x) \eta_{j}(x)
\end{aligned}
$$

where χ is the characteristic function of the interval $(0, \theta)$ extended to \mathbb{R} periodically with period one. Notice that

1. $\lambda_{k} * 2$ in $L^{-}(\mathrm{Q}) ;$
2. $\int \lambda_{k}(x) d x=0$;
3. $\nabla \varphi_{k}(x)=\left(a_{2}-a\right) \otimes v+\chi(k x . v)\left(a_{1}-a_{2}\right) \otimes v * 2$ in $L^{\infty}(Q)$ and

$$
\int \varphi_{k}(x) d x \rightarrow 0 ;
$$

4. $\varphi_{k}^{j} \in W_{0}^{1, \infty}\left(Q, \mathbb{R}^{n}\right)$;
5. $\nabla \varphi_{\mathbf{k}}^{\mathbf{j}}=\eta_{\mathrm{j}} \nabla \varphi_{\mathbf{k}}+\varphi_{\mathbf{k}} \otimes \nabla \eta_{\mathrm{j}}$.

By Lemma 2.1 b) the function ψ^{∞} satisfies the convexity condition (H1) and so

$$
\begin{aligned}
& f(a, \lambda)=\psi^{\infty}(a \otimes v, \lambda) \leq \int_{Q} \psi^{\infty}\left(a \otimes v+\nabla \varphi_{\mathbf{k}}^{j}, \lambda+\lambda_{k}\right) d x \\
& \leq \int_{Q} \Psi^{\infty}\left(\mathrm{a} \otimes v+\nabla \varphi_{\mathbf{k}}, \lambda+\lambda_{\mathbf{k}}\right) \mathrm{dx}+\int_{Q Q_{j}} \Psi^{\infty}\left(\mathrm{a} \otimes v+\nabla \varphi_{\mathbf{k}}^{\mathrm{j}}, \lambda+\lambda_{\mathbf{k}}\right) \mathrm{dx} \\
& -\iint_{Q_{\mathrm{j}}} \Psi^{\infty}\left(\mathrm{a} \otimes v+\nabla \varphi_{k}, \lambda+\lambda_{k}\right) d x \\
& =: I_{\mathbf{k}}+\Pi_{\mathbf{k}, \mathbf{j}}+\Pi_{\mathbf{k}, \mathbf{j}} .
\end{aligned}
$$

As $\left\{\left\|\lambda_{k}\right\|_{\infty}+\left\|\varphi_{k}\right\|_{1, \infty}\right\}$ is bounded, by Lemma 2.1 a) we have

$$
\sup _{k}\left|\Pi_{k, j}\right| \leq C \operatorname{meas}\left(Q \backslash Q_{j}\right) \rightarrow 0
$$

Fix j. From 3) it follows that $\varphi_{k} \rightarrow 0$ in L^{∞} and so choose $k(j)$ large enough so that

$$
\left\|\varphi_{k}\right\|_{\infty} \leq \frac{1}{j^{2}\left|Q \backslash Q_{j}\right|}
$$

for $k \geq k(j)$. Then, by Lemma 2.1 a)

$$
\left|\Pi_{k(j), j}\right| \leq C|Q| Q_{j} \mid+j^{-1} \text { and }\left\|\varphi_{k(j)}\right\|_{\infty}|Q| Q_{j} \mid \rightarrow 0 \text { as } j \rightarrow+\infty .
$$

The convexity of f follows from the fact that

$$
\begin{aligned}
\lim _{k \rightarrow \infty} & I_{k}=\theta \psi^{\infty}\left(a_{1} \otimes v, \lambda_{1}\right)+(1-\theta) \Psi^{\infty}\left(a_{2} \otimes v, \lambda_{2}\right) \\
& =\theta f\left(a_{1}, \lambda_{1}\right)+(1-\theta) f\left(a_{2}, \lambda_{2}\right) . \quad \text { QED }
\end{aligned}
$$

Lemma 2.4. Let $\xi: \mathbb{R}^{\mathbf{n}} \times \mathbb{R}^{\mathrm{d}} \rightarrow \mathbb{R}, \xi=\xi(\mathrm{a}, \lambda)$, be a convex function such that $\xi\left(a_{0},.\right)$ is constant for some $a_{0} \in \mathbb{R}^{n}$. Then the function ξ is independent of λ.

Proof. Suppose that $m_{0}=\xi\left(a_{0}, \lambda\right)$ for all λ. Given ($a^{\prime}, \lambda^{\prime}$) we have

$$
m_{0}=\xi\left(a_{0}, \lambda\right) \geq \xi\left(a^{\prime}, \lambda^{\prime}\right)+\alpha\left(a_{,}, \lambda^{\prime}\right) \cdot\left(a_{0}-a\right)+\beta\left(a, \lambda^{\prime}\right) \cdot\left(\lambda-\lambda^{\prime}\right)
$$

where ($\left.\alpha\left(a, \lambda^{\prime}\right), \beta\left(a, \lambda^{\prime}\right)\right)$ belongs to the subdifferential of ξ at ($\left.a, \lambda^{\prime}\right)$. Letting $|\lambda|$ $\rightarrow+\infty$ we conclude that $\beta\left(a, \lambda^{\prime}\right)=0$ and so we may deduce that

$$
\xi(a, \lambda) \geq \xi\left(a, \lambda^{\prime}\right)
$$

for all $\lambda, \lambda^{\prime}$ and thus they must be equal.

Proof of Lemma 2.2. As $\psi^{\infty}(., \lambda)$ is positively homogeneous of degree one,

$$
\Psi^{\infty}(0, \lambda)=0 \text { for all } \lambda
$$

The result now follows from Lemmas 2.3 and 2.4.
The proof of (1.1) is divided into two parts. In the first part, carried out on Sections 3, 4 and 5, we show that the representation in (1.1) is a lower bound for F i. e. if $u_{k} \in W^{1,1}\left(\Omega ; \mathbb{R}^{n}\right)$ are such that $u_{k} \rightarrow u$ in $L^{1}\left(\Omega ; \mathbb{R}^{n}\right)$, with $u \in \operatorname{BV}\left(\Omega, \mathbb{R}^{n}\right)$, and if $\mathrm{m}_{\mathrm{k}} * \mathrm{~m}$ in $\mathrm{L}^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ then

$$
\begin{gather*}
\liminf _{k \rightarrow \infty} \int_{\Omega} \psi\left(\nabla u_{k}, m_{k}\right) d x \geq \int_{\Omega} \psi(\nabla u, m) d x+\int_{\Sigma(u)} \psi^{\infty}\left(\left(u^{-}-u^{+}\right) \otimes v\right) d_{N}-1(x) \\
+\int_{C(u)} \psi^{\infty}(d C(u)) \tag{2.2}
\end{gather*}
$$

Finally, in Section 6 we assert equality in (2.2) using the same reasoning as in [FM2] (see also Ambrosio, Mortola and Tortorelli [AMT]).

To prove (2.2) we use the blow up argument introduced in [FM1]. It is then reduced to verifying the pointwise inequalities (2.3), (2.4) and (2.5) below. Assume, without loss of generality, that

$$
\liminf _{k \rightarrow \infty} \int_{\Omega} \psi\left(\nabla u_{k}, m_{k}\right) d x=\lim _{k \rightarrow \infty} \int_{\Omega} \psi\left(\nabla u_{k}, m_{k}\right) d x<+\infty
$$

and $u_{k} \in C_{0}^{\infty}\left(\mathbb{R}^{N} ; \mathbb{R}^{n}\right)$ (see Proposition 2.6 in [FM1] and also Acerbi and Fusco [AF]). As ψ is nonnegative there exists a subsequence, which for convenience of notation is still labelled $\left\{u_{k}, m_{k}\right\}$, and a nonnegative finite Radon measure μ such that

$$
\psi\left(\nabla u_{k}, m_{k}\right) \quad * \quad \mu
$$

Using the Radon-Nikodym Theorem, we can write μ as a sum of four mutually singular nonnegative measures

$$
\mu=\mu_{\mathrm{a}} \mathrm{dx}+\zeta\left|\mathrm{u}^{+}-\mathrm{u}^{-}\right| \mathrm{H}_{\mathrm{N}-1} \mathrm{~L} \Sigma(\mathrm{u})+\eta|\mathrm{C}(\mathrm{u})|+\mu_{\mathrm{s}}
$$

We claim that
$\mu_{a}(x) \geq \psi(\nabla u(x), m(x)) \quad$ for $d x$ a. e. $x \in \Omega$,
$\zeta(x) \geq \frac{\psi^{\infty}\left(\left(u^{-}(x)-u^{+}(x)\right) \otimes v(x)\right)}{\left|u^{+}(x)-u^{-}(x)\right|}$ for $l^{+}-u^{-1} H_{N-1} L \Sigma(u)$ a.e. $x \in \Sigma(u)(2.4)$
and

$$
\begin{equation*}
\eta(x) \geq \psi^{\infty}(A(x)) \quad \text { for } \quad|C(u)| \text { a. e. } x \in \Omega \tag{2.5}
\end{equation*}
$$

where (see [Al] and [ADM]) for $I C(u) \mid$ a. e. $x \in \Omega$ and open, convex neighborhood G of the origin,

$$
A(x):=\lim _{\varepsilon \rightarrow 0} \frac{D(u)(x+\varepsilon G)}{\operatorname{DD}(u) \mid(x+\varepsilon G)}=\lim _{\varepsilon \rightarrow 0} \frac{C(u)(x+\varepsilon G)}{|C(u)|(x+\varepsilon G)}=a(x) \otimes v(x)
$$

Then, considering an increasing sequence of smooth cut-off functions η_{j}, with $0 \leq$ $\eta_{\mathrm{j}} \leq 1$ and $\sup _{\mathrm{j}} \eta_{\mathrm{j}}(\mathrm{x})=1$ in Ω, we conclude that

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \int_{\Omega} \psi\left(\nabla u_{k}, m_{k}\right) d x \quad \geq \liminf _{k \rightarrow \infty} \int_{\Omega} \eta_{j} \psi\left(\nabla u_{k}, m_{k}\right) d x \\
= & \int_{\Omega} \eta_{j} d \mu(x) \\
\geq & \left.\int_{\Omega} \eta_{j} \mu_{\mathrm{a}}(x) d x+\int_{\Sigma(u)} \eta_{j} \zeta l u^{+}-u^{-} \mid d H_{N-1}(x)\right)+\int_{\Omega} \eta_{j} \eta d I C(u) \mid(x) \\
\geq & \int_{\Omega} \eta_{j} \psi(\nabla u, m) d x+\int_{\Sigma(u)} \eta_{j} \psi^{\infty}\left(\left(u^{-}-u^{+}\right) \otimes v\right) d H_{N-1}(x)+\int_{\Omega} \eta_{j} \psi^{\infty}(d C(u))
\end{aligned}
$$

Letting $\mathrm{j} \rightarrow+\infty$, (2.2) follows from the Monotone Convergence Theorem.

3. The density of the absolutely continuous part

Using the technique developed in [FM1] we prove (2.3), namely

$$
\mu_{\mathrm{a}}\left(\mathrm{x}_{0}\right) \geq \psi\left(\nabla \mathrm{u}\left(\mathrm{x}_{0}\right), \mathrm{m}\left(\mathrm{x}_{0}\right)\right) \quad \text { for } \mathrm{dx} \text { a.e. } \mathrm{x}_{0} \in \Omega
$$

By the Besicovitch Differentiation Theorem (see [EG]) the limit

$$
\mu_{\mathrm{a}}\left(\mathrm{x}_{0}\right):=\lim _{\varepsilon \rightarrow 0} \frac{\mu\left(B\left(x_{0}, \varepsilon\right)\right)}{\left|B\left(x_{0}, \varepsilon\right)\right|} \quad d x \text { a.e., } x_{0} \in \Omega
$$

exists and is finite and by standard results of the theory of BV functions

$$
\begin{array}{r}
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left\{\left.\frac{1}{\left|B\left(x_{0}, \varepsilon\right)\right|} \int_{B\left(x_{0}, \varepsilon\right)} \operatorname{lu}(y)-u\left(x_{0}\right)-\nabla u\left(x_{0}\right) \cdot\left(x_{0}-y\right) \right\rvert\, N /(N-1) d y\right\}^{(N-1) / N} \\
=0
\end{array}
$$

Here, and in what follows, we denote the N -dimensional measure of a set E by IE I. Choosing one such x_{0} which is also a Lebesgue point for m , define the homogeneous function

$$
u_{0}(x):=\nabla u\left(x_{0}\right) x .
$$

We abbreviate $B=B(0,1)$, we consider a subdomain $B^{\prime} \subset \subset B$. Let $\varphi \in C_{0}(B)$ be a cut-off function such that $0 \leq \varphi \leq 1$ and $\varphi(x)=1$ if $x \in B^{\prime}$. Then

$$
\begin{aligned}
\mu_{a}\left(x_{0}\right) & =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{N}|B|} \mu\left(B\left(x_{0}, \varepsilon\right)\right) \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{N}|B|} \int_{B\left(x_{0}, \varepsilon\right)} \varphi\left(\frac{x-x_{0}}{\varepsilon}\right) d \mu(x) \\
& =\lim _{\varepsilon \rightarrow 0} \sup _{x \rightarrow \infty} \lim _{k \rightarrow \infty} \frac{1}{\varepsilon^{N}|B|} \int_{B\left(x_{0}, \varepsilon\right)} \varphi\left(\frac{x-x_{0}}{\varepsilon}\right) \psi\left(\nabla u_{k}(x), m_{k}(x)\right) d x \\
& =\lim _{\varepsilon \rightarrow 0} \sup _{\lim _{k \rightarrow \infty}} \frac{1}{|B|} \int_{B} \varphi(x) \psi\left(\nabla u_{k}\left(x_{0}+\varepsilon x\right), m_{k}\left(x_{0}+\varepsilon x\right)\right) d x \\
& \geq \lim _{\varepsilon \rightarrow 0} \sup _{\limsup _{k \rightarrow \infty}} \frac{1}{|B|} \int_{B^{\prime}} \psi\left(\nabla w_{k, \varepsilon}(x), m_{\mathbf{k}}\left(x_{0}+\varepsilon x\right)\right) d x(3.2)
\end{aligned}
$$

where

$$
w_{k, \varepsilon}(x):=\frac{u_{k}\left(\mathrm{x}_{0}+\varepsilon x\right)-u\left(\mathrm{x}_{0}\right)}{\varepsilon}
$$

By (3.1) and by Hölder's inequality
$\begin{aligned} \lim _{\varepsilon \rightarrow 0} \lim _{k \rightarrow \infty}\left\|w_{k, \varepsilon}-u_{0}\right\|_{L}^{1}(B) & \left.=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{N+1}} \int_{B\left(x_{0}, \varepsilon\right)}^{\int} \operatorname{lu}(x)-u\left(x_{0}\right)-\nabla u\left(x_{0}\right)\left(x_{1}-x_{0}\right) \right\rvert\, d x \\ & =0,\end{aligned}$ and if $\left\{\varphi_{j}\right\}_{j=1}^{+\infty}$ is a countable set dense in $L^{1}\left(\Omega, \mathbb{R}^{d}\right)$, for fixed m

$$
\lim _{\varepsilon \rightarrow 0} \lim _{k \rightarrow \infty}\left|\int_{B}\left(m_{k}\left(x_{0}+\varepsilon x\right)-m\left(x_{0}\right)\right) \varphi_{j}(x) d x\right|=
$$

$$
\lim _{\varepsilon \rightarrow 0}\left|\int_{B}\left(m\left(x_{0}+\varepsilon x\right)-m\left(x_{0}\right)\right) \varphi_{j}(x) d x\right|=0
$$

Using a diagonalization procedure we will show that

$$
\begin{align*}
& \mu_{a}\left(x_{0}\right) \geq \limsup _{j \rightarrow \infty} \frac{1}{|B|} \int_{B^{\prime}} \psi\left(\nabla v_{j}, \lambda_{j}\right) d x \text { where } \tag{3.3}\\
& v_{j} \rightarrow u_{0} \text { in } L^{1}\left(B ; \mathbb{R}^{n}\right) \text { and } \lambda_{j} * m\left(x_{0}\right) \text { in } L^{\infty}\left(B ; \mathbb{R}^{d}\right) .
\end{align*}
$$

