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Relaxation in BV x L°° of functional depending on strain and
composition

Irene Fonseca, David Kinderlehrer, and Pablo Pedregal

Dedicate a Enrico Magenes

Abstract. We show that if y(A,m) is a quasiconvex function with linear growth then the relaxed
functional in B V(ft ,Rn)xL-(Q,Rd) of the energy

f y(Vu jn ) dx

with respect to the L1 x L-(weak*) topology has an integral representation of the form

J v f y~((u- - u+)®v) dHN.l(x) + f \|T(<lC(u))

where Du = Vu dx + (u+ - ir)®V dHN-iLL(u) + C(u). The proof relies on a blow up argument and
on a recent result obtained by Alberti showing that the Cantor part C(u) is rank-one valued.
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1. Introduction

In this paper we obtain an integral representation in BV(QJRn) x
for the relaxation F(u,m) of an energy functional

£(u,m) = fy(Vu(x),m(x))dx
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with respect to the L1 x L°°(weak*) topology.

One motivation for this question is the analysis of coherent thermochemical
equilibria among multiphase and multicomponent solids (see [AJ], [JA], Larch6 and
Cahn [LCI,2]). This is explained in detail in [FKP]. For example, in the case of
two species in equilibrium in a matrix and a precipitate, the pertinent functional has
the form

= f y(Vu,c )dx

subject to the constraint

« e i

where u denotes the deformation of the material and c the concentration of one of
the two species.

Kohn [K] obtained a formula for the relaxation of / in the case where
composition is uniform, i. e. \|f(F,c) =: \|/*(F), and for two linearly elastic phases
with identical elastic moduli. In more general situations, the composition is not
uniform (see [LC2]) and so we must address the problem of finding the effective
energy in the case where it depends on the chemical composition c. When linear
growth in the deformation is admitted, functional of the sort considered here then
arise.

In the scalar case n = 1, Ioffe [I] studied the lower semicontinuity of E in

W^Kweak) x L l o c (see also [Am] for a new proof of this result). Here,

generalizing £ to the case where c may take vector values m and assuming that
N, n > 1, we want to obtain an integral representation for the relaxed functional F
in B V(Q,Rn)xL~(Q JRd) of the energy £, where

F(u,m) := inf {lim inf J y(Vuk,mk) dx : (uk,mk) € W1'1 x L°°,
{ukMmk} k -» oo £

Uk-»uin L1 and mk *^ minL 0 0} .

Throughout this work we will assume that \|f is jointly quasiconvex in Vu and
convex in m, namely

(HI) \|f: M x Rd -»[0,+o°) is a Borel measurable function such that

VC,X + m) dx

for all (AX) € M x Rd and (C,m) € wj'°°(«, Rn) x L~(Q, Rd) with J m dx « 0.

j^ J
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In addition, y grows at most linearly,

(H2) cilAI - c2 £ V(A^) < g(k) (1 + IAI) where ci, c2 > 0 and g € L

So, for example, under these hypotheses the functional determined by \|/ is weakly
sequentially lower semicontinuous in W1*00 x L°°, cf. [FKP]. Indeed, relaxation in
W1* x m under the hypotheses (HI) was obtained in [FKP]. Our objective here is
to determined the relaxed functional when the admissible functions come from BV
xL°°.

Although most of the results and proofs in this work are inspired by those
in [FM1,2], we note that the relaxations of y(Vu,m) and \|/(Vu,u) present
several different features. In particular, in the support of the singular part of Du, the
function m, being only Lebesgue measurable and not necessarily related to u in any
way, may not be well defined. We recall that the distributional derivative Du is
represented by

Du = Vu dx + (u+ - u~)®v dHN_i LS(u) + C(u).

Here Vu is the density of the absolutely continuous part of Du with respect to the
Lebesgue measure dx, HN-1 is the N-l dimensional Hausdorff measure, (u+ - u~)
is the jump of u across the interface L(u) with "generalized normal11 v and C(u) is
the Cantor part of Du. For details we refer the reader to [EG], [Z].

We expect, as usual, that the integral representation of F will involve the
integration of the recession function, (2.1) below, on X(u) u supp C(u).
However, if m is not well defined on this set what kind of representation are we to
expect? This question is naturally solved by the convexity and growth assumptions
imposed on y . Indeed, we will show on Lemma 2.2 that

X -» \|r*°(A,A,) is constant

whenever rank A < 1, and due to Alberti's [Al] result we know that

. d(Du) . t
rankHiD0Oi * l

on 5Xu) u supp C(u). Denoting by Y°°(a®b) the constant value of this function of
X, we will obtain (see (2.2) and (6.1))

F(u,m) - f y(Vu,m) dx + f \p~((u- - u+)®v) dHN.i(x) + f y~(dC(u))

(LI)
where (u,m) € BV(Q, Rn) x L~(Q, R<1).
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2. Preliminaries The recession function

We start by studying some properties of the recession function (see [FM2])

V°°(A,m): = limsup v ( t A ' m ) . (2.1)
t-4 ~ l

Lemma 2.1.

a) cilAI £ \|/°°(A,X) £ g(A,)IAI and \|r(A,X) is positively homogeneous

of degree one in X;

b) \|/°° satisfies the quasiconvexity I convexity condition (HI).

Proof, a) is clear. To prove b) let (A,X) e M x Rd, (cp,m) e W Q ' ^

L~(Q,Rd) with J m dx = 0, and let

= lim ^ k for some tk -»+<».

By (HI)

^ Jyj^ J + m) dx.

Defining

H(x) := g(IXI + ll

we deduce that

limsup T - T L - fv(tk(A +V<p),X + m) dx
k 1 " nk j

which, by Fatou's Lemma, yields

12
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^ —r-j J w°°(A +V<p,X+m) dx. QED
I I -J I • 9

D

Lemma 2.2. / / rank A = 1 then the function X -» \|/°°(A,X,) »
constant.

We divide the proof of this result into two lemmas.

Lemma 2.3. Fix\ € SN"1. Then the function f :R n xR d -» [0,-H»)
defined by

w convex.

Proof. Let (a,X ) = 0(ai,Xi) + (1 - e)(a2,X2) for some 6 e (0,1). Let Q be a
unit cube centered at the origin with two faces perpendicular to v and let {r|j} be a
family of cut-off functions such that

i) T|j = 1 inQj := {x e QI dist(x,8Q) ^ 1/j};
ii) rij = OondQ;
iii) IIVrijIL < Cj.

Define

- X2) - X,
kx-v

<Pk(x) := (a2 - a) 0 v x + M x(t)dt -(ai - a2),

<fi(x) := <f>k(x)nj(x)

where % is the characteristic function of the interval (0,0) extended to R
periodically with period one. Notice that

1. A* **> 0 inL-(Q);

2. fxk(x)dx = 0;

3. V<pk(x) = (a2-a)®v + x(kx.v)(ai-a2)®v *^ 0 inL-(Q) and

f<pk(x)dx -» 0;

5.
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By Lemma 2.1 b) the function \|/°° satisfies the convexity condition (HI) and so

f(a,X) = \|/°°(a®v,A.) £ f\|r°(a®v +V<p[, X+Xk) dx

Q

J \|T°(a®v+V<pk,X+>*) dx + [ v°°(a®v+V(pJ
k,X+Xk) dx

Q
L+Afc) dx + I \|/°°(a®v +'

QNQj

Q4j
=: Ik + Hkj + nikj.

