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On Algorithms for Non—Convex Optimization

Ling Ma and Noel J. Walkington*

Abstract. A simple algorithm for the computation of local minima of non—convex problems
in one dimension is proposed. This algorithm avoids certain well known local minima which are
distant from the global minimum, and can be used to improve the minima obtained using classical
descent methods. The calculated minima have mesh scale oscillations typical of weakly converging
sequences. It is shown that these local minima converge weakly to the correct limit for certain simple
problems; however, numerical evidence suggests that the gradients may not converge to the correct
weak limits, and this is verified using asymptotic expansions. Extensions to multiple dimensions and
some numerical examples in two dimensions are considered.

1. Introduction. The fundamental idea in the method of calculus of variations
is to minimize an energy functional. Since many physical systems take on a configu-
ration which minimizes a natural energy, and since variational techniques have been
remarkably successful in predicting the behavior of such systems, this area has a rich
history. The variational characterization of such problems also leads to natural numer-
ical schemes for approximating their solution. Typically the solution of the continuous
problem lies in a separable Banach space. The problem is then discretized by con-
structing a finite dimensional subspace, and minimizing over this subspace; a chore
suitable for digital computers. Classical problems in the areas of solid mechanics, fluid
mechanics, dynamics etc. all have sufficient convexity of the energy to guarantee the
existence of well behaved solutions. In this situation, it is easy to construct algorithms
that will find the discrete minimizers, and approximation theory establishes how well
the discrete solutions approximate the original problem.

It has been known for a long time that if certain convexity assumptions were not
satisfied, then there may be no solution (minimizer) of the variational problem. The
fundamental work of Young [16] develops a theory of generalized solutions to these
problems. At that time, generalized solutions were used mainly in the context of
control theory (chattering controls), and not in the context of mechanics. Recently
it has been recognized that the generalized solutions developed by Young provided a
beautiful characterization of certain fine scale microstructures observed in crystalline
materials (metals) [3, 10]. This realization rendered the study of certain microscopic
phenomena mathematically tractable, casting it into a variational framework. In prin-
ciple, the numerical technique outlined above can now be used to approximate the
behavior and fine scale phenomena these materials exhibit. However, the generalized
solutions are no longer real valued functions, typically they consist of a pair, a func-
tion and a parameterized measure. Since such solutions still lie in a separable Banach
space, one can, in principle, approximate them using finite dimensional subspaces.
This is the approach proposed by Nicolaides and Walkington [15], and requires ap-
proximating measures. The parameterized measures that arise in these problems are
obtained by taking certain weak limits of a sequences of functions. This leads to an al-
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ternative class of algorithms that only involve real valued functions. The basic idea is
to observe that a finite dimensional “approximation” of the original variational prob-
lem will still have a solution even when there is no convexity of the energy. By letting
the dimension of the subspace go to infinity, one obtains a sequence of functions from
which the generalized solution may be deduced. This is the approach taken by Collins
and Luskin [8, 7], and Luskin and Ma [13, 14], and it is the practical considerations
of this algorithm that we discuss below.

One of the major obstacles to computing with either of the above algorithms is the
need to minimize a non—convex function over a finite dimensional space. Simple exam-
ples quickly show that the standard minimization algorithms (relaxation, conjugate
gradient etc.) fail in this task. Indeed, given a candidate for a solution there is no easy
way to decide if it is the minimizer or even close to it. One guide that is implicitly used
in [8, 7, 13] is a priori knowledge of the behavior of the generalized solution or micro-
scopic phenomena being modeled. For the model problems calculated in [8, 7, 13] it
is known that the discrete solutions should oscillate, and frequently it is known what
certain weak limits should be, so the solutions should oscillate about these known
limits. Below we present an algorithm for a class of one dimensional variational prob-
lems that produces highly oscillatory discrete solutions, and converges to the correct
weak limit!. While this is a considerable improvement over traditional minimization
algorithms, it is possible to show that the sequence of discrete solutions may not con-
verge to the correct generalized solution. This illustrates that the practical solution of
these non—convex problems poses subtleties hitherto unsuspected. Indeed, the results
of Collins et. al. [6, 5] show that if the global discrete minima could be calculated,
the correct generalized solution would result.

In section 2 we propose an algorithm for the calculation of local minimizers, and
in section 3 we present some numerical experiments which exhibit the mesh scale
oscillations produced by our algorithm. Detailed examination of numerical examples
like those of section 3 raised questions about the convergence to the correct generalized
solution, and this motivated the asymptotic analysis in section 4 which answers these
questions. In section 5 we discuss generalizations to multiple dimensions, and present
some numerical examples.