Indeed, assume that

$$
\begin{aligned}
\limsup _{\varepsilon \rightarrow 0} & \limsup _{k \rightarrow \infty} \frac{1}{|B|} \int_{B^{\prime}} \psi\left(\nabla w_{k, \varepsilon}(x), m_{k}\left(x_{0}+\varepsilon x\right)\right) d x \\
& =\lim _{\varepsilon_{i} \rightarrow 0} \limsup _{k \rightarrow \infty} \frac{1}{|B|} \int_{B^{\prime}} \psi\left(\nabla w_{k, \varepsilon_{i}}(x), m_{k}\left(x_{0}+\varepsilon_{i} x\right)\right) d x .
\end{aligned}
$$

For $\mathrm{j}=1$ and for all i choose $\mathrm{k}_{\mathrm{i}}(1)$ so that for all $\mathrm{k} \geq \mathrm{k}_{\mathrm{i}}(1)$ one has

$$
\begin{aligned}
& \left\|w_{k, \varepsilon_{i}}-u_{0}\right\|_{L} 1(B) \leq \lim _{k \rightarrow \infty}\left\|w_{k, \varepsilon_{i}}-u_{0}\right\|_{L}^{1}(B)+1 / i \\
& \left|\int_{\Omega}\left(m_{k}\left(x_{0}+\varepsilon_{i} x\right)-m\left(x_{0}\right)\right) \cdot \varphi_{1}(x) d x\right| \leq \\
& \lim _{k \rightarrow \infty}\left|\int_{\Omega}\left(m_{K}\left(x_{0}+\varepsilon_{i} x\right)-m\left(x_{0}\right)\right) \cdot \varphi_{1}(x) d x\right|+1 / i
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{|B|} \int_{\mathbf{B}^{\prime}} \psi\left(\nabla w_{k, \varepsilon_{i}}(x), m_{k}\left(x_{0}+\varepsilon_{i} x\right)\right) d x \\
& \left.\quad \leq \limsup _{\mathbf{k} \rightarrow \infty} \frac{1}{|B|} \int_{\mathbf{B}^{\prime}} \psi\left(\nabla w_{k, \varepsilon_{i}}(x), m_{k}\left(x_{0}+\varepsilon_{i} x\right)\right) d x\right)+1 / i .
\end{aligned}
$$

Recursively, for all $j \geq 2$ and for all i choose $k_{i}(j)>k_{i}(j-1)$ so that for all $k \geq$ $\mathbf{k}_{\mathrm{i}}(\mathrm{j})$

$$
\begin{aligned}
&\left|\int_{\Omega}\left(m_{k}\left(x_{0}+\varepsilon_{i} x\right)-m\left(x_{0}\right)\right) \cdot \varphi_{j}(x) d x\right| \\
& \leq \lim _{k \rightarrow \infty}\left|\int_{\Omega}\left(m_{k}\left(x_{0}+\varepsilon_{i} x\right)-m\left(x_{0}\right)\right) \cdot \varphi_{j}(x) d x\right|+1 / i \\
&=\left|\int_{\Omega}\left(m\left(x_{0}+\varepsilon_{i} x\right)-m\left(x_{0}\right)\right) \cdot \varphi_{j}(x) d x\right|+1 / i
\end{aligned}
$$

Now consider the diagonal subsequence $\mathrm{k}_{\mathrm{i}}(\mathrm{i})$ and define

Then

$$
\lambda_{i}(x):=m_{k_{i}(i)}\left(x_{0}+\varepsilon_{i} x\right), \quad v_{i}(x):=w_{k_{i}(i)}, \varepsilon_{i}(x)
$$

$$
\left\|v_{i}-u_{0}\right\|_{L}^{1}(B) \leq \lim _{k \rightarrow \infty}\left\|w_{k, \varepsilon_{i}}-u_{0}\right\|_{L}^{1}(B)+1 / i
$$

and so

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|v_{i}-u_{0}\right\|_{L}^{1}(B)=0 \tag{3.4}
\end{equation*}
$$

Also, since x_{0} is a Lebesgue point of m,

$$
\begin{equation*}
\lambda_{i} *>m\left(x_{0}\right) \text { in } L^{\infty} . \tag{3.5}
\end{equation*}
$$

By (3.2) and as $\mathrm{k}_{\mathrm{i}}(\mathrm{i}) \geq \mathrm{k}_{\mathrm{i}}(1)$,

$$
\begin{aligned}
\mu_{\mathrm{a}}\left(\mathrm{x}_{0}\right) & \geq \limsup _{\mathrm{i} \rightarrow \infty}\left[\frac{1}{|\mathrm{~B}|} \int_{\mathbf{B}^{\prime}} \psi\left(\nabla \mathrm{v}_{\mathrm{i}}, \lambda_{\mathrm{i}}\right) \mathrm{dx}-1 / \mathrm{i}\right] \\
& =\limsup _{\mathrm{i} \rightarrow \infty} \frac{1}{|\mathrm{~B}|} \int_{B^{\prime}} \psi\left(\nabla v_{i}, \lambda_{i}\right) \mathrm{dx}
\end{aligned}
$$

proving (3.3).
Next, using the "slicing method" we are going to modify $\left\{\lambda_{i}\right\}$ and $\left\{v_{i}\right\}$ near $\partial \mathrm{B}^{\prime}$ so that we can apply the convexity hypothesis (H1).

By (3.3) and the growth condition (H2) the L^{1} norms of $\left\{\left|\nabla \mathrm{v}_{\mathrm{i}}\right|\right\}$ are uniformly bounded in B^{\prime}, i. e.

$$
\sup \int_{B^{\prime}}\left|\nabla v_{i}(x)\right| d x \leq C
$$

Let $B_{j}=\left\{x \in B^{\prime}: \operatorname{dist}\left(x, \partial B^{\prime}\right)<1 / j\right\}$ and divide B_{2} into two annuli $S_{(2)}^{1}$ and $S_{(2)}^{2}$. It is clear that for each i there exists an annulus $S \in\left\{S_{(2)}^{1}, S_{(2)}^{2}\right\}$ so that

$$
\int_{S}\left|\nabla v_{i}(x)\right| d x \leq C / 2
$$

and as there are only two annuli and infinitely many indices, we conclude that one of the annuli, $S_{2}=\left\{x \in B^{\prime} \mid \alpha_{2}<\operatorname{dist}\left(x, \partial B^{\prime}\right)<\beta_{2}\right\}$, satisfies

$$
\int_{\mathbf{s}_{2}}\left|\nabla \mathbf{v}_{\mathrm{i}_{2}}(\mathrm{x})\right| \mathrm{dx} \leq \mathrm{C} / 2
$$

for a subsequence $\left\{i_{2}\right\}$. Let η_{2} be a smooth cut-off function, $0 \leq \eta_{2} \leq 1, \eta_{2}=0$ in the complement of $\left\{x \in B^{\prime} \mid \operatorname{dist}\left(x, \partial B^{\prime}\right)<\beta_{2}\right\}, \eta_{2}=1$ in $\left\{x \in B^{\prime}: \operatorname{dist}\left(x, \partial B^{\prime}\right)<\right.$ $\left.\alpha_{2}\right\}$ and $\left\|\nabla \eta_{2}\right\|=O\left(1 / / S_{2} I\right)$. By (3.5)
$\lim _{i_{2} \rightarrow+\infty}\left|m\left(x_{0}\right)-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{2} \lambda_{i_{2}} d x\right|=\left|m\left(x_{0}\right)\right|\left|1-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{2} d x\right|$
and so, by (3.4) choose $i(2) \in\left\{i_{2}\right\}$ large enough so that

$$
\begin{aligned}
& \frac{1}{\left|S_{2}\right|} \int_{S_{2}}\left|v_{i(2)}-u_{0}\right| d x<\frac{1}{2} \text { and } \\
& \frac{\left|m\left(x_{0}\right)-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{2} \lambda_{i(2)} d x\right|}{\left|1-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{2} d x\right|} \leq\left|m\left(x_{0}\right)\right|+1
\end{aligned}
$$

Next, divide B_{3} into three annuli $S_{(3)}^{1}, S_{(3)}^{2}, S_{(3)}^{3}$. For each i_{2} there exists an annulus $S \in\left\{S_{(3)}^{1}, S_{(3)}^{2}, S_{(3)}^{3}\right\}$ so that

$$
\int_{S}\left|\nabla v_{i_{2}}\right| d x \leq C / 3
$$

and as there are only three annuli and infinitely many indices i_{2}, we conclude that one of the annuli $S_{3}=\left\{x \in B^{\prime}: \alpha_{3}<\operatorname{dist}\left(x, \partial B^{\prime}\right)<\beta_{3}\right\}$ satisfies

$$
\int_{S_{3}}\left|\nabla v_{i_{3}}\right| d x \leq C / 3
$$

for a subsequence $\left\{i_{3}\right\}$ of $\left\{i_{2}\right\}$. Let η_{3} be a smooth cut-off function, $0 \leq \eta_{3} \leq 1$, $\eta_{3}=0$ in the complement of $\left\{x \in B^{\prime}: \operatorname{dist}\left(x, \partial B^{\prime}\right)<\beta_{3}\right\}, \eta_{3}=1$ in $\left\{x \in B^{\prime}:\right.$ $\left.\operatorname{dist}\left(\mathrm{x}, \partial \mathrm{B}^{\prime}\right)<\alpha_{3}\right\}$ and $\left\|\nabla \eta_{3}\right\|=\mathrm{O}\left(1 / / \mathrm{S}_{3} \mid\right)$. By (3.5)

$$
\lim _{i_{3} \rightarrow+\infty}\left|m\left(x_{0}\right)-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{3} \lambda_{i_{3}} d x\right|=\left|m\left(x_{0}\right)\right|\left|1-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{3} d x\right|
$$

and so, by (3.4) choose $i(3) \in\left\{i_{3}\right\}, i(3)>i(2)$, large enough so that

$$
\begin{aligned}
& \frac{1}{\left|S_{3}\right|} \int_{S_{3}}\left|v_{i(3)}-u_{0}\right| d x<\frac{1}{3} \text { and } \\
& \frac{\left|m\left(x_{0}\right)-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{3} \lambda_{i(3)} d x\right|}{\left|1-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{3} d x\right|} \leq\left|m\left(x_{0}\right)\right|+1
\end{aligned}
$$

Recursively, we construct a sequence $i(j)$ such that

$$
\begin{align*}
& \int_{S_{j}}\left|\nabla v_{i(j)}\right| d x \leq \frac{C}{j}, \frac{1}{\left|S_{j}\right|} \int_{S_{j}}\left|v_{i}(j)-u_{0}\right| d x<\frac{1}{j}, \text { and } \tag{3.6}\\
& \\
& \frac{\left|m\left(x_{0}\right)-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{j} \lambda_{i(j)} d x\right|}{\left|1-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{j} d x\right|} \leq\left|m\left(x_{0}\right)\right|+1
\end{align*}
$$

We set

$$
\begin{aligned}
& \bar{\lambda}_{j}(x):=\left(1-\eta_{j}(x)\right) \frac{m\left(x_{0}\right)-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{j} \lambda_{i(j)} d y}{1-\frac{1}{\left|B^{\prime}\right|} \int_{B^{\prime}} \eta_{j} d y}+\eta_{j}(x) \lambda_{i(j)}(x) \\
& \bar{v}_{j}(x):=\left(1-\eta_{j}(x)\right) u_{0}(x)+\eta_{j}(x) v_{i}(j)(x)
\end{aligned}
$$

Clearly

$$
\int_{B^{\prime}} \bar{\lambda}_{j}(x) d x=\left|B^{\prime}\right| m\left(x_{0}\right),\left\|\bar{\lambda}_{j}\right\|_{\infty} \leq\left|m\left(x_{0}\right)\right|+1+M \text { and } \bar{v}_{j} \mid \partial B^{\prime}=u_{0}
$$

Thus, by (3.3), (H1) and (H2)

$$
\begin{aligned}
& \mu_{\mathrm{a}}\left(\mathrm{x}_{0}\right) \geq \limsup _{\mathrm{i} \rightarrow+\infty} \frac{1}{|\mathrm{~B}|} \int_{\mathrm{B}^{\prime}} \Psi\left(\nabla \mathrm{v}_{\mathrm{i}}, \lambda_{\mathrm{i}}\right) \mathrm{dx} \\
& \geq \limsup _{\mathrm{j} \rightarrow+\infty} \frac{1}{|\mathrm{~B}|}\left[\int_{\mathbf{B}^{\prime}} \Psi\left(\nabla \bar{v}_{\mathrm{j}}, \bar{\lambda}_{\mathrm{j}}\right) \mathrm{dx}-\int_{\mathbf{S}_{\mathrm{j}}} \psi\left(\nabla \bar{v}_{\mathrm{j}} \bar{\lambda}_{\mathrm{j}}\right) \mathrm{dx}-\int_{\mathbf{B}_{\mathbf{j}}} \Psi\left(\nabla \bar{v}_{\mathrm{j}}, \bar{\lambda}_{\mathrm{j}}\right) \mathrm{dx}\right] \\
& \geq \frac{\left|B^{\prime}\right|}{|B|} \psi\left(\nabla u\left(x_{0}\right), m\left(x_{0}\right)\right)
\end{aligned}
$$

$-\operatorname{Cg}\left(\left|m\left(\mathrm{x}_{0}\right)\right|+1+\mathrm{M}\right) \int_{\mathrm{S}_{\mathrm{j}}}\left(1+\left|\nabla \mathrm{u}\left(\mathrm{x}_{0}\right)\right|+\left|\nabla \mathrm{v}_{\mathrm{i}(\mathrm{j})}\right|+\left|\nabla \eta_{\mathrm{j}}\right|\left|\mathrm{v}_{\mathrm{i}(\mathrm{j})}-\mathrm{u}_{0}\right|\right) \mathrm{dx}$
$-\mathrm{Cg}\left(\left|\mathrm{m}\left(\mathrm{x}_{0} \mid+1\right)\right| \mathrm{B}_{\mathrm{j}} \mid\left(1+\left|\nabla \mathrm{u}\left(\mathrm{x}_{0}\right)\right|\right)\right.$
and from (3.6) we conclude that

$$
\mu_{\mathrm{a}}\left(\mathrm{x}_{0}\right) \geq \frac{\left|\mathrm{B}^{\prime}\right|}{|\mathrm{B}|} \psi\left(\nabla \mathrm{u}\left(\mathrm{x}_{0}\right), \mathrm{m}\left(\mathrm{x}_{0}\right)\right)+\mathrm{O}(1 / \mathrm{j}) .
$$

The result follows once we let $j \rightarrow+\infty$ and $\left|B \backslash B^{\prime}\right| \rightarrow 0$.

4. The density of the jump part

Here we prove (2.4), precisely, that
$\zeta\left(x_{0}\right) \geq \frac{\Psi^{\infty}\left(u^{-}\left(x_{0}\right)-u^{+}\left(x_{0}\right)\right) \otimes v\left(x_{0}\right)}{\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|}$ for $\left|u^{+}-u\right| H_{N-1} L \Sigma(u)$ a. e. $x_{0} \in \Sigma(u)$.
It is well known that (see [EG], [FM2], [Z]) for $\mathrm{H}_{\mathrm{N}-1}$ a.e. $\mathrm{x}_{0} \in \Sigma(\mathrm{u})$ we have
(i) $\quad \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{N-1}} \sum(u) \cap\left(x_{0}+\varepsilon Q_{v\left(x_{0}\right)}\right) \quad u^{+}(x)-u^{-}(x)\left|d H_{N-1}(x)=\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|\right.$,
(ii) $\quad \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{N}} \underset{\left\{y \in B\left(x_{0}, \varepsilon\right):\left(y-x_{0}\right) \cdot v\left(x_{0}\right)>0\right\}}{\int}\left|u(y)-u^{+}\left(x_{0}\right)\right| N /(N-1) d y=0$,

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{N}}\left\{y \in B\left(x_{0}, \varepsilon\right):\left(y-x_{0}\right) \cdot v\left(x_{0}\right)<0\right\}<1 u^{-} x_{0}\left|\left(x_{0}\right)\right| N /(N-1) d y=0 \text {, and }
$$

(iii) $\quad \zeta\left(x_{0}\right)=\lim _{\varepsilon \rightarrow 0} \frac{\mu\left(x_{0}+\varepsilon Q_{v\left(x_{0}\right)}\right)}{1 u^{+}-u^{-} \mid H_{N}-1 L \Sigma(u)\left(x_{0}+\varepsilon Q_{v\left(x_{0}\right)}\right)}$
exists and is finite, where $\mathrm{Q}_{v\left(\mathrm{x}_{0}\right)}$ denotes a unit cube centered at the origin with two faces perpendicular to the unit vector $v\left(x_{0}\right)$.