As {llXk IL + llq^ Hi,..} is bounded, by Lemma 2.1 a) we have

£ Cmeas(QvQj) -> 0.

Fix j . From 3) it follows that q>k -> 0 in L°° and so choose k(j) large enough so
that

j2| Q\Qj I

for k ^ k(j). Then, by Lemma 2.1 a)

I IIk(j)j I £ C IQSQj I + j" 1 and llq>k(j)lloo I QKQj I ^ 0 as j ->+«>.

The convexity of f follows from the fact that

lim Ik = e\i/°°(ai®v,Xi) + (1 - e)\f°(&2^M)
k->«>

i,Xi) + (1 - 6) f(a2,X2). QED

Lemma 2.4. Let I;: Rn x Rd -» R, ^ = £(a,X), Z>e a convex Junction
such that £(ao,.) is constant for some ao e Rn. Then the function t, is
independent ofX.

Proof. Suppose that mo = £(aoA) f°r ^ »̂ Given (a .̂*) we have

mo =

where (aC^X*), p(a,X')) belongs to the subdifferential of £ at (a,*.1). Letting I

-> +oo we conclude that P(a,X.') = 0 and so we may deduce that
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for all K K and thus they must be equal. QED

Proof of Lemma 2.2. As \y°°(-,X) is positively homogeneous of degree one,

Y°(0X) = 0 for all k.

The result now follows from Lemmas 2.3 and 2.4.

The proof of (1.1) is divided into two parts. In the first part, carried out on
Sections 3,4 and 5, we show that the representation in (1.1) is a lower bound for F
i. e. if Uk€ WWCftR11) are such that Uk -» u i n LKft;Rn), with u € BV(QJRn),
and if i% *^ m in L°°(Q,Rd) then

lim inf J \|/(Vuk,mk) dx £ fy(Vu,m)dx + J \|T°((u--u+)®v)dHN-i(x)
k-»~<S 6 2(u)

+ J\|/~(dC(u)). (2.2)
CCu)

Finally, in Section 6 we assert equality in (2.2) using the same reasoning as in
[FM2] (see also Ambrosio, Mortola and Tortorelli [AMT]).

To prove (2.2) we use the blow up argument introduced in [FM1]. It is
then reduced to verifying the pointwise inequalities (2.3), (2.4) and (2.5) below.
Assume, without loss of generality, that

lim inf J \|f(Vuk,mk) dx = lim j \|/(Vuk,mk) dx <
k-»ooj5 k-^oorf

and Uk€ C Q ( R N ; R R ) (see Proposition 2.6 in [FM1] and also Acerbi and Fusco

[AF]). As y is nonnegative there exists a subsequence, which for convenience of
notation is still labelled {uk,mk}, and a nonnegative finite Radon measure |i such
that

Using the Radon-Nikodym Theorem, we can write î as a sum of four mutually
singular nonnegative measures

\i = ya(Ix + C'u+ - U

Weclaimthat

^ y(Vu(x),m(x)) for dx a. e. x € Q, (2.3)
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CW * ^ ' . y fOT * - * « * * * » ^ x . X(u)(2.4)
and

Ti(x) £ V°°(A(x)) for IC(u)l a. e. x € ft, (2.5)

where (see [Al] and [ADM]) for IC(u)l a. e. x € Q and open, convex neighborhood
G of the origin,

A / x r D(u)(x+eG) r C(u)(x+eG) / X | C X / NA(x) := hm —^-^ - = hm —^-^ = a(x)®v(x).
e->0 D(u)l(x+eG) e-̂ 0 IC(U)I(X+EG)

Then, considering an increasing sequence of smooth cut-off functions r\y with 0 <
T]j < 1 and supj T|j(x) = 1 in fi, we conclude that

lim J V(Vuk,mk) dx ^ lim inf J T|j \|/(Vuk,mk) dx
k - » oo^j k -» oo j j

= frijd^(x)

^ h j M x ) d x + h j C lu+-u-l dHN-i(x)) + h jT] dlC(u)l(x)

* hjV(Vu,m)dx + fTij\|f
oo((u--u+)®v)dHN«i(x) + fTij v°°(dC(u)).

Letting j -* +oo, (2.2) follows from the Monotone Convergence Theorem.

3. The density of the absolutely continuous part

Using the technique developed in [FM1] we prove (2.3), namely

|j,a(xo) ^ Y(Vu(xo),m(xo)) for dx a.e. XQS £1.

By the Besicovitch Differentiation Theorem (see [EG]) the limit

Ha(xo) := lilim & ^ Q ^
e->0 I B(xo,e) I

exists and is finite and by standard results of the theory of B V functions
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lim 1 { T^—. J lu(y) - u(x0) - Vu(xO)-(xO - y)l WCN-D dy } (N"1) /N

= 0. (3.1)

Here, and in what follows, we denote the N-dimensional measure of a set E by
I E I. Choosing one such xo which is also a Lebesgue point for m, define the
homogeneous function

uo(x) := Vu(xo)x.

We abbreviate B = B(0,1), we consider a subdomain B* <z<z B. Let <p e Co(B)
be a cut-off function such that 0 < (p < land <p(x) = l i f x e B\ Then

e-»0 e N I B I

1
= lim

E ' ° ' B(xo,e)

1 T X — x n
= lim sup lim — (p(——fi) y(Vuk(x),mk(x)) dx

£-40 k->oo E W B « . J . e

= lim sup lim 7-p-j J (p(x) y(Vuk(xo+ex),mk(xo+ex)) dx
e->0 k-̂ oo j B • g

lim sup lim sup pg-r J \|/(Vwk,e(x),mk(xo+ex)) dx (3.2)
0 k ! D ' B«

where

W k e ( x ) . . uk(xo-hex)-u(xO)
£

By (3.1) and by Holder's inequality

lim lim llwk^ - UOIITW = Kni —— J lu(x) - u(xo) - Vu(xo)(x-xo)l dx
e-*0 k-x»o v > e->0 eN+1 B(xo,e)

= 0,

and if {<Pj}£^ is a countable set dense in L 1 ^ ^ ) , for fixed m

lim lim I J(mk(xo + ex) - m(xo))q>i(x) dx I
e*0k»oo g
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lim I f(m(xo + ex) - m(xo))<Pj(x) dx I = 0 .
-»0 fie-»0

Using a diagonalization procedure we will show that

Ha(xo) ^ lim sup r-g-r J\|/(VVJ,A,J) dx where (3.3)

VJ -> uo inUCBjR0) and Xj ^ m(xo) inL°°(B;Rd).

Indeed, assume that

lim sup lim sup pg- j j Y(Vwk,e(x),mk(xo+ex)) dx

= lim lim sup j-g-j JV(Vwk,ei(x),mk(xo+£ix)) dx.

For j = 1 and for all i choose lq(l) so that for all k £ ki(l) one has

Hwkei-uollL^B) ^ B111 HwicEj — UO"L1(B) + ^

I J (mk(x0+£ix) - m(xo))-cpi(x) dx | <

Mm I J (mK(xo+eix)-m(xo))-cpi(x)dx| + 1/i

and

f-g-[ fv(Vwktei(x),mk(x0+eix)) dx

£ lim sup j-g- | J v(VwK,ei(x),mK(xo+eix)) dx) + 1/i.