2. An Algorithm for Local Minima. We consider variational problems of the
form: minimize

I(u):/olF(u')+-;-(u—f)2, u € A,

where A = {u € WP(0,1) | u(0) = uo,u(1) = ugr}, is the space of admissible func-
tions with boundary conditions prescribed. We assume that F' : £ — R satisfies
cs? —1 < F(s) < CsP, (¢, C > 0), and f:[0,1] — R is continuous. This problem is
approximated by constructing a uniform mesh on [0, 1] with mesh size A = 1/N and
minimizing

N-1 1 N-1
In(w) = 3 hF(uf)+5 3 h(y; = f;)?
7=0 j=1

1 A discrete solution in the above context is a local minima to the discrete problem.
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Nl 1N .
= > hF(—]—h——J')+5 > h(u; - )2,
=0 1=1

over the space of piecewise linear functions on the mesh satisfying the boundary con-
ditions. In the above ug is the derivative on the j** interval, and u; and f; are the
values of u and f at the j** node. The Euler Lagrange equation for the discrete system
is

(D F'(ui_y) = F'(u;) + h(u; - f;) =0, ji=12,...,N-1.
To motivate our ideas, we consider Young’s problem where

1 2 2
(2) Fis)=3( =17 f(&)=0,  w=up=0,

and recall that the continuous variational problem has no solution, while the discrete
variational problem does. The continuous problem may have W* stable local mini-
mizers, but not L stable local minimizers [2]. That is, there are u and € > 0 such that
u minimizes I over A N B(u; W), where B(u, W!i®) is the ball in W centered
at u of radius e. The well known hat functions shown in figure 1 are typical of such
local minima. However, there are no functions u that minimize I in A N B(u; L™).
Numerical experiments reveal that essentially all classical minimization algorithms
will terminate in one of the W™ stable local minima, which may be far from the
global minima.

One of the reasons classical algorithms fail is due to a scaling problem. F is a degree
four polynomial with argument (u;4+1 —u;)/h. When h is small, small perturbations of
u; will cause very large variations in F(u}), swamping the low order term. However, it
is the low order term that distinguishes a local minima from a global minima. These
ideas motivated the following elementary move:

e Forj=1,2,...,N-1
— Let U; = Ujq1 + Uj—1 — Uj.
— If (@ — f;)? < (uj — f;)? replace u; by ;.
The key point is that, on a uniform mesh, replacing u; by 4; does not change the
energy of the principle part, i.e.

h

)+F(£lh_—1)'

— U, ’&,‘—-U’_
J)=F( J h.‘l 1

Uj+1
)+ F(-

P&

This follows by observing that the above choice of %; simply interchanges the values
of the slope in the two elements adjacent to the j** node. In this circumstance, it is
the low order term which determines the outcome of the move. Moreover, this move
will not be small in W*; indeed, generically it will change a local maximum to a
local minimum. Discrete maximum principles can be established for this algorithm.

LEMMA 2.1. Let u be a local minima of I, calculated so that the move above does
not lower the energy. If u; is a strict interior mazimum and uj — f; > 0, then either
uj—1 — f; <0 or, ujyq — f; < 0. Similarly, if u; is a strict interior minima and
uj — f; <0, then either uj_y — f; > 0 or uj4y — f; 2 0.



Proof. We argue by contradiction. Suppose not, then both uj4; — f; and uj—y — f;
are greater than 0.

U—f; = vatupn -y fj
= (uj-1 = fi) + (wje1 = f5) = (w5 = f;)
> —lu; = fjl-

It follows that 4; — f; > u; — f;, otherwise the energy would be lowered by replacing
u; with @;. Then

Uj > Uj = Ujpy + Ujoy — U; > U = Ujqq + Uj—y — 2u; 2> 0,
and this contradicts u; being a strict maximum. 0O

COROLLARY 2.2. Let u be a local minima of I}, calculated so that the move above does
not lower the energy. Then max; u; < max(uo, un,max; f; + Ch(p‘l)/”), where C
depends upon the energy In(u).

Proof. The lemma shows that at a maxima either u; < f; or one of the neighboring
points is < f;. The coercivity condition on F implies a bound on the W'?(0,1) norm
of the solution, with the bound depending upon Ij,(u). It follows that u € C%(P~1)/p,
sothat u; < f; +uj; — w41 < f; + Chle-V/r

When f is linear, a minor modification of the proofs above give.