Writting $Q=Q_{v\left(x_{0}\right)}, Q^{*}=\frac{1}{1+\delta} Q$, with $0<\delta<1$, let $\varphi \in C_{0}^{\infty}(Q)$ be such that $0 \leq \varphi \leq 1, \varphi=1$ on Q^{*}, and let $\varepsilon_{k} \rightarrow 0$ be such that

$$
y_{0}=\lim _{k \rightarrow \infty} \frac{1}{\mid x_{0}+\varepsilon_{k} Q} \int_{x_{0}+\varepsilon_{k} Q} m d y
$$

exists. By (i) and (iii),

$$
\begin{align*}
& \zeta\left(x_{0}\right)=\lim _{k \rightarrow \infty} \frac{\mu\left(x_{0}+\varepsilon_{k} Q\right)}{1 u^{+}-u-1 H_{N-1} L \Sigma(u)\left(x_{0}+\varepsilon_{k} Q\right)} \\
& =\frac{1}{\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|} \lim _{k \rightarrow \infty} \frac{1}{\varepsilon_{k}{ }^{N-1}} \int_{x_{0}+\varepsilon_{k} Q} d \mu(x) \\
& \geq \frac{1}{\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|} \lim _{k \rightarrow \infty} \sup _{n \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{1}{\varepsilon_{k}{ }^{N-1}} \int_{x_{0}+\varepsilon_{k} Q} \varphi\left(\frac{x-x_{0}}{\varepsilon_{k}}\right) \psi\left(\nabla u_{n}(x), m_{n}(x)\right) d x \\
& =\frac{1}{\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|} \limsup _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \int \varepsilon_{k} \varphi(y) \psi\left(\nabla u_{n}\left(x_{0}+\varepsilon_{k} y\right), m_{n}\left(x_{0}+\varepsilon_{k} y\right)\right) d y \\
& \geq \frac{1}{\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|} \lim \sup \limsup _{n \rightarrow \infty} \int_{Q^{*}} \varepsilon_{k} \psi\left(\nabla u_{n}\left(x_{0}+\varepsilon_{k} y\right), m_{n}\left(x_{0}+\varepsilon_{k} y\right)\right) d y \tag{4.1}
\end{align*}
$$

We define

$$
u_{n, k}(y):=u_{n}\left(x_{0}+\varepsilon_{k} y\right) \text { and } u_{0}(y):=\left\{\begin{array}{ll}
u^{+}\left(x_{0}\right) & \text { if } y . v\left(x_{0}\right)>0 \\
u \cdot\left(x_{0}\right) & \text { if } y . v\left(x_{0}\right) \leq 0
\end{array} .\right.
$$

As $u_{n} \rightarrow u$ in L^{1}, by (ii) we obtain

$$
\begin{gather*}
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{Q}\left|u_{n, k}(y)-u_{0}(y)\right| d y=\lim _{k \rightarrow \infty} \int_{Q^{+}}\left|u\left(x_{0}+\varepsilon_{k} y\right)-u^{+}\left(x_{0}\right)\right| d y \\
+\lim _{k \rightarrow \infty} \int_{Q^{-}}\left|u\left(x_{0}+\varepsilon y\right)-u^{-}\left(x_{0}\right)\right| d y=0 . \tag{4.2}
\end{gather*}
$$

On the other hand, by (4.1)
$\zeta\left(x_{0}\right) \geq \frac{1}{\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|} \lim \sup _{\mathbf{k} \rightarrow \infty} \lim _{n \rightarrow \infty} \sup _{\varepsilon_{k}} \int_{\mathbf{Q}^{*}} \Psi\left(\frac{1}{\varepsilon_{\mathbf{k}}} \nabla u_{n, k}(y), m_{n}\left(x_{0}+\varepsilon_{k} y\right)\right) d y$
and, as in Section 3, by (4.2) and (H2) we use a diagonalizing argument to construct sequences

$$
\lambda_{k} * y_{0} \text { in } L^{\infty} \text { and }\left\|v_{k}-u_{0}\right\|_{L^{1}(Q)} \rightarrow 0, \int_{Q^{*}}\left|\nabla v_{k}\right| d x \leq C
$$

such that

$$
\zeta\left(x_{0}\right) \geq \frac{1}{\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|} \limsup _{\mathbf{k} \rightarrow \infty} \varepsilon_{k} \int_{Q^{*}} \psi\left(\frac{1}{\varepsilon_{k}} \nabla v_{k}, \lambda_{k}\right) d y
$$

Let $w_{k}=\rho_{k} * u_{0}$, where $\left\{\rho_{k}\right\}$ is a mollifying sequence. Then

$$
\left\|\nabla w_{k}\right\|_{\infty}=O(k) \text { if }\left|x \cdot v\left(x_{0}\right)\right| \leq 1 / k \quad \text { and }\left\|v_{k}-w_{k}\right\|_{L}^{1}(Q) \rightarrow 0
$$

As in Section 3 we use the "slicing method" to obtain sequences

$$
\begin{aligned}
& \bar{\lambda}_{j}(x):=\left(1-\eta_{j}(x)\right) \frac{y_{0}-\frac{1}{\left|Q^{*}\right|} \int_{Q^{*}} \eta_{j} \lambda_{i(j)} d y}{1-\frac{1}{\left|Q^{*}\right|} \int_{Q^{*}} \eta_{j} d y}+\eta_{j}(x) \lambda_{i(j)}(x) \\
& \bar{v}_{j}(x):=\left(1-\eta_{j}(x)\right) w_{i(j)}(x)+\eta_{j}(x) v_{i(j)}(x)
\end{aligned}
$$

where

$$
\begin{gathered}
\mathrm{Q}_{\mathrm{j}}:=\left\{\mathrm{x} \in \mathrm{Q}^{*}: \operatorname{dist}\left(\mathrm{x}, \partial \mathrm{Q}^{*}\right)<1 / \mathrm{j}\right\}, \int_{\mathrm{S}_{\mathrm{j}}}\left|\nabla \mathrm{v}_{\mathrm{k}(\mathrm{j})}\right| \mathrm{dx} \leq \mathrm{C} / \mathrm{j}, \\
\frac{1}{\mid \mathrm{S}_{\mathrm{j}}} \int_{\mathrm{S}_{\mathrm{j}}}\left|\mathrm{v}_{\mathrm{k}(\mathrm{j})}-\mathrm{w}_{\mathrm{k}(\mathrm{j})}\right| \mathrm{dx} \leq 1 / \mathrm{j}, \frac{\left|\mathrm{y}_{0}-\frac{1}{\left|\mathrm{Q}^{*}\right|} \int_{Q^{*}} \eta_{\mathrm{j}} \lambda_{\mathrm{i}(\mathrm{j})} \mathrm{dy}\right|}{\left|1-\frac{1}{\left|\mathrm{Q}^{*}\right|} \int_{\mathrm{Q}^{*}} \eta_{\mathrm{j}} \mathrm{dy}\right|} \leq\left|y_{0}\right|+1,
\end{gathered}
$$

and

$$
\begin{equation*}
\zeta\left(x_{0}\right) \geq \frac{1}{\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|} \limsup _{j \rightarrow \infty} \varepsilon_{j} \int_{Q^{*}} \psi\left(\frac{1}{\varepsilon_{j}} \nabla \bar{v}_{j}, \bar{\lambda}_{j}\right) d x \tag{4.3}
\end{equation*}
$$

Note that

$$
\int_{Q^{*}} \bar{\lambda}_{j} d x=\left|Q^{*}\right| y_{0},\left.\quad \bar{\lambda}_{j}\right|_{\partial Q^{*}(x)}=a_{j}:=\frac{y_{0}-\frac{1}{\left|Q^{*}\right|} \int_{Q^{*}} \eta_{j} \lambda_{i(j)} d y}{1-\frac{1}{\left|Q^{*}\right|} \int_{Q^{*}} \eta_{j} d y}
$$

and so

$$
\begin{aligned}
& \bar{\lambda}_{j}(x)=a_{j}+\theta_{j}(x) \text { where } \\
& \int_{Q^{*}} \theta_{j}(x) d x=-\left|Q^{*}\right|\left(a_{j}-y_{0}\right) \text { and } \theta_{j} \mid \partial Q^{*}(x)=0
\end{aligned}
$$

Also $\nabla \bar{v}_{\mathbf{j}}=\nabla \mathrm{w}_{\mathrm{i}(\mathrm{j})}$ on $\partial \mathrm{Q}^{*}$ and so it is periodic. From the Q^{*} - periodicity of θ_{j} and η_{j} we deduce that

$$
\begin{aligned}
\int_{Q^{*}} \Psi & \Psi\left(\frac{1}{\varepsilon_{j}} \nabla \bar{v}_{\mathrm{j}}, \bar{\lambda}_{\mathrm{j}}\right) \mathrm{dx} \\
& =\int_{\mathbf{Q}^{*}} \psi\left(\frac{1}{\varepsilon_{j}} \nabla \bar{v}_{\mathrm{j}}, \mathrm{a}_{\mathrm{j}}+\theta_{\mathrm{j}}\right) \mathrm{dx}=\lim _{\mathbf{i} \rightarrow \infty} \int_{\mathbf{Q}^{*}} \psi\left(\frac{1}{\varepsilon_{\mathrm{j}}} \nabla \bar{v}_{\mathrm{j}}(\mathrm{ix}), \mathrm{a}_{\mathrm{j}}+\theta_{\mathrm{j}}(\mathrm{ix})\right) \mathrm{dx}
\end{aligned}
$$

and since

$$
\begin{aligned}
\theta_{j}(i x) & \rightarrow \frac{1}{\left|Q^{*}\right|} \int_{Q^{*}} \theta_{j} d y=y_{0}-a_{j} \text { in } L^{\infty} \text { weak }^{*} \text { as } i \rightarrow+\infty \text { and } \\
& \bar{v}_{j}(i x) \rightarrow \frac{1}{\left|Q^{*}\right|}\left(\int_{Q^{*}} \nabla \bar{v}_{j} d y\right) x \quad \text { in } W^{1,1} \text { as } i \rightarrow+\infty,
\end{aligned}
$$

by (2.3) we conclude that

$$
\begin{gathered}
\left.\int_{Q^{*}} \Psi\left(\frac{1}{\varepsilon_{j}} \nabla \bar{v}_{j}, \bar{\lambda}_{j}\right) d x \geq \int_{Q^{*}} \Psi\left(\frac{1}{\varepsilon_{j}} \frac{1}{\left|Q^{*}\right|} \int_{Q^{*}} \nabla_{v_{j}} d y, a_{j}+\frac{1}{\left|Q^{*}\right|_{Q^{*}}} \theta_{j}(y) d y\right)\right) d x \\
=\left|Q^{*}\right| \psi\left(\frac{1}{\varepsilon_{j}} \frac{1}{\left|Q^{*}\right|}\left(u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right) \otimes v\left(x_{0}\right)\left|Q^{*}\right|(N-1) / N, y_{0}\right)
\end{gathered}
$$

Finally, from (4.3) and Lemma 2.2 we have

$$
\zeta\left(x_{0}\right) \geq
$$

$$
\begin{gathered}
\underset{j \rightarrow \infty}{\lim \sup } \frac{\varepsilon_{j}}{\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|}\left|Q^{*}\right| \psi\left(\frac{1}{\varepsilon_{j}\left|Q^{*}\right|}\left(u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right) \otimes v\left(x_{0}\right)\left|Q^{*}\right|(N-1) / N, y_{0}\right) d x \\
\left.\quad=\frac{1}{\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|}\left|Q^{*}\right|^{-1 / N} \psi^{\infty}\left(u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right) \otimes v\left(x_{0}\right)\right) .
\end{gathered}
$$

Now it suffices to let $I Q^{*} \mid \rightarrow 1$.

5. The density of the Cantor part

We prove (2.5), that is, for $|C(u)|$ a. e. $x_{0} \in \Omega$

$$
\eta\left(x_{0}\right) \geq \psi^{\infty}\left(A\left(x_{0}\right)\right)
$$

where $A($.$) is the rank-one matrix a \otimes v$ (see [Al]). Let $Q=(-1 / 2,1 / 2)^{N}$ and $Q\left(x_{0}, \varepsilon\right)=x_{0}+\varepsilon Q$. For $|C(u)|$ a. e. $x_{0} \in \Omega$

$$
A\left(x_{0}\right):=\lim _{\varepsilon \rightarrow 0} \frac{D(u) Q\left(x_{0}, \varepsilon\right)}{\operatorname{ID}(u) \mid Q\left(x_{0}, \varepsilon\right)}=\lim _{\varepsilon \rightarrow 0} \frac{C(u) Q\left(x_{0}, \varepsilon\right)}{I C(u) \mid Q\left(x_{0}, \varepsilon\right)}
$$

$$
\begin{aligned}
& \operatorname{am}^{\frac{\operatorname{Dul}\left(\mathrm{Q}\left(\mathrm{x}_{0}, \mathrm{E}\right)\right)}{}}=\mathrm{e}, \\
& \mathrm{e}->0 \quad \operatorname{IC}(\mathrm{u})(\mathrm{Q}(\mathrm{x} 0, \mathrm{e}))
\end{aligned}
$$

and (see [FM2]) the following hold:

$$
\begin{aligned}
& \eta\left(x_{0}\right)=\lim \mu\left(Q\left(x_{0}, \varepsilon\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{e} \rightarrow 01 \mathrm{Q}\left(\mathrm{x}_{0}, \mathrm{e}\right) \mathrm{I} \mathrm{Q}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{e}\right) \\
& \mathbf{I A}(x 0) \mathrm{I}-\mathrm{l}, \mathrm{~A}(\mathrm{xo})=\mathbf{a} \otimes \mathrm{V} \text {. } \\
& \text {,. } 2 \text { Dulfo(xn.E». } \\
& |\mathrm{Du}|(\mathrm{O}(\mathrm{xo}, \mathrm{e}))
\end{aligned}
$$

$$
\begin{align*}
& \text { e->0 en }{ }^{\prime \prime} \quad \text { e->0 } \quad e^{N} \tag{5.1}
\end{align*}
$$

Also, by [FM2], Lemma 2.13, we may assume that

$$
\begin{align*}
& \text { to linily' } \mathrm{D}^{\prime}{ }^{\prime} \underline{\left(\mathrm{Q}(\mathrm{xo}, \mathrm{e}) \backslash \mathrm{Q}\left(\mathrm{x}_{<, \mathrm{t}, \mathrm{e})}\right)\right.}-\quad Q \text {. } \tag{5.2}\\
& t \rightarrow 1-\quad e-» 0 \quad \text { IDu } l(Q(x o, e))
\end{align*}
$$