Recursively, for all j t l and for all i choose kj(j) > kj(j - 1 ) so that for all k
kiG)

I J (mk(x0+Eix) - m(xo))-<Pj(x) dx I

£ Bm | J (mK(x0+eix) - m(xo))(pj(x) dx | + lAi

= | f (m(xo+£ix) - m(xo))-<pj(x) dx I + 1/i
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Now consider the diagonal subsequence ki(i) and define

), v>(x) := wk

Then
+ 1/i

and so
lim il vi - uo \}fo\ ~ 0. (3.4)

Also, since xo is a Lebesgue point of m,

Xi *^ m(xo) in L°°. (3.5)

By (3.2) and as kj® ;> kjd),

[ If i

TD~I V(Vvi,^i) dx - 1/iJ
1 B ' BJ'

= lim sup|-p-j J V(Vvi,^i) dx

proving (3.3).

Next, using the "slicing method" we are going to modify { Xi} and { vi}
near dBf so that we can apply the convexity hypothesis (HI).

By (3.3) and the growth condition (H2) the L1 norms of {I Vvi 1} are
uniformly bounded in B\ i. e.

sup |lVvi(x)ldx <> C.

Let Bj= {x € B f: dist(x,9B') < 1/j} and divide B2 into two annuli S(
!
2) and S 2̂). It

is clear that for each i there exists an annulus S e { S ^ , S^2)} so that

IVvi(x)l dx «S C/2

and as there are only two annuli and infinitely many indices, we conclude that one
of the annuli, S2 = {xe B' 1012 < dist(x,9Bf) < foh satisfies

JlVvi2(x)ldx ^ C/2
S2



Relaxation in BV 12 2/18/93

for a subsequence fo}. Let T|2 be a smooth cut-off function, 0 £ r\2 < 1, r\2 = 0
in the complement of {x€ B' I dist(x,9B') < £2). "H2 = 1 in {xe B': dist(x,9B') <
a2} and IIVî l! = 0(1/1 S21). By (3.5)

Km I m(xo) - f p - j J T|2 ^i2 dx | = I m(xo) I I 1 - j-jp-j | T | 2 dx

and so, by (3.4) choose i(2) e {i2} large enough so that

f S j l J ' v»(2) - »0 I dx < \ and

I m(xo) - j^rj JT|2 Xi(2) dx I
< l ( ) l + l

1 2 3
Next, divide B3 into three annuli S/3y S,$y S^y For each 12 there exists an annulus

/
IVv i 2ldx < C/3

and as there are only three annuli and infinitely many indices i2, we conclude that
one of the annuli S3 = {xe B': (X3 < dist(x,9B') <p3} satisfies

JlVvi3ldx < C/3

for a subsequence U3} of {i2}. Let TI3 be a smooth cut-off function, 0 < TI3 < 1,
TI3 = 0 in the complement of {x€ B1: dist(x,9Bf) < fo}, Tj3 = 1 in {xe Bf:
dist(x,9Bf) < a3} and II VTI3 II = O(l/I S3 I). By (3.5)

Hm I m(xo)-pgr-T [113 ^i3 dx | = I m(xo) I I X — . B« 1 jT|3 dx |
13 - ^ ° ° ff F

and so, by (3.4) choose i(3) € {i3}, i(3) > i(2), large enough so that
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STj J I vi(3) - uo I dx < ^ and
S3

I m(xo) -j"jjTj |T|3 A.i(3) dx |

*' < lm(xo)l

Recursively, we construct a sequence i(j) such that

JlVvi(j)ldx < ^, y±p Jlvi(j)-uOldx < ^ ,and (3.6)

m(x0) -j-grj UjXi(j)d

lm(xo)

We set

1 -

v/x) := (1-Tij(

Qearly

J Ij(x) dx = I B' I m(x0), II Xj IL < lm(xo)l + 1 + M and

Thus, by (3.3), (HI) and (H2)

lim sup 7^5-7 f \|/(Vvi,Xi) dx

^ - f [ JV(V Vj,Xj) dx - J v(VVj,Xj) dx - J
W Sj Wj

dx

B'l
B I V07u(xo),m(xo))
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- Cg( I m(xo) I + 1 + M) J (1 + IVu(xo)l + IVvi(j) I + IVTIJ I lvi(j) - uoO dx

- C g(l m(xo I + 1)1 Bj I (1 + IVu(xo)l)

and from (3.6) we conclude that

f f ^ V(Vu(xo),m(xo))

The result follows once we let j - » -H» and IBNB' I -> 0.

4. The density of the jump part

Here we prove (2.4), precisely, that

r, N ^ V(u~(xo) - U+(XQ))®V(XQ) V

C(x0) £ - |U+(XO) _ u-(x0)l lu+-ulHN-iLl(u)a.e. xo

It is well known that (see [EG}, [FM2], [Z]) for HN-1 a.e. xo e Z(u) we have

(i) lim 4 T Jlu+(x)-u-(x)!dHN-i(x) = I u+(xo) - ir(xo)l,
^ 0 eN-! S ( ) ( ; Q )

(ii) lim -J- Jlu(y)-u+(x0)lN/(N-1)dy = 0,
e-»0 eN{yeB(xo,e):(y-xo)-v(xo)>O}

lim -1- flu(y)-u-(xo)lN/(N-1)dy = 0, and
e-*0 eN{yeB(x0,e):(y-xo)v(xo)<0}

(iii)
I u+ - u- I HN_iLX(u)(xo+eQV(xo))

exists and is finite, where Qv(xo) denotes a unit cube centered at the origin with two

faces perpendicular to the unit vector v(xo).

Writting Q = Qv(Xo), Q* = * Q, with 0 < 5 < 1, let <p € C£(Q) be

such thatO ^ < p ^ l , 9 = l on Q*, and let £k->0 be such that

yo = lim J m dy
k-*» I xo + ekQ I Q

exists. By (i) and (iii),
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k-»~ I u+ - u-1 HN_iLX(u)(xo+ekQ)

+, x „ /v M l i m SUP ^u+(x0) - u-(x0) I k-*~ n-»~ ek

SUP ^ ~ t r J <J>(—) V(Vun(x),mn(x))dx
e N 1 Q *

I U+(X0) - U-(X0) I k->oo ̂  n->eo (j

S UP l i m S UP

limsup lim fek9(y)Y(Vun(xo+eky),mn(xo+eky))dy

i uT(,xo; — u (xo) k» n4 qp
(4.1)

We define

, . , , f u+(x0) ify.v(xo)>O
*n&)**foW) and uo(y) := | U . ( X Q ) i f y v ( X ( ) ) < 0 •

As un —> u in L1, by (ii) we obtain

lim lim J I un,k(y) - uo(y) I dy = lim J I u(xo+eky) - u+(xo) I dy

+ lim f I u(xo+ey) - u~(xo)l dy = 0. (4.2)

On the other hand, by (4.1)

—rzzrT"TlimsupUmsupek f \|f(-LVun

Q*
J

Q*

and, as in Section 3, by (4.2) and (H2) we use a diagonalizing argument to
construct sequences

X k *^y o inL°° and H v k - u o ^ ^ -> 0, J lVvkldx < C

such that
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Q*

Let Wk = Pk • uo, where {p^} is a mollifiying sequence. Then

HVwklloo = O(k) if bt-v(xo)l £ 1/k and I K ^ - w ^ ^ -» 0.