LEMMA 2.3. Let f be linear, and u be a local minimum of I calculated so that the
move above does not lower the energy. If {u;— f;}fio attains a positive strict mazimum
at j, 1 < j < N -1, then either uj_y — f;_1 <0 or, uj41 — fj41 < 0. Similarly, if
u; — f; <0 is a strict negative minimum, 1 < j < N — 1, then either u;_; — f;_1 > 0
or ujy1 — fiy1 2 0.

COROLLARY 2.4. Let f be linear and u be a local minima of I calculated so that

the move above does not lower the energy. Then max; (uj — f;) < max(uo — fo,un —
fn,ChP=D/?) and min; (u; — f;) > min(uo — fo,un — fn, —Ch®-1/?),

When f is linear and uo = f(0) and uny = f(1) the generalized solution to the non-
homogeneous Young problem is v = f. This immediately leads to an L* rate of
convergence for our algorithm.

THEOREM 2.5. Let f be linear, and {up}n>o, un(0) = f(0), ur(1) = f(1), be a
sequence of local minima for the discrete non-homogeneous Young problem calculated
so that the move above does not lower the energy. Moreover, assume that the energies
I(up) are bounded. Then ||up — fl|lp=(0,1) < ChP-1)/p,

In practice it is easy to guarantee that the energies I(uy) are bounded. One simply
chooses the same initial guess for u; independently of h.

Knowing that the solutions converge to the correct weak limit, it is natural to ask if
the energy converges to the infimum, and if the Young measure generated by the gra-
dients corresponds to the generalized solution of the continuous variational problem.
Both of these questions can be answered negatively. We first present some numeri-
cal experiments which suggest a negative answer. The numerical solutions are all of
a particular form which motivates asymptotic expansions substantiating the trends
observed. However, note that the numerical examples do have mesh scale oscillations
about the correct weak limit, so could easily be mistaken for a minimizing sequence
of the continuous problem.



3. Numerical Examples. We present several numerical examples which illus-
trate the operation of our algorithm. We will consider Young’s problem where F’ and
f are as in (1), and a non-homogeneous version where f(z) = 0.2z, u(0) = f(0), and
u(1) = f(1). In all examples the initial guess for u was u(z) = f(z) + sin(7z), and
the following elementary algorithm was used to locate a local minima.

o Set € > 0.

e Forj=1,2,...,N-1
— Replace u; by u; + € if this lowers the energy.
— Replace u; by u; — € if this lowers the energy.

We started with ¢ = 1 and alternated this update with the move given previously.
When the process stopped € was halved and the process repeated until € was negligible
(typically € = 10~!!). This algorithm is very robust and, unlike descent methods based
upon the derivative, may not get stuck in saddle points.

Figure 2 show plots of the solutions obtained for Young’s problem when N = 64,
127 and 128. Note that they all exhibit mesh scale oscillations and there are two
very distinct patterns that emerge. When the number of nodes is even, it is possible
for the solution to oscillate as shown in figure 2a (N = 64). Clearly this pattern is
not possible for an odd number of nodes, and in this instance the pattern shown in
figure 2b emerges. However, it was observed that the latter pattern was more “stable”
for N big, since meshes with an even number of nodes would decouple into groups of
odd nodes where the odd nodded pattern would appear, as shown in figure 2c where
the solution for a mesh on N = 128 grid points decoupled into two odd solutions
consisting of 63 and 65 nodes.

Solutions for the non-homogeneous problem are given in figure 3 for N = 64, 128, and
256. These solutions all consist of oscillation packets, each packet being very similar
and each having an odd number of nodes. While it is not clear from the plots, the
gradients of the oscillations do not get closer to +1 as N increases. Moreover, the
energy, given if figure 6, sometimes increased as the mesh was refined.

4. Asymptotic Estimates. When f is linear, our numerical experiments moti-
vate the following asymptotic expansion for the numerical solution u,

ug; = 2jha + A vaj + hing; + ...),
uzi+1 = (27+1ha + h(B + wvj41+hinju+...),

where a = f’ is constant. The boundary condition u(0) = f(0) requires 0 = vy = g =
..., and the right hand boundary condition uny = f(1) requires 0 = vy = iy = ... if
N iseven, and vy = —3,0=Dn = ... when N is odd.