We suppose that $\mathrm{A}(\mathrm{x} 0)=\mathrm{a}$ ® $\mathrm{eN}-$ Let $\mathrm{t} €(0,1)$, ye $(\mathrm{t}, 1)$ and let $£ \mathrm{k}-40$ be such that

$$
\begin{aligned}
& y_{0}:=\lim _{k \rightarrow \infty} \frac{1}{\operatorname{meas}\left(Q_{\varepsilon_{k}}\right)} \underset{x_{0}+\gamma Q_{\varepsilon_{k}}}{\int m d x}
\end{aligned}
$$

exists. Since

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow+\infty} \frac{1}{0^{0}-\varepsilon \cdot 1} J{ }_{x_{0}+Y_{\varepsilon}} I u_{n}(x)-U(X Q) I d x=0,
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{\mathbf{e}-\wedge 0} \lim _{\mathrm{n} \rightarrow>0}|\mathbf{J}(\mathrm{mk}(\mathrm{x} 0+\mathrm{ex})-\mathrm{m}(\mathrm{x} 0))<\operatorname{Pj}(\mathrm{x}) \mathrm{dx}|=0,
\end{aligned}
$$

writing $v_{n} \mathbf{j} c(z):=u_{n}(\mathbf{x} 0+E f(z)$ and using a diagonalization procedure as in Section 2, we construct sequences $A^{* * \wedge}$ yo in $L^{\circ \circ}$ and II $\left.v^{\wedge}-u(x 0){ }^{\prime \prime} L^{\wedge} Q\right) \boldsymbol{O}^{\text {such }}$ that

$$
\begin{align*}
& \eta\left(x_{0}\right) \geq \lim _{k \rightarrow \infty} \frac{\varepsilon_{\mathbf{k}}^{N}}{\operatorname{Dul}\left(Q_{\varepsilon_{k}}\right)} \int_{\gamma Q} \psi\left(\frac{1}{\varepsilon_{\mathbf{k}}} \nabla v_{\mathbf{k}}, \lambda_{k}\right) \mathrm{dz}, \tag{5.3}\\
& \left.\lim _{\mathbf{k} \rightarrow \infty} \frac{\varepsilon_{k}^{N-1}}{\operatorname{Dul}\left(Q_{\varepsilon_{\mathbf{k}}}\right)} \int_{Q} l_{v_{\mathbf{k}}}(z)-a_{\mathbf{k}}-\left[u\left(x_{0}+\varepsilon_{\mathbf{k}} z\right)-\frac{1}{\left|Q_{\varepsilon_{\mathbf{k}}}\right|} \int_{x_{0}+Q_{\varepsilon_{\mathbf{k}}}} u d y\right] \right\rvert\, d z=0 \tag{5.4}
\end{align*}
$$

where $a_{k}:=\int_{\mathbf{Q}} \mathbf{v}_{\mathbf{k}}(\mathrm{z}) \mathrm{dz}$.
After extracting a subsequence, we may assume in (5.3) that lim sup is limit. We set

$$
\begin{aligned}
& \bar{u}_{k}(z):=\frac{\varepsilon_{k}^{N-1}}{\mid \operatorname{Du|}\left(Q_{\varepsilon_{k}}\right)}\left[u\left(x_{0}+\varepsilon_{k} z\right)-\frac{1}{\left|Q_{\varepsilon_{k}}\right|} \int_{x_{0}+Q_{\varepsilon_{k}}} u d y\right] \text { and } \\
& w_{k}(z):=\frac{\varepsilon_{k}^{N-1}}{|D u|\left(Q_{\varepsilon_{k}}\right)}\left[v_{k}(z)-a_{k}\right] .
\end{aligned}
$$

Then

$$
\int_{Q} \bar{u}_{k}(z) d z=0, \quad\left|D \bar{u}_{k}\right|(Q)=1
$$

and so $\left\{\bar{u}_{k}\right\}$ is equi-integrable and by (5.4) we conclude that
$\left\|\bar{u}_{k}-w_{k}\right\|_{L}{ }^{1}(Q) \rightarrow 0$ as $k \rightarrow+\infty$.
By (5.1),

$$
\mu_{k}:=\frac{\mid \operatorname{Du|}\left(x_{0}+\varepsilon_{k} Q\right)}{\varepsilon_{N}^{k}} \rightarrow+\infty
$$

and (5.3) reduces to

$$
\begin{equation*}
\eta\left(x_{0}\right) \geq \lim _{k \rightarrow \infty} \frac{1}{\mu_{k}} \int_{\gamma} \psi\left(\mu_{k} \nabla w_{k}, \lambda_{k}\right) d z . \tag{5.5}
\end{equation*}
$$

On the other hand we have that
$\overline{D u}_{k}(Q)=\frac{\operatorname{Du}\left(x_{0}+\varepsilon_{k} Q\right)}{\mid \operatorname{Dul}\left(x_{0}+\varepsilon_{k} Q\right)} \rightarrow \mathrm{a} \otimes e_{N}$ and $I \bar{u}_{k}-\left(D \bar{u}_{u_{k}} \cdot A_{0}\right) A_{0}(Q) \rightarrow 0$,
the latter from [FM2], Proposition A.1, and this implies that

$$
\mathbb{D} \bar{u}_{k} \cdot e_{i}(Q) \rightarrow 0 \text { for all } i=1, \ldots, N-1
$$

Thus, it is possible to find a sequence of smooth functions $\xi_{\mathbf{k}}(\mathbf{x})$, which are functions $\mathrm{f}_{\mathbf{k}}\left(\mathrm{x}_{\mathbf{N}}\right)$, such that

$$
\left\|\xi_{k}-\bar{u}_{k}\right\|_{L}{ }^{1}(Q) \rightarrow 0, \quad \text { as } k \rightarrow+\infty,
$$

and for a.e. $\tau \in(0,1)$

$$
\begin{equation*}
\nabla \xi_{\mathbf{k}}(\tau \mathrm{Q})-\mathrm{D} \bar{u}_{\mathbf{k}}(\tau \mathrm{Q}) \rightarrow 0 . \tag{5.6}
\end{equation*}
$$

Fix $\tau \in(\mathrm{t}, \gamma)$ for which (5.6) holds. Choose $\delta>0$ such that $(1-\delta) \tau>\mathrm{t}$ and we may assume that
$\mathbb{D} \xi_{k}\left|(\tau Q \backslash \tau(1-\delta) Q) \leq \mathbb{D} \bar{u}_{k}\right|(Q \downarrow Q)=\frac{\operatorname{Dul}\left(Q\left(x_{0}, \varepsilon_{k}\right) \backslash Q\left(x_{0}, \varepsilon_{k}\right)\right)}{\mid \operatorname{Dul}\left(Q\left(x_{0}, \varepsilon_{k}\right)\right)}$.
Note that
$\frac{1}{\tau^{N}} \nabla \xi_{k}(\tau Q)=\frac{1}{\tau^{N}} \int_{\tau Q} \nabla \xi_{k} d y=\int_{Q} \nabla \xi_{k}(\tau z) d z=\frac{f_{k}(\tau / 2)-f_{k}(-\tau / 2)}{\tau} \otimes e_{N}$.

As $\lambda_{k} * y_{0}$ in L^{∞} and $w_{k}-\xi_{k} \rightarrow 0$ in L^{1}, by (5.5) and using the "slicing method" will modify w_{k} and λ_{k} on the layer $\tau \mathrm{Q} \backslash \tau(1-\delta) \mathrm{Q}$ so that

$$
\begin{equation*}
\eta\left(x_{0}\right) \geq \quad \underset{k \rightarrow \infty}{\limsup } \frac{1}{\mu_{k}} \int_{\tau Q} \Psi\left(\mu_{k} \nabla \bar{v}_{k}, \bar{\lambda}_{k}\right) d z+O(1-t) \tag{5.9}
\end{equation*}
$$

where $\bar{\lambda}_{k} * y_{0}$ in $L^{\infty}, \frac{1}{|\tau Q|} \int_{\tau Q} \bar{\lambda}_{k} d z=y_{0}, \quad \bar{\lambda}_{k} l_{\partial(\tau Q)}$ is constant and $\bar{v}_{k}=$ $\xi_{k(i)}$, for some $k(i)$, on $\partial(\tau Q)$.

We partition $\tau Q \tau(1-\delta) Q$ into two layers $S_{(2)}^{1}, S_{(2)}^{2}$ with

$$
\left|S_{(2)}^{j}\right|=\frac{|\tau Q \backslash \tau(1-\delta) Q|}{2}
$$

and due to (H2) and (5.9) we choose
$S_{2}=\left\{x \in \tau Q \backslash \tau(1-\delta) Q: \alpha_{2}<\operatorname{dist}\left(x, \partial(\tau Q \backslash \tau(1-\delta) Q)<\beta_{2}\right\} \in\left\{S_{(2)}^{1}, S_{(2)}^{2}\right\}\right.$ such that, for a subsequence,

$$
\int_{\mathbf{S}_{2}}\left|\nabla w_{k}(z)(x)\right| d x \leq C / 2
$$

Let η_{2} be a smooth cut-off function, $0 \leq \eta_{2} \leq 1, \eta_{2}=0$ in the complement of $\left\{x \in \tau Q: \operatorname{dist}(x, \partial(\tau Q \backslash \tau(1-\delta) Q))<\beta_{2}\right\}, \quad \eta_{2}=1$ in $\left\{x \in \tau Q: \operatorname{dist}(x, \partial(\tau Q \backslash \tau(1-\delta) Q))<\alpha_{2}\right\}$ and $\left\|\nabla \eta_{2}\right\|=O\left(1 / / S_{2} I\right)$. As

$$
\left.\lim _{k \rightarrow \infty}\left|y_{0}-\frac{1}{|\tau Q|_{\tau Q}} \int_{V_{2}} \eta_{k} d x\right|=\left|y_{0}\right|\left|1-\frac{1}{\mid \tau Q}\right|_{\tau Q} \eta_{2} d x \right\rvert\,
$$

choose k (2) large enough so that

$$
\begin{aligned}
& \frac{1}{\left|S_{2}\right|} \int_{S_{2}}\left|w_{k(2)}-\xi_{k(2)}\right| d x<\frac{1}{2} \text { and } \\
& \frac{\left|y_{0}-\frac{1}{|\tau Q|_{\tau Q}} \int_{2} \eta_{2} \lambda_{k(2)} d x\right|}{\left|1-\frac{1}{\mid \tau Q} \int_{\tau Q} \eta_{2} d x\right|} \leq\left|y_{0}\right|+1
\end{aligned}
$$

Next, divide $\tau Q \backslash \tau(1-\delta) Q$ into $S_{(3)}^{1}, S_{(3)}^{2}, S_{(3)}^{3}$, with $\left|S_{(3)}^{j}\right|=\frac{|\tau Q \backslash \tau(1-\delta) Q|}{3}$.
One of these, S_{3}, must verify

$$
\int_{S_{3}}\left|\nabla w_{k}\right| d x \leq C / 3
$$

for a subsequence of the previous one. Let η_{3} be a smooth cut-off function, $0 \leq \eta_{3}$ $\leq 1, \eta_{3}=0$ "outside" $S_{3}, \eta_{3}=1$ "inside" S_{3} and $\left\|\nabla \eta_{3}\right\|=O\left(1 / / S_{3} \mid\right)$. Choose $k(3)>k(2)$, large enough so that

$$
\begin{aligned}
& \frac{1}{\left|S_{3}\right|} \int_{S_{3}}\left|w_{k(3)}-\xi_{k(3)}\right| d x<\frac{1}{3} \text { and } \\
& \left.\frac{\left|y_{0}-\frac{1}{|\tau Q|_{\tau Q}} \int_{3} \eta_{k(3)} d x\right|}{\left.\left|1-\frac{1}{\mid \tau Q}\right|_{\tau Q} \eta_{3} d x \right\rvert\,} \leq y_{0} \right\rvert\,+1
\end{aligned}
$$

Recursively, we construct a sequence $k(j)$ such that

$$
\int_{S_{j}}\left|\nabla w_{k(j)}\right| d x \leq \frac{C}{j}, \quad \frac{1}{\left|S_{j}\right|} \int_{S_{j}}\left|w_{k(j)}-\xi_{k(j)}\right| d x<\frac{1}{j} \text { and }
$$

$$
\left.\frac{\left|y_{0}-\frac{1}{|\tau Q|_{\tau Q}} \int \eta_{j} \lambda_{\mathrm{k}(\mathrm{j})} \mathrm{dx}\right|}{\left|1-\frac{1}{\left.1 \tau Q\right|_{\tau Q}} \int_{\mathrm{J}} \eta_{\mathrm{j}} \mathrm{dx}\right|} \leq \mathrm{y}_{\mathrm{o}} \right\rvert\,+1 .
$$

We set

$$
\begin{aligned}
& \bar{\lambda}_{j}(x):=\left(1-\eta_{j}(x)\right) \frac{y_{0}-\frac{1}{I \tau Q} \int_{\tau Q} \eta_{j} \lambda_{k(j)} d y}{1-\frac{1}{I \tau Q} \int_{\tau Q} \eta_{j} d y}+\eta_{j}(x) \lambda_{k(j)}(x), \\
& \bar{V} J(X):=(1-T j(x)) \xi_{k(j)}(x)+\eta_{j}(x) v_{i(i)}(x) .
\end{aligned}
$$

Clearly
 $\operatorname{lm}(x o) I+1+M$ and $v k={ }^{\wedge} k$ on 9(xQ). By (5.9) and (H2) ${ }^{\prime}$

$$
\wedge \quad \lim -1 \quad \stackrel{\bullet}{\mathbf{J}} \mathbf{V}\left([\mathbf{i k O})^{v} \overline{\mathbf{v}}, \mathbf{X j}\right) \mathrm{dz}
$$

$$
-\operatorname{Cg}\left(\mathbf{l y}_{0} \mathbf{l}+1\right) \underset{\operatorname{TQ|T}(1-6) \mathrm{Q}}{\left.\left(\mathrm{I}+\left|\nabla \xi_{\mathbf{k}(\mathrm{j}}\right|\right) \mathrm{dx}\right] .}
$$

By (5.7) and (5.2) we conclude that

$$
\begin{aligned}
& \eta\left(x_{0}\right) \geq \lim _{j \rightarrow \infty} \frac{1}{\mu_{k(j)}}[\underset{\sim}{f} v(H k G) V \bar{Q} J, X J) d z-C g\left(l y_{0} l+1+M\right)(1 \times Q|x(1-8) Q| \\
& +\frac{\left.\operatorname{IDul}\left(Q(\text { xo,ek }) \backslash Q\left(x_{0}\right\rangle \text { tek }\right)\right)}{\operatorname{IDul}(Q(x o, e k))}-\operatorname{Cg}\left(\text { tyo }_{0} \mid+1\right)(|\tau Q \tau(1-\delta) Q|
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{\mid \operatorname{Du|}\left(Q\left(\mathrm{x}_{0}, \varepsilon_{\mathbf{k}}\right) \backslash \mathrm{Q}\left(\mathrm{x}_{0}, \mathrm{t}_{\mathbf{k}}\right)\right)}{\operatorname{IDul}(\mathrm{Q}(\mathrm{xo}, \mathrm{ek}))}\right)\right]
\end{aligned}
$$

Note that

$$
\left.\xi_{\mathbf{k}}(x)=\frac{f_{k}(\tau / 2)-f_{k}(-\tau / 2)}{\tau} \otimes e_{N}\right) x+\varphi(x)
$$

with <p a xQ-periodic function, and so by (HI) and (5.9),

$$
\mathrm{Tl}\left(\mathrm{x}_{0}\right) \quad \mathrm{L}>\quad \limsup _{k \rightarrow \infty} \frac{1}{\wedge_{k}} \mathrm{TN}_{\mathrm{V}}\left(\mathrm{n}_{\mathrm{k}} \frac{\mathrm{fk}(\mathrm{~T} / 2) \ldots \mathrm{fk}(\ldots \mathrm{~T} / 2)}{\mathrm{x}}<8>\mathrm{e}_{\mathrm{N}} \mathrm{y} 0\right)+\mathrm{O}(\mathbf{l}-\mathrm{t}) .
$$

As $Y /(.$, yo) is quasiconvex, then (see [D]) it is Lipschitz continuous hence by (5.6) and (5.8)

$$
\begin{aligned}
& \leq \limsup _{\mathrm{k} \rightarrow \infty} \bar{x}_{\boldsymbol{x}^{N_{\mathrm{l}}}} \operatorname{IA}(\mathbf{X O})-\mathrm{V}^{\wedge}(\mathrm{TQ}) \mathrm{I} \\
& =\frac{C}{\mathbf{x}^{\mathbb{N}}} \limsup _{\mathrm{k} \rightarrow \infty} \mathrm{IA}(\mathrm{xo})-\operatorname{Dik}(\mathrm{xQ}) \mathbf{I}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{C}{\tau N} \limsup _{k \rightarrow \infty} \frac{\operatorname{Dul}\left(Q\left(x_{0}, \varepsilon_{\underline{k}}\right) \backslash Q\left(x_{0}, \mathrm{te}_{\underline{k}}\right)\right)}{\operatorname{Dul}(Q(x 0, e k))}=O(1-t) / \tau_{N} .
\end{aligned}
$$

We conclude that

$$
\mathrm{Tl}(\mathrm{xo}) \wedge \quad \lim \sup -\frac{1}{\mathrm{x}} \mathrm{~N} v(\wedge \mathbf{A}(\mathrm{xo}), \mathrm{yo})+0(1-t)
$$

which by Lemma 2.2 yields

$$
\mathbf{T l}(\mathbf{x o}) \wedge \mathbf{V}^{\circ \circ}\left(\mathbf{A}\left(\mathbf{x}_{0}\right)\right)+\mathbf{O}(\mathbf{l - t})
$$

and the result now follows by letting $\mathrm{t}->\mathbf{1}$.