As in Section 3 we use the "slicing method" to obtain sequences

yo

VJ(X) :

where

Qj := {x € Q*: dist(x,3Q*) <l/j}, JI Vvk( j ) I dx £ C/j,
S
J

SJ

rs~i J
J S

fXjdx = IQ* Iyo. Xjlao*(x) = aj :

and so
Xj(x) = aj + Gj(x) where

J Gj(x) dx = - 1 Q * I (aj - y0) and 0jlaQ*(x) = 0.

and

C(xo) ^ l—17—r 7—r-r ^m SUp £i \|/(—Vvi,Xj) d x . (4.3)
bV U / I U+(XO) - U-(XO) I j->ooF J J Y ^ j J J"

Note that
1

Also Vvi = Vwj(j) on 3Q* and so it is periodic. From the Q*- periodicity of 6j

and T|j we deduce that
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Q*

and since

fvC^-Vv^aj + eOdx = lim f\|/(-!-Vvi(ix),aj+ej(ix))dx
J e, J i-*» J £j J

Oj(ix) -» ]-Q*-[ J©jdy = yo-aj in L°°weak* asi-*+°° and

v/ix) -» i - i f ( j V Vj dy)x in W1-1 as i -^ -H~,

by ̂ .3) we conclude that

^ vjdy^j + i-^rj Jej(y)dy))dx

Q*

j J

= IQ* I V(^ (u+(xo) - u-(xo))®v(xo) IQ* , y o ) .

Finally, from (4.3) and Lemma 2.2 we have

1
I u+(x0) - u-(x0) I

Now it suffices to let IQ* I - » 1 .

- u-(xo))®v(xo)).

5. The density of the Cantor part

We prove (2.5), that is, for IC(u)l a. e. xo€ Q

Tl(xo) ^ V°°(A(xo))

where A(.) is the rank-one matrix a® v (see [Al]). Let Q = (-1/2,1/2)N and
Q(xo,e) = xo + EQ. For IC(u)l a. e. xo € ft

A ( x o )

e->0 ID(u)IQ(xo,e) e-»0 IC(u)IQ(xo,e)
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am !

e->0 IC(u)l(Q(xo,e))

and (see [FM2]) the following hold:

t

e->0 IDul(Q(xo,e))/ | l
e-»01 Q(xo,e) I Q(xo,e)
IA(xo)l - l,A(xo)

| l u - u ( x o ) l d x = 0,
)

,. >DulfO(xn.E» |Du|(Q(xo,e))
hm ' „ lhV" = o and hm !— = +00. (5.1)
e-»0 eN"1 e-»0 eN

Also, by [FM2], Lemma 2.13, we may assume that

to linillf'D»'(Q(xo,e)\Q(x<,,te)) _ Q

l- e-»0 IDu l(Q(xo,e))

We suppose that A(xo) = a®eN- Let t € (0,1), ye (t, 1) and let £k -4 0 be such
that

Tl(x0) ^ lim sup lim sup ^ l r n v fv(Vun ,mn)dx and
kx- n>oo I U u l ^ ^ ^ Q

exists. Since

lim lim , Q . J I un(x) - U(XQ)I dx = 0,

,r̂  ,/^ x J lun(x)-u(x)-rQ—J M y ) - u(y)]dy | dx = 0,
IDul(Qe) ' Q £

 f ^ e ^ Q g

lim lim | J(mk(xo + ex) - m(xo))<Pj(x) dx | = 0,
e-^0 n->oo (j

writing vnjc(z) := un(xo + Efcz) and using a diagonalization procedure as in Section
2, we construct sequences A* *^ yo in L°° and II v^ - u(xo) "L^Q) —* 0 s u c h

that
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r 1
JV(—
r 1

lim^sup IDU^Q^) JV(—Vvk,Xk)dz, (5.3)

1
lvk(z)-ak-[u(xo+ekz)-——- J u dy]ldz = 0

| Q £ k | ^ ^ ^
(5.4)

where ak := J vk(z) dz.ak := J

After extracting a subsequence, we may assume in (5.3) that lim sup is limit. We
set

Uk(z) := iDui(Q£)[u(xo +ekZ) • r ^ r J u d y ] and^ r J u

W k ( z ) : =

Then

i uk(z)dz = O, IDukl(Q) = l,

and so { uk} is equi-integrable and by (5.4) we conclude that

II Uk-WkllL^Q)-*© ask-»+©°.

By (5.1),

IDul(xo + ekQ)
^k := •

and (5.3) reduces to

£ lim— Jv(^kVwk,Xk)dz. (5.5)

On the other hand we have that

m Du(x0 + £kQ)
a N |Du-k_(Duk.Ao)Aol(Q)-4O,

IDul(xo Q)
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the latter from [FM2], Proposition A.1, and this implies that

-> 0 for all i = l , . . . , N - l .

Thus, it is possible to find a sequence of smooth functions £k(x), which are
functions fk(*NX such that

-» 0, as k -

and for a.e. x e (0,1)

V£k(xQ) - EKlk(xQ) -» 0. (5.6)

Fix x € (t, y) for which (5.6) holds. Choose 8 > 0 such that (1 - 8)x > t and we
may assume that

l*K«Ml-tt» * k̂KQNtQ) = ^ Q ^ ^ ^ ^ ) . (5.7)
IDu!(Q(xo,ek))

Note that

1 l f t f fk(x/2) — fk(—x/2)
— VQC(TQ)

 = — JV^k dy = I V^k(xz) dz = ®e>j.
xN xN

XQ Q x
(5.8)

As Xk *^ yo in L~ and wk - 4k -* 0 in L1, by (5.5) and using the "slicing
method" will modify Wk and Ak on the layer xQ\x( l -6)Q so that

Ti(xo) ^ l imsup— I V(|ikVvk,Xk) dz + O ( l - t ) (5.9)
k->~ ^k TQ

where Xk *^ yoinL0 0 , I ^,k dz = yo , Xkl9(xQ) is constant andvk =

^k(i), for some k(i), on 3(xQ).

We partition xQvx(l - 8)Q into two layers S^) , S^) with

j I T Q \ T ( 1 - S ) Q 1
1 5(2)' " 2

and due to (H2) and (5.9) we choose
S2 = {x€ xQ\x(l - 5)Q: a 2 < dist(x,a(xQ\x(l - 8)Q)) <p2} e { S ^ , S2

(2) } such

that, for a subsequence,
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JlVwk(z)(x)ldx <£ C/2.
S2

Let T|2 be a smooth cut-off function, 0 £ T|2 £ 1, T\2 = 0 in the complement of
{x€ tQ: dist(x,d(xQ\x(l - 8)Q)) < p2), 112 = 1 in
{xe tQ:dist(x,d(xQvx(l-8)Q))<a2} and IIVT|2II = 0(1/1 S2 D- As

iim l y o - - ; r : htt^kdx I =' yo Mi -
I Q I

choose k(2) large enough so that

If 1
c—i J 'wk(2) - sk(2)' dx < - andI

T]2 dx I
lyol

Next, divide xQ\x(l-6)Q into S^, S^, S^ , with ISJ
(3)I = ' X Q X T ( 1

3
 8 ) Q ' .

One of these, S3, must verify

JlVwkldx << C/3
S3

for a subsequence of the previous one. Let T|3 be a smooth cut-off function, 0 < T|3
£ 1, T|3 = 0 "outside" S3,113 = 1 "inside" S3 and II VT13 II = O(l/I S3 I). Choose
k(3) > k(2), large enough so that

rsT] Jlwk(3)-5k(3)ldx < |and
S3

+ 1.
11 _ _ i _ 1^3dxl

i Q i 6

Recursively, we construct a sequence k(j) such that

JlVwkG)ldx < j , | - g - | Jlwk(j)~ < j and
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We set

VJ(X) := (1 — T|j

Clearly

— I f — — T
Xj î  yo in L~ J Aj dz = yo , ĵ'd(xQ) *s constant, II Aj llo

' ^ t Q I ^
lm(xo)l + 1 + M and vk = ^k on 9(xQ). By (5.9) and (H2) '

If I f"
T|(xo) £ lim — J \|/(M*VwkAk) dz ^ lim — I V(|XkVwk,Ak) dz

^ lim — [ I V([ikO)vvj,Xj) dz

- Cg( lyol + 1 + M) J (1 + IV$k(j)l + IVwk(j)l + IVT]jl lwk(j) - 4kO)0

-Cg(lyol
TQ\T(1 - 6)Q

By (5.7) and (5.2) we conclude that

lim J v(HkG)VVJ,XJ) dz - Cg( lyol + 1 + M)(l xQ\x(l - 8)Q

IDul(Q(xo,ek)\Q(xo>tek)) _

IDu l(Q(xo,ek))
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IDul(Q(xo,ek))

.lim — J v(HkO)Vvj,Xj) dz + 0(1 -1).

Note that

with <p a xQ-periodic function, and so by (HI) and (5.9),

Tl(x0) I> lim sup — TN V ( n k
f k ( T / 2 ) " f k ("T / 2 ) <8>eN,yo) + O(l - t ) .

k ^ x

As \|/(., yo) is quasiconvex, then (see [D]) it is Lipschitz continuous hence by
(5.6) and (5.8)

sup | ±± v(^k(x/2)-fk(-t/2)0>yo) _ ± MMXQ) Q) |

< limsup - ^ IA(XO)-V^(TQ)I
k xN

r _
= — lim sup IA(xo) - Duk(xQ)l

xN k

C .. . . . . DU(XQ + ekxQ),
= — hm sup lA(xo) - — ^ - ^ — £ - S £ I

T N t * ' IDul(xo + e Q )

Dul(Q(xo,ek))

We conclude that

= N

Tl(xo) ^ lim sup—xN v(^A(xo),yo) + 0(1 -t) ,

which by Lemma 2.2 yields

Tl(xo) ^ V°°(A(x0)) + O ( l - t )
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and the result now follows by letting t -» 1.

6. Relaxation

We want to show that

F(u,m) £ f \|/(Vu,m) dx + f \|f~((u~ - u+)®v) dHN-i(x) + f V°°(dC(u))

(6.1)

We will follow the proof of the relaxation section on [FM2] (see also Ambrosio,
Mortola and Tortorelli [AMT]) making the necessary adaptations. It is divided into
four steps and we begin by considering

F(u,m;A) := inf { lim inf J \|/(Vuk,mk) dx : (uk,mk)
{uk},{mk} k * o X

WU(A;Rn)xL~(A;Rd),Uk -> u in L1 and

whenever A c Cl is an open set.

Stepl. By (H2)

F(u,m;A) < g(llclUo) (I A I + Dul(A)). (6.2)

Also we claim that F(u,m;A) is a variational functional with respect to the L1

topology. We recall that F(u,m;A) is said to be a variational functional with
respect to the L1 topology if

(i)F(u,m;A) is local, i. e.

F(u,m;A) = F(v,h;A)

for every u, v € BV(A; Rn) verifying u = v a.e. in A and m, h € L°°(A;Rd)
such that m = h a.e. in A.

(ii) F(u,m;A) is sequentially lower semicontinuous, i. e. if Uk, u € BV(A; Rn),

Uk -4 u in Lx(A;Rn), mk, m € L°°(A;Rd) and mk ^ m in L°°, then

F(u,m; A) < lim inf F(uk,n^;A)
k

(iii) F(u,m;A) is the trace on {A c 12: A is open} of a Borel measure on the set
B(Q) of all Borel subsets of Q. De Giorgi and Letta [DGL] introduced the
following criterion to assert (iii). A set function a: {A c Q: A is open} —>
[0, +°o] is the trace of a Borel measure if

(a) a(B) £ a(A) f o r a l l A , B € X := {U e f t : Uisopen} withB c A;
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(b) a(AuB) £ a(A) + a(B) for ail A, B e X such that A n B = 0 ;

(c) a(AuB) £ a(A) + a(B) forallA,B€X;

(d) a(A) = sup{a(B):B c c A} for all A € X.

The proof of (i) is trivial.

To show (ii) one needs to use a standard diagonalization procedure. Indeed,
suppose that Uk -* u in L1, mk **> m in L~ and let {q>i} be a countable set dense
in Ll(fl). Assume that

F(uk,mk;A) = lim (V(VuJ,mhdx
j-»~ J J J

A

where Uj -» Uk in L1 and mj *^ mk in L~ as j -»+«>. For every k, i,

choose j(k,i) such that for all j S j(k,i)

I J (mJ-mk)<Pidx| < 1/k.

We may assume that j(k,.) is increasing.

Next, for all k let p(k) be such that for all j £ p(k)

»u; -u k i i L 1 s

Choose s(k) £ p(k),j(k,k) such that

I F(uk,mk;A) - J VCVu^mj^) dx)
A

Clearly

and for all i and k £ i

i f k i i f i
I J ( m s ( k ) - m)-<pi dx I < | J (mk - m><pi dx | + 1/k -> 0.
a o

Hence

F(u,m;A) < liminf J VCVu^m^v)dx) = liminf F(uk,mk;A).
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We prove (iii) using an idea developed by [AMT] in Theorem 4.3. Parts (a)
and (b) are trivial. To obtain (c) and (d) we prove that if A, B, C are open subsets
of £1 with B c c C c c A then

F(u,m;A) £ F(u,m;C) + F(u,m;A\B). (6.3)

Suppose that (6.3) holds. To show (d) fix e > 0 and let B c c A be such that

IDul(ANB) < ^
By (H2) we have

F(u,m;A\B) < e

and so, if C is such that B czcz C czcz A, by (6.3) we conclude that

F(u,m;A) £ F(u,m;C) + e

proving (d). In order to obtain (c), for t € (0,1) we define the sets

A t := { x e AuB:tdist(x,A\B) < (1 -t)dist(x3\A)},
Bt := {x€ AuB:tdist(x,A\B) > (l-t)dist(x,B\A)}

and
St := {x€ A u B: t dist(x,ANB) = (l-t)dist(x,B\A)}.

Since (LN + IDul)(uSt) < +«>, where LN denotes Lebesgue measure, and the sets
{St}are pairwise disjoint, there exists to € (0, 1) such that (LN + IDul)(Sto) = 0.
Given e > 0, by (H2) choose Ki czcz A^, K2 czcz Bto such that

F(u,m; (A u B)\(KiuK2)) < e

and let Ki c c Hi czcz A^, K2 czcz H2 cza BtQ. By (6.3), (a) and (b) we deduce
that

F(u,m; A u B ) < F(u,m;Hi u H 2 ) + F(u,m; (AuB)X(KiuK2))
< F(u,m; A) + F(u,m;B) + e.