6. Relaxation

We want to show that

$$
\begin{equation*}
\mathrm{F}(\mathrm{u}, \mathrm{~m}) \underset{\boldsymbol{\Omega}}{\mathrm{f}} \mathrm{f} \backslash /(\mathrm{Vu}, \mathrm{~m}) \mathrm{dx}+\underset{\boldsymbol{\Sigma}(\mathrm{u})}{\mathrm{f} \backslash \mathrm{f} \sim\left(\left(\mathrm{u} \sim-\mathrm{u}^{+}\right) ® \mathrm{R}\right) \mathrm{dH}_{\mathrm{N}}-\mathrm{i}(\mathrm{x})+\underset{\boldsymbol{\Omega}}{\mathrm{f}} \mathrm{~V}^{\circ \circ \circ}(\mathrm{dC}(\mathrm{u})),} \tag{6.1}
\end{equation*}
$$

We will follow the proof of the relaxation section on [FM2] (see also Ambrosio, Mortola and Tortorelli [AMT]) making the necessary adaptations. It is divided into four steps and we begin by considering

$$
\begin{aligned}
& \mathrm{F}(\mathrm{u}, \mathrm{~m} ; \mathrm{A}):=\inf _{\left\{\mathbf{u}_{\mathrm{k}}\right\},\left\{\mathbf{m}_{\mathrm{k}}\right\}}\left\{\liminf _{\mathbf{k}^{*} \boldsymbol{0}} \underset{\mathbf{X}}{\mathbf{J}} \backslash /(\mathrm{Vuk}, \mathrm{mk}) \mathrm{dx}:(\mathrm{uk}, \mathrm{mk}) \boldsymbol{\epsilon}\right.
\end{aligned}
$$

whenever A c $C l$ is an open set.
Stepl. By (H2)

$$
\begin{equation*}
\mathrm{F}(\mathrm{u}, \mathrm{~m} ; \mathrm{A}) \leq \mathrm{g}(\mathrm{llclUo})(\mathrm{IA} \mathrm{I}+\operatorname{Dul}(\mathrm{A})) \tag{6.2}
\end{equation*}
$$

Also we claim that $\mathrm{F}(\mathrm{u}, \mathrm{m} ; \mathrm{A})$ is a variational functional with respect to the L^{1} topology. We recall that $\mathrm{F}(\mathrm{u}, \mathrm{m} ; \mathrm{A})$ is said to be a variational functional with respect to the L^{1} topology if
(i) $\mathrm{F}(\mathrm{u}, \mathrm{m} ; \mathrm{A})$ is local, i. e.

$$
\mathrm{F}(\mathrm{u}, \mathrm{~m} ; \mathrm{A})=\mathrm{F}(\mathrm{v}, \mathrm{~h} ; \mathrm{A})
$$

for every $u, v € B V\left(A ; R^{n}\right)$ verifying $u=v$ a.e. in A and $m, h € L^{\circ \circ}\left(A ; R^{d}\right)$ such that $\mathrm{m}=\mathrm{h}$ a.e. in A .
(ii) $\mathrm{F}(\mathrm{u}, \mathrm{m} ; \mathrm{A})$ is sequentially lower semicontinuous, i. e. if $\mathrm{Uk}, \mathrm{u} € \mathrm{BV}\left(\mathrm{A} ; \mathrm{R}^{\mathrm{n}}\right)$, Uk $-4 u$ in $L^{\mathrm{x}}\left(\mathrm{A} ; \mathrm{R}^{\mathrm{n}}\right)$, $\mathrm{mk}, \mathrm{m} € \mathrm{~L}^{\circ \circ}\left(\mathrm{A} ; \mathrm{R}^{\mathrm{d}}\right)$ and $\mathrm{mk} \wedge \mathrm{m}$ in $\mathrm{L}^{\circ \circ}$, then

$$
\mathrm{F}(\mathrm{u}, \mathrm{~m} ; \mathrm{A}) \leq \liminf _{\mathrm{k} \rightarrow \infty} \mathrm{~F}\left(\mathrm{uk}, \mathrm{n}^{\wedge} ; \mathrm{A}\right)
$$

(iii) $\mathrm{F}(\mathrm{u}, \mathrm{m} ; \mathrm{A})$ is the trace on $\{\mathrm{A}$ c 12: A is open $\}$ of a Borel measure on the set $B(Q)$ of all Borel subsets of Q. De Giorgi and Letta [DGL] introduced the following criterion to assert (iii). A set function a: $\{\mathrm{A} \mathrm{c} Q: A$ is open $\} \longrightarrow$ $\left[0,+^{\circ} \mathrm{o}\right]$ is the trace of a Borel measure if
(a) $\quad a(B) £ a(A)$ forallA, $B € X:=\{U$ eft: Uisopen $\}$ withB $c A$;
(b) $\quad \alpha(A \cup B) \geq \alpha(A)+\alpha(B)$ for all $A, B \in X$ such that $A \cap B=\varnothing$;
(c) $\quad \alpha(A \cup B) \leq \alpha(A)+\alpha(B)$ for all $A, B \in X$;
(d) $\quad \alpha(A)=\sup \{\alpha(B): B \subset \subset A\}$ for all $A \in X$.

The proof of (i) is trivial.
To show (ii) one needs to use a standard diagonalization procedure. Indeed, suppose that $u_{k} \rightarrow u$ in $L^{1}, m_{k} * \min L^{\infty}$ and let $\left\{\varphi_{i}\right\}$ be a countable set dense in $L^{1}(\Omega)$. Assume that

$$
F\left(u_{k}, m_{k} ; A\right)=\lim _{\mathbf{j} \rightarrow \infty} \int_{A} \psi\left(\nabla \mathbf{u}_{\mathbf{j}}^{\mathbf{k}}, \mathrm{m}_{\mathbf{j}}^{\mathbf{k}}\right) \mathrm{dx}
$$

where

$$
u_{j}^{k} \rightarrow u_{k} \text { in } L^{1} \text { and } m_{j}^{k} * m_{k} \text { in } L^{\infty} \text { as } j \rightarrow+\infty \text {. For every } k, i,
$$ choose $\mathrm{j}(\mathrm{k}, \mathrm{i})$ such that for all $\mathrm{j} \geq \mathrm{j}(\mathrm{k}, \mathrm{i})$

$$
\left|\int_{\Omega}\left(m_{j}^{k}-m_{k}\right) \cdot \varphi_{i} d x\right| \leq 1 / k
$$

We may assume that $\mathrm{j}(\mathrm{k}$, .) is increasing.
Next, for all k let $p(k)$ be such that for all $j \geq p(k)$

$$
\left\|u_{j}^{k}-u_{k}\right\|_{L 1} \leq 1 / k
$$

Choose $s(k) \geq p(k), j(k, k)$ such that

$$
\left.\mid F\left(u_{k}, m_{k} ; A\right)-\int_{A} \psi\left(\nabla u_{s(k)}^{k}, m_{s(k)}^{k}\right) d x\right) \mid \leq 1 / k
$$

Clearly

$$
\mathbf{u}_{\mathbf{s}(\mathbf{k})}^{\mathbf{k}} \rightarrow \mathbf{u} \quad \text { in } L^{1}
$$

and for all i and $k \geq i$

$$
\left|\int_{\Omega}\left(m_{s(k)}^{k}-m\right) \cdot \varphi_{i} d x\right| \leq\left|\int_{\Omega}\left(m_{k}-m\right) \cdot \varphi_{i} d x\right|+1 / k \rightarrow 0 .
$$

Hence

$$
\left.F(\mathrm{u}, \mathrm{~m} ; \mathrm{A}) \leq \underset{\mathbf{k} \rightarrow \infty}{\liminf } \int_{\mathrm{A}} \psi\left(\nabla \mathrm{u}_{\mathrm{s}(\mathbf{k})}^{\mathbf{k}}, \mathrm{m}_{\mathrm{s}(\mathbf{k})}^{\mathbf{k}}\right) \mathrm{dx}\right)=\underset{\mathbf{k} \rightarrow \infty}{\liminf } F\left(\mathrm{u}_{\mathbf{k}}, \mathrm{m}_{\mathbf{k}} ; \mathrm{A}\right)
$$

We prove (iii) using an idea developed by [AMT] in Theorem 4.3. Parts (a) and (b) are trivial. To obtain (c) and (d) we prove that if A, B, C are open subsets of Ω with $B \subset \subset C \subset \subset A$ then

$$
\begin{equation*}
F(\mathrm{u}, \mathrm{~m} ; \mathrm{A}) \leq F(\mathrm{u}, \mathrm{~m} ; \mathrm{C})+F(\mathrm{u}, \mathrm{~m} ; \mathrm{A} \backslash \overline{\mathrm{~B}}) \tag{6.3}
\end{equation*}
$$

Suppose that (6.3) holds. To show (d) fix $\varepsilon>0$ and let $B \subset \subset A$ be such that

$$
|A \backslash \bar{B}|+|\operatorname{Du}|(A \backslash \bar{B})<\frac{\varepsilon}{g\left(\| m l_{\infty}\right)}
$$

By (H2) we have

$$
F(u, \mathrm{~m} ; \mathrm{A} \backslash \overline{\mathrm{~B}})<\varepsilon
$$

and so, if C is such that $B \subset \subset C \subset \subset A$, by (6.3) we conclude that

$$
F(u, m ; A) \leq F(u, m ; C)+\varepsilon
$$

proving (d). In order to obtain (c), for $t \in(0,1)$ we define the sets

$$
\begin{aligned}
& A_{t}:=\{x \in A \cup B: t \operatorname{dist}(x, A \backslash B)<(1-t) \operatorname{dist}(x, B \backslash A)\} \\
& B_{t}:=\{x \in A \cup B: t \operatorname{dist}(x, A \backslash B)>(1-t) \operatorname{dist}(x, B \backslash A)\}
\end{aligned}
$$

and

$$
S_{t}:=\{x \in A \cup B: t \operatorname{dist}(x, A \backslash B)=(1-t) \operatorname{dist}(x, B \backslash A)\} .
$$

Since $\left(L_{N}+\mid \operatorname{Dul}\right)\left(\cup S_{t}\right)<+\infty$, where L_{N} denotes Lebesgue measure, and the sets $\left\{S_{t}\right\}$ are pairwise disjoint, there exists $t_{0} \in(0,1)$ such that $\left(L_{N}+|D u|\right)\left(S_{t_{0}}\right)=0$. Given $\varepsilon>0$, by $(H 2)$ choose $K_{1} \subset \subset A_{t_{0}}, K_{2} \subset \subset B_{t_{0}}$ such that
$F\left(\mathrm{u}, \mathrm{m} ;(\mathrm{A} \cup \mathrm{B}) \backslash\left(\overline{\mathrm{K}}_{1} \cup \overline{\mathrm{~K}}_{2}\right)\right)<\varepsilon$
and let $K_{1} \subset \subset \mathrm{H}_{1} \subset \subset \mathrm{~A}_{\mathrm{t}_{0}}, \mathrm{~K}_{2} \subset \subset \mathrm{H}_{2} \subset \subset \mathrm{~B}_{\mathrm{t}_{0}}$. By (6.3), (a) and (b) we deduce that

$$
\begin{aligned}
F(\mathrm{u}, \mathrm{~m} ; \mathrm{A} \cup \mathrm{~B}) & \leq F\left(\mathrm{u}, \mathrm{~m} ; \mathrm{H}_{1} \cup \mathrm{H}_{2}\right)+F\left(\mathrm{u}, \mathrm{~m} ;(\mathrm{A} \cup \mathrm{~B}) \backslash\left(\overline{\mathrm{K}}_{1} \cup \overline{\mathrm{~K}}_{2}\right)\right) \\
& \leq F(\mathrm{u}, \mathrm{~m} ; \mathrm{A})+F(\mathrm{u}, \mathrm{~m} ; \mathrm{B})+\varepsilon .
\end{aligned}
$$

We prove (6.3). Let

$$
F(u, m ; A \backslash \bar{B})=\lim _{k \rightarrow \infty} \int_{A \bar{B}} \psi\left(\nabla u_{k}^{1}, m_{k}^{1}\right) d x, F(u, m ; C)=\lim _{k \rightarrow \infty} \int_{C} \psi\left(\nabla u_{k}^{2}, m_{k}^{2}\right) d x
$$

where $u_{k}^{1} \rightarrow u$ in $L^{1}(A \backslash \bar{B}), u_{k}^{2} \rightarrow u$ in $L^{1}(C), m_{k}^{1} \xrightarrow{*} m$ in $L^{\infty}(A \backslash \bar{B})$ and
$\mathrm{m}_{\mathrm{k}}^{2} * \operatorname{m}$ in $\mathrm{L}^{\infty}(\mathrm{C})$.
In order to obtain admissible sequences for (u, m) in $A \cup B$, using the slicing method we are going to connect m_{k}^{1} to m_{k}^{2} and u_{k}^{1} to u_{k}^{2} across $C \bar{B}$.We partition $C \backslash \bar{B}$ into two layers $S_{(2)}^{1}, S_{(2)}^{2}$ with $\left|S_{(2)}^{j}\right|=|C \bar{B}| / 2$ and due to (H 2) and the fact that $\left\{\psi\left(\nabla u_{k}^{2}, m_{k}^{2}\right)\right\}$ is bounded in $L^{1}(C)$, we choose $S_{2}=\left\{x \in C \backslash \bar{B}: \alpha_{2}<\right.$ $\operatorname{dist}\left(\mathrm{x}, \partial(\mathrm{C} \overline{\mathrm{B}})<\beta_{2}\right\} \in\left\{\mathrm{S}_{(2)}^{1}, \mathrm{~S}_{(2)}^{2}\right\}$ such that, for a subsequence,

$$
\int_{\mathbf{S}_{2}}\left|\nabla \mathrm{u}_{\mathrm{k}}^{1}(\mathrm{x})\right| \mathrm{dx} \leq \text { const. } / 2, \quad \int_{\mathbf{S}_{2}}\left|\nabla \mathrm{u}_{\mathrm{k}}^{2}(\mathrm{x})\right| \mathrm{dx} \leq \text { const. } / 2
$$

Let η_{2} be a smooth cut-off function, $0 \leq \eta_{2} \leq 1, \eta_{2}=0$ in the complement of $\left\{x \in C: \operatorname{dist}(x, \partial(C \bar{B}))<\beta_{2}\right\}, \eta_{2}=1$ in $\left\{x \in C \mid \operatorname{dist}(x, \partial(C \bar{B}))<\alpha_{2}\right\}$ and $\left\|\nabla \eta_{2}\right\|=$ $\mathrm{O}\left(1 / / \mathrm{S}_{2} \mid\right)$. Choose $\mathrm{k}(2)$ large enough so that

$$
\frac{1}{\left|S_{2}\right|} \int_{S_{2}}\left|u_{k}^{1}-u_{k}^{2}\right| d x<1 / 2
$$

Recursively, we construct a sequence $k(j)$ such that

$$
\int_{S_{j}}\left|\nabla u_{k(j)}^{1}\right| d x \leq C / k, \int_{S_{j}}\left|\nabla u_{k(j)}^{2}\right| d x \leq C / k, \quad \frac{1}{\left|S_{j}\right|} \int_{S_{j}}\left|u_{k(j)}^{1}-u_{k(j)}^{2}\right| d x<1 / j
$$

We set

$$
\bar{\lambda}_{j}:=\left(1-\eta_{j}\right) m_{k(j)}^{1}+\eta_{j} m_{k(j)}^{2}, \quad \bar{v}_{j}:=\left(1-\eta_{j}\right) u_{k(j)}^{1}+\eta_{j} u_{k(j)}^{2}
$$