We prove (6.3). Let

F(u,m;A\B) = lim f v(Vu?,m?) dx, F(u,m; C) = lim f v(Vu^,mb dx
k-*» J K K k-^00 J

A>5 C

where vl -> u in L^ANB), uj -> u in 1 ^ ( 0 , mj *^ m in L*°(A\B) and
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2
1% *^ m in L

In order to obtain admissible sequences for (u,m) in A u B , using the slicing
i 2 1 2 —

method we are going to connect m£ to mk and uk to uk across C NB.We partition

— 1 2 * —
CNB into two layers S (2), S(2) with IS{2)I = IC ̂ BI/2 and due to (H2) and the fact

that { v(Vuj[, mf.) } is bounded in L^Q, we choose S2 = {xe C\B: 0.2 <

dist(x,8(C\B) <^2l e {S*2), S*2)} such that, for a subsequence,

flVu|.(x)ldx <, const/2, flVuJtoldx <, const/2.
S2 S2

Let T|2 be a smooth cut-off function, 0 ^T|2 ^1,T12 = 0 in the complement of

{xe C: dist(x,9(CNB)) < p2h r\2 = 1 in {xe C I dist(x,3(CNB)) < a2) and HVT|2II =
(XI/IS2I). Choose k(2) large enough so that

rfa J l u l - u i l d x < 1/2-
S2

Recursively, we construct a sequence k(j) such that

J l V u £ a ) I dx ^ C/k, JlVu2
k(j) I dx ^ C/k, y-ljT J lui 0 ) - u2

k(j)l dx < 1/j.
S J S J Sj

We set

2 1
V J := ̂  " ̂  "

Clearly Xj 4^ m in L^CAuB), vj-> uinUCAuB). Let M :=

}. By (H2)

F(u,m;AuB) ^ liminf J y(V VJ(X),XJ(X)) dx
•H00 AuB
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<; Km Jv(Vu£a),mJa))dx. + frn

+ Cg(M) lim sup f (1 + IVuJ.^1 + IVu£0)l + IViijI IU* 0 ) - u£0)l) dx

= F(u,m;A\B) + F(u,m;Q.

Step 2. We claim that if u € BV(Q; R"), m e L - ^ R d ) then

F(u,m; Q\Z(u)) £ f y(Vu,m) dx + f V~(A(x)) dlC(u)l(x). (6.4)

By Step 1, F(u,m;.) is a Radon measure, absolutely continuous with respect to
+1 Dul. Thus (6.4) holds if and only if

£ v(Vu(xo), m(xo)) for dx a.e. xo e Q, and (6.5)

*) (xo) * V<Afa» forlC(u)la.e.xo€a (6.6)

We start by showing (6.6). Let {uk} be the regularized sequence defined in the
following way. Let p^ € C*(RN) be an approximation of the identity and Uk(x) =

(u*pk)(x). Writing

Du = Vu dx + Dsu, (6.7)

for LN a.e. xo e Cl we have

lim f lm(x) - m(xo)l (1+ IVu(x)l) dx = 0, (6.8)
e->0 I B(xo,e) I B ( £ )

.. IDsul(B(xo,e)) _ r Dul(B(xo,e)) j • « •. ,£ m

lim — = 0, lim i—̂  — exists and is finite, (6.9)
e-*0 I B(xo,e) I e-»0 I B(xo,e) I

f\|f(Vu(x),m(xO))dx ^ \|/(Vu(xo)^n(xo)), and (6.10)

o , e ) I rfB(xo,e)

m ; \xo) exists and is finite.

Choose a sequence of numbers e € (0, dist(xo,9Q)). Then
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dF(u,m; .), , r F(u,m; B(xo,e))
dx / ( x o ) - e^O I B(xo,e) I

liminfliminf f \|/(Vuk,m) dx. (6.11)
e » o k-x» I B(xo,e) I B ( ^ )

Following [AMT], Proposition 4.6, we introduce the Yosida transforms of y ,
given by

Vx(m,A) := sup{ v(A,m') - X Im - nVI(l +1A I): iri e Rd}, X > 0.
Then

(i) y^(Ajn) £ y(A,m) and Vx(A.m) decreases to v(m,A) as X.->+*»;

(ii) Vx(A'm) ^ ¥ii(A,m) if X < Ti, (A,m) e M x Rd;

(iii) lYx(A'm) ~ ¥x(A»m')l ^ X Im - m'l (1 +1A I), (A,m) e M x R d ;

(iv) the approximation is uniform on compact sets. Precisely, let K be a compact
subset of Rd and let 5 > 0. There exists X > 0 such that

V(A,m) <, yx(A»m) £ V(A,m) + 8 (1 +1A I), (A,m) e M x K .

Fix 5 > 0 and let K = B(0,llmlL). By (i), (ii) and (iv)

\|/(Vuk(x),m(x)) < \ifx(Vuk(x),m(x))

^ Yx(Vuk(x),m(xo)) + X lm(x) - m(xo)l (1 + IVuk(x)l)

«£ V(Vuk(x),m(x0)) + 8(1 + IVuk(x)l) + X( lm(x) - m(xo)l (1 + IVuk(x)l).
(6.12)

Taking into account that Vuk = pk*Vu + Pk*Ds" and that \|f(m(xo),.) is a Lipschitz
function, by (H2) and (6.11) we have

Uminfliminf / [ Jv((pk*Vu)(x),m(x0)) dx
e^Q k > o e |B(x o ,e) l B(x{,e)

+ C IDsu l(B(xo,e+l/k)) + ( U + 8) I B(xo,e) I + (fce + 8) lDul(B(xo,e + l/k))

+ X f lm(x) - m(xo)l (1 + lVuk(x)l) dx ] .
B ( )

Since
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JV((pk*Vu)(x),m(x0))dx = JV(Vu(x),m(xo)) dx, .
w ) B(4)

IDu I (B(xo,e + l/k)) -> IDu I (B(xo,e)) = IDu I (B(xo,e))

for a.e. e, invoking (6.9) and (6.10) one deduces

£ v(Vu(xo),m(xo)) + C5

+ X. lim inf lim inf f lm(x) - m(xo)l (1 + IVuk(x)l) dx .
e_K) k-*o | B(xo,e) I B(*U)

(6.13)

To prove (6.6) it remains to show that the last term converges to zero. By (6.8)

lim ! Jlm(x)-m(xo)ldx = 0
e ->0 I B(xo,e) I B(xo,e)

and by the dominated convergence theorem (with respect to the measure Dul)

lim sup Jim - m(xo)l I Vujc I dx < lim sup J (Im - m(xo)l*Pk) IDul(x)
k * ° » B ( ) k » ~ B ( l / )

< lim sup Jim - m(xo)l*pk(x) IDul(x) + 4llmlL IDul(B(xo,e+l/k)nZ(u))
k » - B(xo,e+l/k)\S(u)

<, lim sup J Im - m(xo)l IDul(x)+ 4 HmlLIDul (B(xo,e)nZ(u))
k—*» -

B

< J lm-m(xo)MDul(x)+ 4 HmlU IDsul(B(x0,e)). (6.14)
B(xo,e)\£(u)