Clearly $\bar{\lambda}_{j} * m$ in $L^{\infty}(A \cup B), \quad \bar{v}_{j} \rightarrow u$ in $L^{1}(A \cup B)$. Let $M:=\sup \left(\left\|m_{k}^{1}\right\|_{\infty}\right.$, $\left.\left\|m_{k}^{2}\right\|_{\infty}\right\}$. By (H2)

$$
F(u, m ; A \cup B) \leq \liminf _{j \rightarrow \infty} \int_{A \cup B} \psi\left(\nabla \bar{v}_{j}(x), \bar{\lambda}_{j}(x)\right) d x
$$

$$
\begin{aligned}
& \leq \lim _{j \rightarrow \infty} \int_{A \backslash \bar{B}} \psi\left(\nabla u_{k(j)}^{1}, m_{k(j)}^{1}\right) d x+\lim _{j \rightarrow \infty} \int_{C} \psi\left(\nabla u_{k(j)}^{2}, m_{k(j)}^{2}\right) d x+ \\
& +C g(M) \underset{j \rightarrow \infty}{\lim \sup } \int_{S_{j}}\left(1+\left|\nabla u_{k(j)}^{1}\right|+\left|\nabla u_{k(j)}^{2}\right|+\left|\nabla \eta_{j}\right|\left|u_{k(j)}^{1}-u_{k(j)}^{2}\right|\right) d x \\
& =F(u, m ; A \backslash \bar{B})+F(u, m ; C) .
\end{aligned}
$$

Step 2. We claim that if $u \in B V\left(\Omega ; \mathbb{R}^{n}\right), m \in L^{\infty}\left(\Omega ; \mathbb{R}^{d}\right)$ then

$$
\begin{equation*}
F(u, m ; \Omega \Sigma \Sigma(u)) \leq \int_{\Omega \backslash(u)} \psi(\nabla u, m) d x+\int_{\Omega \backslash(u)} \psi^{\infty}(A(x)) d|C(u)|(x) \tag{6.4}
\end{equation*}
$$

By Step 1, F (u,m;.) is a Radon measure, absolutely continuous with respect to L_{N} $+\mid$ Dul. Thus (6.4) holds if and only if

$$
\begin{align*}
& \frac{\mathrm{d} F(\mathrm{u}, \mathrm{~m} ; .)}{\mathrm{dx}}\left(\mathrm{x}_{0}\right) \leq \psi\left(\nabla \mathrm{u}\left(\mathrm{x}_{0}\right), \mathrm{m}\left(\mathrm{x}_{0}\right)\right) \text { for } \mathrm{dx} \text { a.e. } \mathrm{x}_{0} \in \Omega, \text { and } \tag{6.5}\\
& \frac{\mathrm{d} F(\mathrm{u}, \mathrm{~m} ; .)}{\mathrm{d}|C(\mathrm{u})|}\left(\mathrm{x}_{0}\right) \leq \psi^{\infty}\left(\mathrm{A}\left(\mathrm{x}_{0}\right)\right) \text { for }|C(\mathrm{u})| \text { a.e. } \mathrm{x}_{0} \in \Omega . \tag{6.6}
\end{align*}
$$

We start by showing (6.6). Let $\left\{u_{k}\right\}$ be the regularized sequence defined in the following way. Let $\rho_{k} \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be an approximation of the identity and $u_{k}(x)=$ $\left(\mathrm{u} * \rho_{\mathrm{k}}\right)(\mathrm{x})$. Writing

$$
\begin{equation*}
\mathrm{Du}=\nabla \mathrm{udx}+\mathrm{D}_{\mathrm{s}} \mathrm{u} \tag{6.7}
\end{equation*}
$$

for L_{N} a.e. $\mathrm{x}_{0} \in \Omega$ we have

$$
\begin{aligned}
& \left.\lim _{\varepsilon \rightarrow 0} \frac{1}{\left|B\left(x_{0}, \varepsilon\right)\right|} \int_{B\left(x_{0}, \varepsilon\right)} \operatorname{Im}(x)-m\left(x_{0}\right) \right\rvert\,(1+|\nabla u(x)|) d x=0, \\
& \lim _{\varepsilon \rightarrow 0} \frac{\left|D_{s} u\right|\left(B\left(x_{0}, \varepsilon\right)\right)}{\left|B\left(x_{0}, \varepsilon\right)\right|}=0, \lim _{\varepsilon \rightarrow 0} \frac{\mid \operatorname{Du|}\left(B\left(x_{0}, \varepsilon\right)\right)}{\left|B\left(x_{0}, \varepsilon\right)\right|} \text { exists and is finite, } \\
& \frac{1}{\left|B\left(x_{0}, \varepsilon\right)\right|} \int_{\Omega} \psi\left(\nabla u(x), m\left(x_{0}\right)\right) d x \rightarrow \psi\left(\nabla u\left(x_{0}\right), m\left(x_{0}\right)\right) \text {, and } \\
& \frac{d F(u, m ; .)}{d x}\left(x_{0}\right) \text { exists and is finite. }
\end{aligned}
$$

Choose a sequence of numbers $\varepsilon \in\left(0, \operatorname{dist}\left(\mathrm{x}_{0}, \partial \Omega\right)\right)$. Then

$$
\begin{align*}
& \frac{\mathrm{d} F(\mathrm{u}, \mathrm{~m} ; .)}{\mathrm{dx}}\left(\mathrm{x}_{0}\right)=\lim _{\varepsilon \rightarrow 0} \frac{F\left(\mathrm{u}, \mathrm{~m} ; \mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)\right)}{\left|\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)\right|} \\
& \quad \leq \liminf _{\varepsilon \rightarrow 0} \liminf _{\mathrm{k} \rightarrow \infty} \frac{1}{\left|\mathrm{~B}\left(\mathrm{x}_{0}, \varepsilon\right)\right|} \int_{\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)} \Psi\left(\nabla \mathrm{u}_{\mathrm{k}}, \mathrm{~m}\right) \mathrm{dx} \tag{6.11}
\end{align*}
$$

Following [AMT], Proposition 4.6, we introduce the Yosida transforms of ψ, given by

$$
\Psi_{\lambda}(\mathrm{m}, \mathrm{~A}):=\sup \left\{\psi\left(\mathrm{A}, \mathrm{~m}^{\prime}\right)-\lambda \operatorname{lm}-\mathrm{m}^{\prime} \mid(1+|\mathrm{A}|): \mathrm{m}^{\prime} \in \mathbb{R}^{d}\right\}, \lambda>0
$$

Then
(i) $\quad \psi_{\lambda}(\mathrm{A}, \mathrm{m}) \geq \psi(\mathrm{A}, \mathrm{m})$ and ψ_{λ} (A.m) decreases to $\psi(\mathrm{m}, \mathrm{A})$ as $\lambda \rightarrow+\infty$;
(ii) $\quad \Psi_{\lambda}(\mathrm{A}, \mathrm{m}) \geq \Psi_{\eta}(\mathrm{A}, \mathrm{m})$ if $\lambda \leq \eta,(\mathrm{A}, \mathrm{m}) \in \mathbb{M} \times \mathbb{R}^{\mathrm{d}}$;
(iii) $\quad\left|\psi_{\lambda}(\mathrm{A}, \mathrm{m})-\psi_{\lambda}\left(\mathrm{A}, \mathrm{m}^{\prime}\right)\right| \leq \lambda \operatorname{lm}-\mathrm{m}^{\prime} \mid(1+|\mathrm{A}|),(\mathrm{A}, \mathrm{m}) \in \mathbb{M} \times \mathbb{R}^{\mathrm{d}}$;
(iv) the approximation is uniform on compact sets. Precisely, let K be a compact subset of \mathbb{R}^{d} and let $\delta>0$. There exists $\lambda>0$ such that

$$
\psi(\mathrm{A}, \mathrm{~m}) \leq \psi_{\lambda}(\mathrm{A}, \mathrm{~m}) \leq \psi(\mathrm{A}, \mathrm{~m})+\delta(1+|\mathrm{A}|),(\mathrm{A}, \mathrm{~m}) \in \mathbb{M} \times \mathrm{K} .
$$

Fix $\delta>0$ and let $\mathrm{K}=\overline{\mathrm{B}}\left(0,\|\mathrm{~m}\|_{\infty}\right)$. By (i), (ii) and (iv)

$$
\begin{align*}
& \psi\left(\nabla u_{k}(x), m(x)\right) \leq \Psi_{\lambda}\left(\nabla u_{k}(x), m(x)\right) \\
& \leq \psi_{\lambda}\left(\nabla u_{k}(x), m\left(x_{0}\right)\right)+\lambda \operatorname{lm}(x)-m\left(x_{0}\right) \mid\left(1+\left|\nabla u_{k}(x)\right|\right) \\
& \leq \psi\left(\nabla u_{k}(x), m\left(x_{0}\right)\right)+\delta\left(1+\left|\nabla u_{k}(x)\right|\right)+\lambda\left(\left|m(x)-m\left(x_{0}\right)\right|\left(1+\left|\nabla u_{k}(x)\right|\right)\right. \tag{6.12}
\end{align*}
$$

Taking into account that $\nabla \mathrm{u}_{\mathrm{k}}=\rho_{\mathrm{k}^{*}} \nabla \mathrm{u}+\rho_{\mathrm{k}^{*}} \mathrm{D}_{\mathrm{s}} \mathrm{u}$ and that $\psi\left(\mathrm{m}\left(\mathrm{x}_{0}\right)\right.$, .) is a Lipschitz function, by (H2) and (6.11) we have

$$
\begin{aligned}
& \frac{\mathrm{d} F(\mathrm{u}, \mathrm{~m} ; .)}{\mathrm{dx}}\left(\mathrm{x}_{0}\right) \leq \liminf _{\varepsilon \rightarrow 0} \liminf _{\mathrm{k} \rightarrow \infty} \frac{1}{\left|\mathrm{~B}\left(\mathrm{x}_{0}, \varepsilon\right)\right|}\left[\int_{\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)} \Psi\left(\left(\rho_{\mathbf{k}^{*}} \nabla \mathrm{u}\right)(\mathrm{x}), \mathrm{m}\left(\mathrm{x}_{0}\right)\right) \mathrm{dx}\right. \\
& +\left.\mathrm{C}\right|_{\mathrm{D}_{\mathrm{s}} \mathrm{u}}\left|\left(\mathrm{~B}\left(\mathrm{x}_{0}, \varepsilon+1 / \mathrm{k}\right)\right)+(\lambda \varepsilon+\delta)\right| \mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)|+(\lambda \varepsilon+\delta)| \operatorname{Du|}\left(\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon+1 / \mathrm{k}\right)\right) \\
& \quad+\lambda \int_{\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)}\left|\mathrm{m}(\mathrm{x})-\mathrm{m}\left(\mathrm{x}_{0}\right)\right|\left(1+\mid \nabla{\left.\left.u_{k}(\mathrm{x}) \mid\right) \mathrm{dx}\right] .}\right.
\end{aligned}
$$

Since

$$
\lim _{\mathbf{k} \rightarrow \infty} \int_{B\left(x_{0}, \varepsilon\right)} \Psi\left(\left(\rho_{\mathbf{k}^{*}} \nabla u\right)(x), m\left(x_{0}\right)\right) d x=\int_{B\left(x_{0}, \mathcal{E}\right)} \Psi\left(\nabla u(x), m\left(x_{0}\right)\right) d x
$$

$$
\mathrm{IDu}\left|\left(\mathrm{~B}\left(\mathrm{x}_{0}, \varepsilon+1 / \mathrm{k}\right)\right) \rightarrow \operatorname{IDu}\right|\left(\overline{\mathrm{B}}\left(\mathrm{x}_{0}, \varepsilon\right)\right)=\operatorname{IDu} \mid\left(\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)\right)
$$

for a.e. ε, invoking (6.9) and (6.10) one deduces

$$
\begin{gather*}
\frac{\mathrm{d} F(\mathrm{u}, \mathrm{~m} ; .)}{\mathrm{dx}}\left(\mathrm{x}_{0}\right) \leq \Psi\left(\nabla \mathrm{u}\left(\mathrm{x}_{0}\right), \mathrm{m}\left(\mathrm{x}_{0}\right)\right)+\mathrm{C} \delta \\
\left.+\lambda \liminf _{\varepsilon \rightarrow 0}^{\liminf } \frac{1}{\mathrm{k} \rightarrow \infty} \mathrm{\mid B(x}_{0}, \varepsilon\right)\left|\int_{\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)}\right| m(x)-m\left(\mathrm{x}_{0}\right) \mid\left(1+\left|\nabla u_{k}(\mathrm{x})\right|\right) \mathrm{dx} \tag{6.13}
\end{gather*}
$$

To prove (6.6) it remains to show that the last term converges to zero. By (6.8)

$$
\left.\lim _{\varepsilon \rightarrow 0} \frac{1}{\left|B\left(x_{0}, \varepsilon\right)\right|} \int_{B\left(x_{0}, \varepsilon\right)} \operatorname{lm}(x)-m\left(x_{0}\right) \right\rvert\, d x=0
$$

and by the dominated convergence theorem (with respect to the measure IDul)

Taking into account that $\operatorname{IDul}\left(\partial \mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)\right)=0$ for a.e. ε and that
$\underset{B\left(x_{0}, \varepsilon\right)}{\int} \operatorname{lm}-m\left(x_{0}\right)| | \operatorname{Dul}(x) \leq \int_{B\left(x_{0}, \varepsilon\right)} \operatorname{lm}-m\left(x_{0}\right)\left\|\nabla u(x)\left|d x+2\|m\|_{\infty}\right| D_{s} u \mid\left(B\left(x_{0}, \varepsilon\right)\right)\right.$,
we obtain from (6.8) and (6.9) that

$$
\underset{\varepsilon \rightarrow \infty}{\lim \sup } \limsup _{k \rightarrow \infty} \frac{1}{\left|B\left(x_{0}, \varepsilon\right)\right|} \int_{B\left(x_{0}, \varepsilon\right)}\left|m(x)-m\left(x_{0}\right)\right|\left|\nabla u_{k}(x)\right| d x=0,
$$

and (6.6) follows from (6.13).

$$
\begin{align*}
& \limsup _{k \rightarrow \infty} \int_{B\left(x_{0}, \varepsilon\right)}\left|m-m\left(x_{0}\right)\right|\left|\nabla u_{k}\right| d x \leq \limsup _{k \rightarrow \infty} \int_{B\left(x_{0}, \varepsilon+1 / n\right)}\left(\operatorname{lm}-m\left(x_{0}\right) \mid * \rho_{k}\right)|D u|(x) \\
& \leq \limsup _{\mathrm{k} \rightarrow \infty} \int_{\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon+1 / \mathrm{k}\right) \sum(\mathrm{u})}\left|\mathrm{m}-\mathrm{x}\left(\mathrm{x}_{0}\right)\right| * \rho_{\mathrm{k}}(\mathrm{x})|\operatorname{Du}|(\mathrm{x})+4\|\mathrm{~m}\|_{\infty}|\operatorname{Du}|\left(\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon+1 / \mathrm{k}\right) \cap \Sigma(\mathrm{u})\right) \\
& \leq \limsup _{k \rightarrow \infty} \underset{\bar{B}\left(x_{0}, \varepsilon+1 / k\right) \mid(u)}{\int\left|m-m\left(x_{0}\right)\right||D u|(x)+4\|m\|_{\infty} \mid \operatorname{Du|}\left(\bar{B}\left(x_{0}, \varepsilon\right) \cap \Sigma(u)\right), ~} \\
& \leq \underset{\bar{B}\left(x_{0}, \varepsilon\right) \backslash \Sigma(\mathrm{u})}{\int\left|m-m\left(x_{0}\right)\right||\operatorname{Du}|(x)+4\|m\|_{\infty}\left|D_{s} u\right|\left(B\left(x_{0}, \varepsilon\right)\right) .} \tag{6.14}
\end{align*}
$$