Taking into account that IDul(3B(xo,e)) = 0 for a.e. e and that

/ Im - m(xO)l IDul(x) < J Im - m(xo)IIVu(x)l dx + 2 HmlU IDsul(B(x0,e)),
^) B(xo,e)

we obtain from (6.8) and (6.9) that

lim sup lim sup J lm(x) - m(xo)l lVuk(x)l dx = 0,
e-̂ oo k-»~ | B(xo,e) I B(xn,e)B(xo,e)

and (6.6) follows from (6.13).
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Next we prove (6.7), where using Radon-Nikodym Theorem we write IDul =
IC(u)l + |x, where \i and IC(u) I are mutually singular Radon measures. As m is
bounded and measurable, consider a Borel measurable function mi such that mi =
m for dx a. e. in il. Let m2 be the projection of mi onto B(0,llmlloo). Then m2 is a
Borel measurable function which is bounded by llmlloo. In particular m2 e
L°°(ft,IC(u)l). For xo€ Q IC(u)l a.e., we have that

H(B(xo,e))

e->0 IC(u)l(B(xo,e))

eN

lim

: 0, lim
e-»0

= o,

Dul(B(xo,e)) c x i s J

IC(u)l(B(xo,e))
ts and is finite,

(6.15)

(6.16)
IC(u)l(B(xo,e))

lim * J Im2(x) - m2(x0)l IC(u)l(x) = 0, (6.17)
e -»0 IC(u)l(B(xo,e)) B(xo )̂

w ^ ,• C(u)(B(x,e)) . , . .
A(x) := hm exists and is a rank-one matrix of norm

e ->0 IC(u)l(B(x,e))
one, (6.18)

liminf f \K°°(A(x)) dlC(u)l) = \|^oo(A(x0)), and (6.19)
e^O IC(u)l(B(xo,e)) B(xo,e)

/ j ( x o ) exists and is finite.

As before, using (6.12) and (6.14) one sees that

dF(u; .) _ F(u; B(xp,e))
A /(xo; = urnJI/A/, \ / (xo; = urn

dlC(u)l e ^ 0 ic(u)l(B(xo,e))

l im inf l im inf | \u(Vuk,m) dx
e * 0 k ^ o IC(u)l(B(xo,e)) B ( i )

= lim inf lim inf f \i/(Vuv,m2) dx
e-»0 k-*» IC(u)l(B(xo,e)) B ( { ^

lim inf lim inf [ J \ir(Vuk,m2(xo)) dx
e_>0 k-»- lIC(u)l(B(xo,e)) B(iJ)

J IVukl dx + (8 + XE) I B(xo,e) I
B(xo,e)

X J lm2 - m2(xo)l (1 +IVukl)dx]
B ( )
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lim inf lim inf * J \|/(Vuk(x),m2(x0)) dx
e » 0 k»oo IC(u)l(B(xo,e)) B ( J )

+ lim sup * — - ( 5 + te) [ IDul(B(xo,e)) + I B(xo,e) I]
e -»0 IC(u)l(B(xo,e))

+ X lim sup — — — [ J | m2(x) - m2(x0) I IDul(x) +
e-»0 IC(u)l(B(xo,e)) _ *

B(

J I m2(x) - m2(xo) I dx + 4 HmllJDul (B(xo,e)nZ(u))].

By (6.15) - (6.17) and, due to the rectifiability of the jump set, as
IC(u)l(B(xo,e)n£(u)) = 0 we conclude that

iminf liminf ^ [ Jv(Vuk(x),m2(x0)) dx
g^Q k ^ iC(u)l(B(xo,e)) B(xJ,e)

X j Im2(x) - m2(x0)l IC(u)l(x) + 2X IbnlU H(B(xo,e))

+ 4X IbnlU IDul(B(xo,e) n I(u)

£ lim inf lim inf f V(Vuk(x),m2(xo)) dx + C5.
e-40 k-»co IC(u)l(B(xo,e)) B(J4E)

(6.20)

Now we use Ambrosio and DalMaso's argument in [ADM], Proposition 4.2.
Define

g(A) •= sup V( t A ' m 2( x 0» ~ ¥(O,m2(xo))
t>0 l

Then g is Lipschitz continuous, positively homogeneous of degree one and the
rank-one convexity of \|f(.,m2(xo)) implies that

g(A) = \|/°°(A,m2(xo)) whenever rank A < 1.

Thus, by (6.20), (6.16) we have
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<: lim inf lim inf * J[v(O,m2(xo))+g(Vuk)]dx + C8
e > 0 k ^ IC(u)l(B(xo,e))B(xo,e)

liminf Jg(Du) + C8
e->0 IC(u)l(B(xo,e)) B ( i )

= lim inf * J [g(A(x)) dlC(u)l + g(d|i)] + C5
e->0 IC(u)l(B(xo,e)) B(xJ,e)

and so, by (6.15), (6.18), (6.19), by Alberti's Theorem 2.11 and by Lemma 2.2
we conclude that

[ JV
IC(u)l(B(xo,e)) B(xJ,e)

Cn(B(xo,e))] + C5

JV(xO,u(xo),A) dlC(u)l

)) C8.

It suffices to let 8 -> 0+.

Step 3. We show that

F(u,m;I(u)) ^ J \T((u-(x) - u+(x))®v(x)) dHN_i(x) (6.21)
2()

for every u € BV(Q; Rn), m € L°°(Q;Rd). The proof is divided into three parts
according to the limit function u:

l.u(x) = aXEOO + b(l-XEOO) withPern(E) < +©°;

2. u(x) = X aiXEiOO where {Ei}]^ forms a partition of Q into sets of finite

perimeter;
3. General case, u e BV(n; Rn).

1. Let u(x) = aXEW + b(l-XEOO) with Pern(E) < +oo. We start by
proving that for every open set A c Q

F(u4n;A) < f \|f(0,m(x)) dx + J y~((a - b)®v) dHN . i(x). (6.22)
A X(u)nA

a) Suppose first that

f b if x v > 0
1 a if x-v < 0
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Let A = a + A,QV be an open cube with two faces orthogonal to v. Fix y € Rd and
define

f m(x) i f l x . v | > l / k
I y if Ix-vl £

{
| [(a - b)®v]x + | (a + b) if Ix-vl < 1/k

1/k '

if x-v > 1/k

if Ix-vl < 1/k

a if x-v < - 1/k

As uk —> u in L1 and m^ *^ m in L°% we conclude that (6.22) holds since

F(u,m;A) £ lim inf J y (Vuk.mfc) dx

= J V(0,m) dx + lim inf [ \|/(z(a - b)®v,y) dx
X k—>oo J ^

= J \|/(0,m) dx + ^ ( ( a - b)®v) HN-I (APII(U)) .

b) Consider u as in a) and let A c Q be an arbitrary open set in RN. Let n be the
plane n = { x-v = 0}. It is clear thatl

n=l

400

where An is an increasing finite collection of non-overlapping (i. e. with disjoint

interiors) cubes Q of the form a* + eQv with edge length bigger than or equal to 1/n
and such that

H N - I @ Q nn) = 0. (6.23)
Thus, by Step 1 (iii) and applying a) to a decreasing sequence of open cubes whose
intersection is the closed cube Q one has

F(u,m; Q) < J V(0,m) dx + J Y~((a - b)®v) dHN-l(x)