Next we prove (6.7), where using Radon-Nikodym Theorem we write IDul = $\mathbf{I C}(\mathbf{u}) I+\mid \mathbf{x}$, where $\backslash i$ and $\mathrm{IC}(\mathbf{u})$ I are mutually singular Radon measures. As \mathbf{m} is bounded and measurable, consider a Borel measurable function mi such that mi $=$ m for dx a. e. in il. Let $\mathbf{m} 2$ be the projection of mi onto $\mathrm{B}(0, l m \mathrm{llloo})$. Then m 2 is a Borel measurable function which is bounded by llmlloo. In particular $\mathbf{m 2} \mathbf{e}$ $\mathbf{L}^{\circ \circ}(\mathbf{f t}, \mathbf{I C}(\mathbf{u}) \mathrm{I})$. For $\mathbf{x o} € \mathbf{Q} \mathrm{IC}(\mathbf{u}) \mathrm{I}$ a.e., we have that

$$
\begin{aligned}
& \lim _{\mathrm{e} \rightarrow 0} \frac{\mathrm{e}^{\mathrm{N}}}{\operatorname{IC}(\mathbf{u}) 1(\mathbf{B}(\mathbf{x o}, \mathrm{e}))}=0, \\
& \lim \longrightarrow \operatorname{Im}_{2}(\mathbf{x})-\mathbf{m}_{2}\left(\mathbf{x}_{0}\right) \mathbf{I C} \operatorname{IC}(\mathbf{u})(\mathbf{x})=0, \\
& \text { e -»0 } \operatorname{IC}(\mathbf{u})(\mathbf{B}(\mathbf{x o}, \mathbf{e})) \mathbf{B}\left(\mathbf{x o}^{\wedge}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { one, (6.18) } \\
& \left.\liminf \quad 1 \quad \mathbf{f} \backslash K^{\circ \circ}(\mathbf{A}(\mathbf{x})) \mathbf{d l C}(\mathbf{u}) \mathbf{I}\right)=Y^{\wedge 00}\left(\mathbf{A}\left(\mathbf{x}_{0}\right)\right) \text {, and (6.19) } \\
& \mathbf{e}^{\wedge} \mathbf{O} \quad \operatorname{IC}(\mathbf{u}) 1(\mathbf{B}(\mathbf{x о}, \mathbf{e})) \quad \text { в }(\mathbf{x o}, \mathbf{e}) \\
& \left.\frac{\mathrm{d} F(\mathrm{u} \cdot \mathrm{j})}{\mathrm{d} \mathrm{C}}(\mathrm{if}) \times 0\right) \text { exists and is finite. }
\end{aligned}
$$

As before, using (6.12) and (6.14) one sees that

$$
\begin{aligned}
& +(\delta+\lambda \varepsilon) \quad J I V u_{k} I d x+(8+X E) I B\left(x_{0}, e\right) I \\
& \text { B(xi,e) } \\
& \left.+X \underset{\mathrm{~B}}{\mathrm{x}(\mathrm{O}) \boldsymbol{\varepsilon}} \underset{\mathrm{J}}{\mathrm{~J}} \operatorname{lm}_{2}-\mathrm{m}_{2}(\mathrm{x} 0) I\left(1+\mathrm{IVu}_{\mathrm{k}} \mathrm{l}\right) \mathrm{dx}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq \liminf _{\varepsilon \rightarrow 0} \liminf _{k \rightarrow \infty} \frac{1}{|C(u)|\left(B\left(x_{0}, \varepsilon\right)\right)} \int_{B\left(x_{0}, \varepsilon\right)} \psi\left(\nabla u_{k}(x), m_{2}\left(x_{0}\right)\right) d x \\
& +\limsup _{\varepsilon \rightarrow 0} \frac{1}{|C(u)|\left(B\left(x_{0}, \varepsilon\right)\right)}(\delta+\lambda \varepsilon)\left[\left|\operatorname{Du|}\left(B\left(x_{0}, \varepsilon\right)\right)+\left|B\left(x_{0}, \varepsilon\right)\right|\right]\right. \\
& +\lambda \limsup _{\varepsilon \rightarrow 0} \frac{1}{|C(u)|\left(B\left(x_{0}, \varepsilon\right)\right)}\left[\int \bar{B}\left(x_{0}, \varepsilon\right) \mid \Sigma(u)\right. \\
& +\int_{B\left(x_{0}, \varepsilon\right)}^{\int\left|m_{2}(x)-m_{2}\left(x_{0}\right)\right||D u|(x)+}
\end{aligned}
$$

By (6.15) - (6.17) and, due to the rectifiability of the jump set, as $I C(u) \mid\left(B\left(x_{0}, \varepsilon\right) \cap \Sigma(u)\right)=0$ we conclude that

$$
\begin{align*}
& \frac{\mathrm{d} F(\mathrm{u} ; .)}{\mathrm{d}|\mathrm{C}(\mathrm{u})|}\left(\mathrm{x}_{0}\right) \leq \liminf _{\varepsilon \rightarrow 0} \liminf _{\mathrm{k} \rightarrow \infty} \frac{1}{|\mathrm{C}(\mathrm{u})|\left(\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)\right)}\left[\int_{\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)} \Psi\left(\nabla \mathrm{u}_{\mathrm{k}}(\mathrm{x}), \mathrm{m}_{2}\left(\mathrm{x}_{0}\right)\right) \mathrm{dx}\right. \\
& +\lambda \underset{B\left(x_{0}, \varepsilon\right)}{\int} \operatorname{lm}_{2}(\mathrm{x})-\mathrm{m}_{2}\left(\mathrm{x}_{0}\right)| | \mathrm{C}(\mathrm{u}) \mid(\mathrm{x})+2 \lambda\|\mathrm{~m}\|_{\infty} \mu\left(\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)\right) \\
& \left.+4 \lambda\|m\|_{\infty} \mid \mathrm{Dul}\left(\mathrm{~B}\left(\mathrm{x}_{0}, \varepsilon\right) \cap \Sigma(\mathrm{u})\right)\right]+\mathrm{C} \delta \\
& \leq \liminf _{\varepsilon \rightarrow 0} \liminf _{k \rightarrow \infty} \frac{1}{I C(u) \mid\left(B\left(x_{0}, \varepsilon\right)\right)} \underset{B\left(x_{0}, \varepsilon\right)}{ } \Psi\left(\nabla u_{k}(x), m_{2}\left(x_{0}\right)\right) d x+C \delta . \tag{6.20}
\end{align*}
$$

Now we use Ambrosio and DalMaso's argument in [ADM], Proposition 4.2. Define

$$
g(A):=\sup _{t>0} \frac{\psi\left(\mathrm{tA}, \mathrm{~m}_{2}\left(\mathrm{x}_{0}\right)\right)-\psi\left(0, \mathrm{~m}_{2}\left(\mathrm{x}_{0}\right)\right)}{\mathrm{t}} .
$$

Then g is Lipschitz continuous, positively homogeneous of degree one and the rank-one convexity of $\psi\left(., \mathrm{m}_{2}\left(\mathrm{x}_{0}\right)\right)$ implies that

$$
g(A)=\Psi^{\infty}\left(A, m_{2}\left(x_{0}\right)\right) \text { whenever rank } A \leq 1
$$

Thus, by (6.20), (6.16) we have

$$
\begin{aligned}
& \frac{d F(u ; .)}{\mathrm{d}|\mathrm{C}(\mathrm{u})|}\left(\mathrm{x}_{0}\right) \leq \liminf _{\varepsilon \rightarrow 0} \liminf _{k \rightarrow \infty} \frac{1}{|C(u)|\left(B\left(x_{0}, \varepsilon\right)\right)} \int_{B\left(x_{0}, \varepsilon\right)}^{\int}\left[\Psi\left(0, m_{2}\left(x_{0}\right)\right)+g\left(\nabla u_{k}\right)\right] d x+C \delta \\
& \quad=\liminf _{\varepsilon \rightarrow 0} \frac{1}{|C(u)|\left(B\left(x_{0}, \varepsilon\right)\right)} \int_{B\left(x_{0}, \varepsilon\right)} g(D u)+C \delta \\
& \quad=\liminf _{\varepsilon \rightarrow 0} \frac{1}{|C(u)|\left(B\left(x_{0}, \varepsilon\right)\right)} \int_{B\left(x_{0}, \varepsilon\right)}[g(A(x)) d|C(u)|+g(d \mu)]+C \delta
\end{aligned}
$$

and so, by (6.15), (6.18), (6.19), by Alberti's Theorem 2.11 and by Lemma 2.2 we conclude that

$$
\begin{aligned}
\frac{\mathrm{d} F(\mathrm{u} ; .)}{\mathrm{d}|\mathrm{C}(\mathrm{u})|}\left(\mathrm{x}_{0}\right) \leq & \liminf _{\varepsilon \rightarrow 0} \frac{1}{|\mathrm{C}(\mathrm{u})|\left(\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)\right)}\left[\int_{\mathrm{B}\left(\mathrm{x}_{0}, \varepsilon\right)} \Psi\left(\mathrm{x}_{0}, \mathrm{u}\left(\mathrm{x}_{0}\right), \mathrm{A}\right) \mathrm{d}|\mathrm{C}(\mathrm{u})|+\right. \\
& \left.\mathrm{C} \mu\left(\mathrm{~B}\left(\mathrm{x}_{0}, \varepsilon\right)\right)\right]+\mathrm{C} \delta
\end{aligned} \quad \begin{aligned}
& \\
&= \Psi^{\infty}\left(\mathrm{A}\left(\mathrm{x}_{0}\right)\right)+\mathrm{C} \delta .
\end{aligned}
$$

It suffices to let $\boldsymbol{\delta} \boldsymbol{\rightarrow} \mathbf{0}^{+}$.
Step 3. We show that

$$
\begin{equation*}
F(u, m ; \Sigma(u)) \leq \int_{\Sigma(u)} \Psi^{\infty}\left(\left(u^{-}(x)-u^{+}(x)\right) \otimes v(x)\right) d H_{N-1}(x) \tag{6.21}
\end{equation*}
$$

for every $u \in B V\left(\Omega ; \mathbb{R}^{n}\right), m \in L^{\infty}\left(\Omega ; \mathbb{R}^{d}\right)$. The proof is divided into three parts according to the limit function u :

1. $u(x)=a \chi_{E}(x)+b\left(1-\chi_{E}(x)\right)$ with $\operatorname{Per}_{\Omega}(E)<+\infty ;$
2. $u(x)=\sum a_{i} \chi_{E_{i}}(x)$ where $\left\{E_{i}\right\}_{i=1}^{+\infty}$ forms a partition of Ω into sets of finite perimeter ;
3. General case, $u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{n}\right)$.
4. Let $u(x)=a \chi_{E}(x)+b\left(1-\chi_{E}(x)\right) \quad$ with $\operatorname{Per}_{\Omega}(E)<+\infty$. We start by proving that for every open set $A \subset \Omega$

$$
\begin{equation*}
F(u, m ; A) \leq \int_{A} \psi(0, m(x)) d x+\int_{\Sigma(u) \cap A} \psi^{\infty}((a-b) \otimes v) d H_{N-1}(x) . \tag{6.22}
\end{equation*}
$$

a) Suppose first that

$$
u(x)=\left\{\begin{array}{ll}
b & \text { if } x \cdot v>0 \\
a & \text { if } x \cdot v<0
\end{array} .\right.
$$

Let $A=a+A, Q_{V}$ be an open cube with two faces orthogonal to v. Fix y $€ R^{d}$ and define

$$
\begin{aligned}
& m_{\mathbf{k}}(x)=\left\{\begin{array}{ccc}
f & m(x) & \text { if }|x . v|>1 / k \\
I & y & \text { if }|x-v| £ 1 / k
\end{array} \quad,\right. \\
& u_{k}(x)=\left\{\begin{array}{cc}
b & \text { if } x-v>1 / k \\
& \text { if } I x-v l<1 / k \\
a & \text { if } x-v<-1 / k \\
|[(a-b) ® v] x+|(a+b) & \text { if } I x-v \mid<1 / k
\end{array}\right.
\end{aligned}
$$

As uk $\longrightarrow u$ in L^{1} and $m^{\wedge}{ }^{* \wedge} m$ in $L \%$ we conclude that (6.22) holds since

$$
\begin{aligned}
& \text { F(u,m;A) } £ \lim \inf \underset{\Omega}{\mathbf{J}} \mathbf{y}(\text { Vuk.mfc) } d x \\
& =\dot{\mathbf{X}} \mathbf{V}(0, m) \mathbf{d x}+\liminf _{\mathbf{k} \rightarrow \boldsymbol{m}} \underset{|x \cdot v|<1 / k}{\bullet}\left[V / h_{\lambda}^{k}(a-b) ® v, y\right) d x \\
& =\underset{\mathbf{A}}{\mathbf{J}} \backslash /(\mathbf{0}, \mathbf{m}) \mathbf{d x}+{ }^{\wedge}((\mathbf{a}-\mathbf{b}) ® \mathbf{R}) \mathbf{H N}-\mathbf{I}(\operatorname{APII}(\mathbf{U})) .
\end{aligned}
$$

b) Consider u as in a) and let A c Q be an arbitrary open set in \mathbf{R}^{N}. Let \boldsymbol{n} be the plane $n=\underset{\substack{x=1}}{\mathbf{x}-\mathrm{v}=0\}}$. It is clear that ${ }^{l}$

$$
A=\bigcup_{400}\left(\cup A_{n}\right)
$$

where A_{n} is an increasing finite collection of non-overlapping (i. e. with disjoint interiors) cubes $\overline{\mathbf{Q}}$ of the form $\mathbf{a}^{*}+\mathrm{e} \overline{\mathbf{Q}} \mathbf{v}$ with edge length bigger than or equal to $1 / n$ and such that

$$
\begin{equation*}
\mathbf{H N}-\mathbf{I} @ \mathbf{Q} \mathbf{n n})=\mathbf{0} . \tag{6.23}
\end{equation*}
$$

Thus, by Step 1 (iii) and applying a) to a decreasing sequence of open cubes whose intersection is the closed cube $\overline{\mathbf{Q}}$ one has
and so

$$
F(u, m ; A) \leq \lim _{n \rightarrow \infty} F(u, m ; u A n) \leq \lim _{n \rightarrow \infty} X \quad F(u, m ; \overline{\mathbb{Q}})
$$

[^0]$$
\leq \lim _{n \rightarrow \infty} \sum_{\overline{\mathbf{Q}} \in A_{n}}\left[\int_{\overline{\mathbf{Q}}} \psi(0, m) d x+\int_{\Sigma(u) \cap \bar{Q}} \Psi^{\infty}((a-b) \otimes v) d H_{N-1}(x)\right] .
$$

By (6.23) and Lebesgue's Monotone Convergence Theorem we conclude that

$$
\begin{aligned}
F(u, m ; A) & \leq \underset{n \rightarrow \infty}{\liminf }\left[\int_{\cup A_{n}} \psi(0, m) d x+\iint_{\Sigma(u) \cap\left(\cup A_{n}\right)} \psi^{\infty}((a-b) \otimes v) d H_{N-1}(x)\right. \\
& =\int_{A} \psi(0, m) d x+\int_{\Sigma(u) \cap A} \Psi^{\infty}((a-b) \otimes v) d H_{N-1}(x)
\end{aligned}
$$

c) Now suppose that u has polygonal interface i.e. $u=\chi_{E} a+\left(1-\chi_{E}\right) b$ where E is a polyhedral set i.e. E is a bounded, strongly Lipschitz domain and $\partial E=H_{1} \cup \ldots$ $\cup H_{M}, H_{i}$ are closed subsets of hyperplanes of the type $\left\{x \cdot v_{i}=\alpha_{i}\right\}$. Let A be an open set contained in Ω and let $\mathrm{I}=\left\{\mathrm{i} \in\{1, \ldots, \mathrm{M}\}: \mathrm{H}_{\mathrm{N}-1}\left(\mathrm{H}_{\mathrm{i}} \cap \mathrm{A}\right)>0\right\}$. If $\mathrm{A} \cap$ $\Sigma(u)=\varnothing$, i. e. if card $I=0$ then $u \in W^{1,1}\left(A ; \mathbb{R}^{n}\right)$ and it suffices to consider $u_{k}=$ $u \in W^{1,1}\left(A ; \mathbb{R}^{n}\right), m_{k}=m$, with (6.22) reducing to

$$
F(\mathrm{u} ; \mathrm{A}) \leq \int_{\mathrm{A}} \psi(0, \mathrm{~m}) \mathrm{dx} .
$$

The case card $\mathrm{I}=1$ was studied in part b) where E is a large cube so that $\Sigma(\mathrm{u}) \cap \Omega$ reduces to the flat interface $\{x \cdot v=0\}$. Using an induction procedure, assume that (6.22) is true if card $\mathrm{I}=\mathrm{k}, \mathrm{k} \leq \mathrm{M}-1$. We prove it is still true if card $\mathrm{I}=\mathrm{M}$. Assume that

$$
\partial \mathrm{E} \cap A=\left(\mathrm{H}_{1} \cap \Omega\right) \cup \ldots \cup\left(\mathrm{H}_{\mathrm{M}} \cap \Omega\right)
$$

and consider $S:=\left\{x \in \mathbb{R}^{N}\right.$: dist $\left.\left(x, H_{1}\right)=\operatorname{dist}\left(x, H_{2} \cup \ldots \cup H_{M}\right)\right\}$. Note that $\mathrm{H}_{\mathrm{N}-1}(\mathrm{~S} \cap \mathrm{\Sigma}(\mathrm{u}))=0$ because $\mathrm{H}_{\mathrm{N}-1}\left(\mathrm{H}_{\mathrm{i}} \cap \mathrm{H}_{\mathrm{j}}\right)=0$ for $\mathrm{i} \neq \mathrm{j}$. Fix $\delta>0$ and let

$$
\begin{aligned}
& U_{\delta}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, S)<\delta\right\} \\
& U_{\delta}^{-}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, S)<\delta, \operatorname{dist}\left(x, H_{1}\right)<\operatorname{dist}\left(x, H_{2} \cup \ldots \cup H_{M}\right)\right\}, \\
& U_{\delta}^{+}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, S)<\delta, \operatorname{dist}\left(x, H_{1}\right)>\operatorname{dist}\left(x, H_{2} \cup \ldots \cup H_{M}\right)\right\} .
\end{aligned}
$$

Let

$$
A_{1}=\left\{x \in A: \operatorname{dist}\left(x, H_{1}\right)<\operatorname{dist}\left(x, H_{2} \cup \ldots \cup H_{M}\right)\right\}
$$

Clearly Ai is open and $\mathrm{Ai}(\mathrm{n} 2 \mathrm{u} \ldots K J \mathbf{H M})=0$. We apply the induction hypothesis to Ai and to $\mathrm{A} \backslash \mathrm{Ai}:=A 2$ to obtain sequences Uke $\left.\mathbf{W}^{\wedge} \mathbf{C A}^{\wedge} \mathbf{R}^{\prime \prime}\right)$, $\mathrm{Vk} €$
 $\left.\mathbf{v}_{\mathbf{k}}-^{*} \mathbf{u} \operatorname{inLHA} A^{\wedge} \mathbf{R}^{\prime \prime}\right), 1 \% * \cdot m$ in $L \sim\left(A i ; \mathbf{R}^{d}\right), A^{*} * \pm m \operatorname{inL} \sim\left(A 2 ; \mathbf{R}^{d}\right)$ and

$$
\lim _{k-\wedge \sim A i} J y\left(V u k, m_{k}\right) d x \underset{A i}{f} f \bigvee /(0, m) d x+\underset{K u)}{f} \underset{n A i}{f v \sim((a-b) 0 v) d H_{N}-i(x)+\underline{1},}
$$

We will use the "slicing method" to connect u_{k} to v_{k}. Let $p k$ be mollifiers and define

$$
W_{k}(\mathbf{x}):=\left(\mathbf{P k}^{*} \mathbf{u}\right)(\mathbf{x})=\underset{B(x, l / k)}{\operatorname{Jpk}(x-y)} \mathbf{u}(\mathbf{y}) \mathbf{d y} .
$$

As $p^{\wedge} 0, \operatorname{supp} p=5(0,1)$ and

$$
\underset{\mathbf{B}(\overline{\mathrm{U}} \mathbf{U})}{\mathbf{f p d}}=\mathbf{1}
$$

we have

$$
\begin{equation*}
\text { HVwklloo } \leq C k, \quad \operatorname{supp} V w_{k} c\left\{x \in R^{N}: \operatorname{dist}(\mathbf{x}, E(\mathbf{u})) \longleftarrow 1 / k\right\} \tag{5.23}
\end{equation*}
$$

Let
where $[n]$ denotes the largest integer less than or equal to n, set $\mathbf{U j}^{\prime \prime}=\mathbf{\mathbf { U } _ { \mathrm { g } _ { i } }}$, where 5 fi
$=(1-\mathrm{ak}+\mathrm{i} \mathrm{Sk}), \mathrm{i}=1, \ldots, \mathrm{Lk}$, and consider a family of cut-off functions

Define

$$
\left.\mathbf{u j}{ }^{\wedge} \mathbf{C x}\right):=(1-9 i(x)) \mathbf{w k}(\mathbf{x})+\left\langle\mathbf{p i}(\mathbf{x}) \mathbf{u}_{\mathbf{k}}(\mathbf{x}), \mathbf{x} \notin \mathrm{A}_{\mathrm{L}}\right.
$$

Then

$$
u_{k}^{(i)}-m k \quad \sim \partial A_{1} \cap S \text {, }
$$

$$
\mathbf{V u j} j^{*}=\mathbf{V w k}+\left(\mathbf{p i}(\mathbf{V}(\mathbf{u k}-\mathbf{w k}))+(\mathbf{u k}-\mathbf{w k}) \circledR{ }^{\circledR} \mathbf{V}<\mathbf{p i} \text { in } \mathbf{U}^{\wedge} \backslash \mathbf{U} \mathbf{7}_{\mathbf{1}} \mathbf{j} .\right.
$$

Due to the growth condition (H2) we deduce that

$$
\begin{aligned}
& \left.\quad f Y\left(V u_{k}^{(}{ }^{0}, m k\right) d x \quad \zeta ; \int_{A_{1}} \Psi\left(\nabla u_{k}, m_{k}\right) d x\right) \\
& +C \quad \int_{A_{1}}\left(l+l w_{k}-u_{k} l^{\wedge}-+I V w_{k} l+I V u_{k} l\right) d x+C \quad J\left(l+I V w_{k} l\right) d x \\
& \quad U_{i}^{-} \backslash_{1-1}
\end{aligned}
$$

and averaging this inequality among all the layers $\mathrm{Uj}_{\mathrm{j}} \backslash \mathrm{Uj}_{\mathbf{\prime}} \mathrm{j}$ and by (5.23) we obtain

$$
\begin{aligned}
& +{ }_{-}^{\wedge}-\underset{Q}{ } \mathbf{f}\left(l+I V w_{k} l+I V v l\right) d x
\end{aligned}
$$

Thus, there must exist an index $i(k) €\left\{1, \ldots, 1^{*}\right\}$ for which

$$
\overline{\mathrm{uk}}:=\mathbf{u}_{\mathbf{k}}^{(\mathrm{i}(\mathbf{k}))} \rightarrow \mathbf{u} \operatorname{in} \mathrm{L}^{\mathbf{l}}\left(\mathrm{A}_{1} ; \mathrm{R}^{\mathrm{n}}\right)
$$

and taking into account that $X(u)$ is a union of finitely many closed subsets of hyperplanes

$$
\begin{aligned}
& \limsup _{k-»-} \underset{A i}{f} y(V \overline{u k}, m k) d x \wedge \underset{A \bar{i}}{\bar{J} \backslash} \mid f(0, m) d x \\
& +\underset{\Sigma\left(u \quad{ }_{1}\right.}{J \not{ }^{\circ}{ }^{\circ}((a-b) 0 v)} \mathbf{d H}_{N-} i(x)+\mid+C_{N-1}\left(U_{\delta}^{-} \cap A_{1} \cap \Sigma(u)\right) .
\end{aligned}
$$

Similarly, we may construct a sequence $\overline{\mathbf{v}}_{\mathbf{k}}$ such that

$$
\begin{aligned}
& \quad \overline{\mathbf{v}}_{\mathbf{k}}=w_{k} \text { on } \partial A_{2} \cap S, \quad \bar{v}_{k} \rightarrow u \text { in } L^{1}\left(A_{2} ; \mathbb{R}^{n}\right) \\
& \underset{k \rightarrow \infty}{\limsup _{k \rightarrow \infty}} \int_{A_{2}} \Psi\left(\nabla \bar{v}_{k}, \lambda_{k}\right) d x \leq \int_{A_{2}} \psi(0, m) d x \\
& +\int_{\Sigma(u) \cap A_{2}} \Psi^{\infty}((a-b) \otimes v) d_{N-1}(x)+\frac{\delta}{2}+\mathrm{CH}_{N-1}\left(U_{\delta}^{-} \cap A_{2} \cap \Sigma(u)\right) .
\end{aligned}
$$

We set

$$
\xi_{k}:=\chi_{A_{1}} \bar{u}_{k}(x)+\chi_{A_{2}}(x) \bar{v}_{k}, s_{k}:=\chi_{A_{1}} m_{k}+\chi_{A_{2}} \lambda_{k}
$$

Clearly $\xi_{k} \in W^{1,1}\left(A ; \mathbb{R}^{n}\right), \xi_{k} \rightarrow u$ in $L^{1}\left(A ; \mathbb{R}^{\mathbf{n}}\right)$ and so

$$
\begin{aligned}
& F(u, m ; A) \leq \liminf _{k \rightarrow \infty} \int_{A} \psi\left(\nabla \xi_{k}, s_{k}\right) d x \\
& \left.\leq \limsup _{k \rightarrow \infty} \int_{A_{1}} \psi\left(\nabla \bar{u}_{k}, m_{k}\right) d x\right)+\limsup _{k \rightarrow \infty} \int_{A_{2}} \psi\left(\nabla \bar{v}_{k}, \lambda_{k}\right) d x \\
& \leq \int_{A} \psi(0, m) d x+\int_{\Sigma(u) \cap A} \Psi^{\infty}((a-b) \otimes v) d H_{N-1}(x)+\delta+C H_{N-1}\left(U_{\delta} \cap A_{1} \cap \Sigma(u)\right) .
\end{aligned}
$$

As $\mathrm{H}_{\mathrm{N}-1}(\mathrm{~S} \cap \Sigma(\mathrm{u}))=0$, letting $\delta \rightarrow 0$ we obtain (6.22)
f) Finally, if E is an arbitrary set of finite perimeter in Ω, by De Giorgi's approximating lemma there exists a sequence of polyhedral sets E_{k} such that
$\left|\mathrm{E}_{\mathbf{k}} \Delta \mathrm{E}\right| \rightarrow 0, \operatorname{Per}_{\Omega}\left(\mathrm{E}_{\mathrm{k}}\right) \rightarrow \operatorname{Per}_{\Omega}(\mathrm{E})$.
On the other hand, $y \rightarrow \psi^{\infty}((a-b) \otimes y)$ is a convex function (and so continuous) and positively homogeneous of degree one. Setting

$$
u_{k}:=a \chi_{E_{k}}+b\left(1-\chi E_{k}\right)
$$

by Step 1, (i), (iii)

$$
\begin{aligned}
& F(u, m ; A) \leq \underset{k \rightarrow \infty}{\liminf } F\left(u_{k}, m ; A\right) \\
& \leq \liminf _{k \rightarrow \infty}\left[\int_{A} \psi(0, m) d x+\underset{\Sigma\left(u_{k}\right) \cap A}{\int_{\cap}} \psi^{\infty}((a-b) \otimes v) d H_{N-1}(x)\right]
\end{aligned}
$$

$$
=\int_{A} \Psi(0, m) d x+\int_{\Sigma(u) \cap A} \Psi^{\infty}((a-b) \otimes v) d H_{N-1}(x) .
$$

This inequality together with Step 1, (iii) yields

$$
\begin{aligned}
& F(u, m ; \Sigma(u)) \leq \inf \{F(u, m ; A): A \subset \Omega, A \text { is open, } \Sigma(u) \subset A\} \\
& \leq \inf \left\{\int_{A} \psi(0, m) d x+\int_{\Sigma(u) \cap A} \Psi^{\infty}((a-b) \otimes v) d H_{N-1}(x): A \subset \Omega, A\right. \text { is open, } \\
& \Sigma(u) \subset A\} \\
& =\int_{\Sigma(u)} \Psi^{\infty}((a-b) \otimes v) d H_{N-1}(x)
\end{aligned}
$$

and we conclude (6.21). The cases 2 and 3 are now obtained as in [AMT] Proposition 4.8, Steps 1 and 2, respectively.

Acknowledgements We would like to thank W. C. Johnson and R. Kohn for many interesting discussions on thermochemical equilibria. In particulart, the convexity condition (4.1) was suggested during a discussion with R. Kohn. This research was partially supported by the National Science Foundation under Grants No. DMS - 9000133, DMS - 911572 and DMS9201215, the AFOSR 91 0301, and ARO DAAL03 92 G 003 and also by the ARO and the NSF through the Center for Nonlinear Analysis. The work of Pedregal was also supported by DGICYT (Spain) through "Programa de Perfeccionamento y Movilidad del Personal Investigador" and through grant PB90-0245.

References

[AF] Acerbi, E. and N. Fusco. Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal. 86 (1984), 125-145.
[Al] Alberti, G. Rank-one property for derivatives of functions with bounded variation. To appear.
[A] Alexander, J. I. and Johnson, W. C. Thermochemical equilibrium in solid-fluid systems with curved interfaces. J. Appl. Phys. 56 (1985), 816-824.
[Am] Ambrosio, L. New lower semicontinuity results for integral functionals. Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Mat. Natur. 105 (1987), 1-42.
[ADM] Ambrosio, L. and G. Dal Maso. On the relaxation in $\operatorname{BV}\left(\Omega ; R^{m}\right)$ of quasiconvex integrals. To appear.
[AMT] Ambrosio, L., S. Mortola and V. M. Tortorelli. Functionals with linear growth defined on vector valued BV functions. J. Math. Pures et Appl. 70 (1991).
[BM] Ball, J. M. and F. Murat. $\mathrm{W}^{1, \mathrm{p}}$ quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984), 225-253.
[D] Dacorogna, B. Direct Methods in the Calculus of Variations. Springer, 1989.
[EG] Evans, L. C. and R. F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, 1991.
[FKP] Fonseca, I., D. Kinderlehrer and P. Pedregal. Relaxation in $H^{1, p}\left(\Omega, R^{n}\right) \times L^{q}\left(\Omega, R^{d}\right)$ of energy functionals depending on chemical composition. To appear.
[FM1] Fonseca, I. and S. Müller. Quasiconvex integrands and lower semicontinuity in L^{1}. To appear in SIAM J. Math. Anal.
[FM2] Fonseca, I. and S. Müller. Relaxation of quasiconvex functionals in $B V\left(\Omega, R^{m}\right)$ for integrands $\mathrm{f}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u})$. To appear in Arch. Rat. Mech. Anal.
[1] Ioffe, A. D. On lower semicontinuity of integral functionals I. SIAM J. Cont. Optim. 15 (1977), 521-538.
[JA] Johnson, W. C. and J. I. Alexander. Interfacial conditions for thermochemical equilibrium in two-phase crystals. J. Appl. Phys. 59 (1986), 2735-2746.
[JM] Johnson, W. C. and W. H. Müller. Characteristics of phase equilibria in coherent solids. Acta Metall. Mater. 39 (1991), 89-103.
[Ko] Kohn, R. The relaxation of a double-well energy. Cont. Mech. Thermodyn. 3 (1991), 193-236.
[LC1] Larché, F. C. and J. W. Cahn. A nonlinear theory of thermochemical equilibrium of solids under stress. Acta Metall. 26 (1978), 53-60.
[LC2] Larché, F. C. and J. W. Cahn. Thermochemical equilibrium of multiphase solids under stress. Acta Metall. 26 (1978), 1579-1589.
[Mr] Morrey, C. B. Multiple Integrals in the Calculus of Variations. Springer, Berlin, 1966.
[Mü] Müller, S. On quasiconvex functions which are homogeneous of degree one. Indiana U. Math. J. 41 (1992), 295-301.
[R] Reshetnyak, Yu. G. Weak convergence of completely additive vector functions on a set. Sib. Math. J. 9 (1968), 1039-1045 (translation of : Sibirsk. Mat. Z. 9 (1968), 1386-1394
[S] Sverák, V. Quasiconvex functions with subquadratic growth. Proc. R. Soc. Lond. 433 A (1991), 733-725.
[Zi] Ziemer, W. Weakly Differentiable Functions. Springer, 1989.

```
Center for Nonlinear Analysis and Department of Mathematics Carnegie Mellon University Pittsburgh, PA 15213-3890
current address of P. Pedregal:
Departamento de Matemática Aplicada Universidade Complutense de Madrid 28040 Madrid, Spain.
```


[^0]: ${ }^{1}$ We use the notation $u A:=\{x$: there exists $Y € A$ such that x e $Y\}$.