Q Ku)nQ
and so

F(u,m;A) <> lim F(u,m; uAn) < lim X F(u,m; Q)

1 We use the notation uA := {x: there exists Y € A such that x e Y}.
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£ lim I [JV(0,m)dx+ Jy~((a-b)®v) dHN-i(x)].
QeAn Q Ku)nQ

By (6.23) and Lebesgue's Monotone Convergence Theorem we conclude that

F(u,m;A) < liminf[ f\|/(0,m)dx + J\|/"°((a - b)®v) dHN-l(x)

= Jv(0,m)dx + JV~((a-b)®v)dHN_i(x).
A Ku)nA

c) Now suppose that u has polygonal interface i.e. u = XEa + (1 - XE)b where E is
a polyhedral set i.e. E is a bounded, strongly Lipschitz domain and dE = Hi u ...
u HM , Hi are closed subsets of hyperplanes of the type { xvi = ai}. Let A be
an open set contained in Q and let I = {i € {1,...,M}: HN-i(HinA) > 0}. If A n
X(u) = 0 , i. e. if card 1 = 0 then u € W^CAjR11) and it suffices to consider uk =
u € W^^AjR0), mk = m, with (6.22) reducing to

F(u;A) < fv(0,m)dx.

The case card 1=1 was studied in part b) where E is a large cube so that
reduces to the flat interface {xv = 0}. Using an induction procedure, assume that
(6.22) is true if card I = k , k £ M - l . We prove it is still true if card I = M.
Assume that

d E n A = (Hi n Q) u . . . u (HM n Q)

and consider S : = ( x e RN: dist (x, Hi) = dist (x, H2 u ... u HM)} . Note that
HN-i(S nZ(u)) = 0 because HN-I(HI nHj) = Ofori*j. Fix 8 > 0 and let

U8 = {xeRN :dist(x,S)<8},

Uj = {x e RN: dist(x,S) < 6, dist (x, Hi) < dist (x, H2 u ... u HM)},

Ug = {x e RN: dist(x,S) < 8, dist (x, Hi) > dist (x, H2 u ... u H M ) } .

Let

Ai = {x € A : dist (x, Hi) < dist (x, H2 u . . . u HM)} .
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Clearly Ai is open and Ai n (H2 u ... KJ H M ) = 0. We apply the induction

hypothesis to Ai and to A\ Ai := A2 to obtain sequences Uk e W^CA^R"), Vk €

WU(A2;Rn)mke L-(Ai;Rd)Ak€ L~(A2;R
d) such that uk -» u inLl(Ai;R"),

v k - * u inLHA^R"), 1% **• m in L~(Ai;Rd), A* *± m inL~(A2;Rd) and

lim J y(Vuk,mk) dx £ f \|/(0,m) dx + f v~((a - b)0v) dHN-i(x) + |,
^~Ai Ai Ku)nAi

lim I \|f(Vvk,Xk) dx £ J \|/(0,m) dx+ f v~((a - b)®v) dHN-i(x) + |.
-»~ A2 A2 Ku)7^A

We will use the "slicing method" to connect uk to vk. Let pk be mollifiers and
define

Wk := (Pk*u)(x) = Jpk(x-y) u(y) dy.
B(x,l/k)

As p ^ 0, supp p = 5(0,1) and

fpdx = 1,
B((U)

we have

HVwklloo < Ck, supp Vwk c {x € RN: dist(x,E(u)) <, 1/k}. (5.23)

Let

ak := -^llwk-vkllLi (Ai ), Lk := k [1 + llwklli,i + llvklli.i], Sk :

where [n] denotes the largest integer less than or equal to n, set Uj" = Ug., where 5i

= (1 - ak + i Sk), i = 1,..., Lk, and consider a family of cut-off functions

9i € W{,'~(U7 ), 0 <; <pi <, 1, <pi= 1 in UT_r IIVq>i IL = O(^) for i = 1 Lk.

Define

uĵ Cx) := (1 - 9i(x))wk(x) + <pi(x)uk(x),x€ AL

Then
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Vuk° = Vuk in U7_j, Vuk° = Vwk in Ai\U7 and

Vujj* = Vwk + (pi(V(uk - wk)) + (uk - wk ) ®V<pi in U^ \U7_j .

Due to the growth condition (H2) we deduce that

f Y(Vu(
k°,mk) dx <;

A

f(l+lwk-ukl^-+IVwkl + IVukl)dx + C J(l+IVwkl)dx

and averaging this inequality among all the layers Uj \Uj_j and by (5.23) we

obtain

TZ^iL V(Vujp,mk)dx ^ JA vCVu^mk)dxMcj=i Ai * Ai *^

+ ^- f(l+IVwkl + IVvl)dx

+ ^ f lwk - vkl^dx + C (1 + n) l{x € UgOAi: dist(x,Z(u)) < l/k}l.
Q

Thus, there must exist an index i(k) € {1,..., 1*} for which

uk :=

and taking into account that X(u) is a union of finitely many closed subsets of
hyperplanes

lim sup I y(Vuk,mk) dx ^ J\|f(0,m) dx
k-»- Al Ai

J¥°°((a - b)0v) dHN_i(x) + | + CH
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Similarly, we may construct a sequence vk such that

Vk = Wk on 9A2HS, Vk -> u in L*(A2; Rn),

lim sup I \|/(Vv"k,Xk) dx £ f \|/(0,m) dx
k-»- Ai A2

+ f V~((a - b)®v) dHN_i(x) + | + CHN_i (U'nA2nX(u)).
2Xu)nA2

We set

Clearly £k € WU(A;Rn), & -» u in L!(A;Rn) and so

F(u,m;A) ^ liminf fv(V4k»Sk) dx
k->~ X

^ lim sup I V(Vuk,mk) dx) + lim sup I \|/(^vk,Xk) dx
k-»~ AJ k-x»o AJ

< f \|/(0,m) dx + f \r((a - b)®v)dHN-i(x) + 5+ CHN
A S(u)nA

As HN-I(SO2XU)) = 0, letting 8 -» 0 we obtain (6.22)

f) Finally, if E is an arbitrary set of finite perimeter in £1, by De Giorgi's
approximating lemma there exists a sequence of polyhedral sets E^ such that

I EkAE I -> 0, Pern(Ek) -* Pern(E).

On the other hand, y -» V°((a - b)®y) is a convex function (and so continuous)
and positively homogeneous of degree one. Setting

uk := axEk+b(l -

by Step 1, (i), (iii)

F(u,m;A) ^ lim inf F(uk,m; A)
k

lim inf [ fy(0,m)dx+ f \|T°((a - b)®v) dHN-i(x) ]
k A I(ut)nA
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= J V(0,m) dx + J y ( ( a - b)0v) dHN-i (x) .
A Ku)nA

This inequality together with Step 1, (iii) yields

F(u,m;X(u)) £ inf {F(u,m;A): A c Q , A is open, Z(u) c A}

< inf { f \|/(0,m) dx + J \|r°((a - b)®v) dHN-i(x): A c ft, A is open,
A Ku)nA

X(u)cA}

= Jy~((a-b)®v)dHN_,(x)
2Cu)

and we conclude (6.21). The cases 2 and 3 are now obtained as in [AMT]
Proposition 4.8, Steps 1 and 2, respectively.
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