The derivatives of the piecewise linear function u then become

u’2j = a4+ f+ (vaj41 — voj) + h(Poj41 — D25) + ...
Upip1 = a— B+ (njre = vajp1) + (D242 — D2jp) + ...
so that
F'(ug;) = F'(a+p)+ F'(a+ B)[vajs1 — voj + h(inj41 — i) +

1
§F'"(a + B)(vaj41 — v25)* + ..
5



Fl(ugjp1) = F(a=B)+ F'(a—B)vaj+2 — vaje1 + h(igj40 — D2j41)] +
1
5F" (e = B)(vaj4a - voj1)t + ...

In order for the expansion for u to be meaningful, we look for bounded values of v
and 7. Similarly, in order for the expansion for the derivative u’ to be meaningful, we
require vy —vj, Vj4+1 — ¥ etc. to be of order h. The solutions we obtain below satisfy
these assumptions; indeed, v and ¥ consist of a smooth piece plus a small oscillatory
component of size O(h?).

Substituting the above into the discrete Euler Lagrange equation (1) gives
F'(a = (-1Y8) - F'(a+(-1Y8) +
[F"(a - (<1)B)(v; = vj=1) = F'(e + (~1YB)(vj41 — v5)] +
[F"(a = (<1)B)(5; = #i-1)h = F"(a+ (=1)8) (7541 — 75)h
30— (1P8)(5 = vy-1)? - 30+ (<1 D)z — 1]+

0 j even

20, 1B — p2
h(l/_,+h1/]+...)—h{_ﬂ i odd

We now equate terms that are (formally) of similar size. The correct groupings are
most easily recognized when S is zero, since then it is clear that the terms associated
with F" are discretizations of the second derivative.

F'(a+8)= F'(a~B),
and for 7 =1,2,...,N -1,

(e (=1)78)(v5 = vj-1)~ F(+ (~1)8) (vg41 — v5) + iy = B2 { s e

F'(a = (=1YB)(#; = #j-1) = F"(a + (=1)B)(#j41 — 75) + h*5;
= —;% [F"(e = (=1)8)(v; = vj-1)? = F"(a+ (=1Y B)(vis1 = v3)?] -
Writing
aj41/2 = F'(a+(=1)B),
the latter equations become

0 Jj even,
a;_172(v; = vim1) = @jpay2(visr = vi) + RPvj = B { -8 j odd,

aj_172(F; = Pi-1) = @jpap2(Pisr — 75) + 7D

= ;_}1 [F'"(a — (=1Y8)(vj — vj-1)* = F"(a+ (1Y B)(vj+1 — "1')2] '
6



We introduce the following discrete norms.

N-1
2 _ 2 _ )
vl = ]z_; hvy, Ille = | max v,
N-1 2
2 Vi1 — Vj _ lvj — vj-1|
||V“h1 = ;) haj+1/2 (—Z—h——> ) 1]l pr.00 = 12’2’5\1 aj—l/2_h—_'
_ 2
”1/”22 - = h aj+1/2(yj+1 - Vj) - a’j—l/?(yj - V.’i—l)
h = h2 9

The following lemma is and elementary application of summation by parts.
LEMMA 4.1. Let the coefficients a;/, be non-negative and uniformly bounded. If v
satisfies

aj_1/2(vj — vio1) = @i p2(vir = vi) + hPv = B2 fj,  wo =0,
then ||v||e, IVIlnt, |[¥]lwto, and ||v||p2 are all bounded by a constant C(||f||e,vN)
depending only upon || f||z and vN.
If U satisfies

aj_172(P5 = i) — a1 2(Pir — 75) + h?0; = M(gjq1s2 — 9j-172), w0 =0,
then ||P||e and ||P||)y are bounded by a constant C(||g||e,vN) depending only upon
llglle and vn.

Moreover ||v||¢~ and ||7||¢ are bounded by a constants which depend additionally upon
Miny<i<N 6;-1/3-

4.1. Calculation of the Energy. Our numerical experiments suggest that the
solution consists of one or more packets consisting of M < N node points. Accordingly,
we calculate the energy for a typical packet, and afterwards multiply by the number
of packets (N/M = 1/(hM)).

M-1 1M—l
Em = ) hF(4})+ 5 2 Ay - f;)?

M-1
= Y hFla-B+ Wiy —v)+h(ip = 5j) + -]
3J=00dd
M-1
+ Z hF[a+ﬂ+(VJ+1 —Vj)+h(l7j+1 —ﬂj)+]
j=0even
+= Y BB4vi+hi+-2+5 Y B+ hi+--)?
2 y=1 odd 2 =1 even
= |M/2|h[F(a - B)+ h*8%/2] + [(M + 1)/2|hF(a + B) + F'(a £ B)hvpy
p M2 M-1
3 > [aj+1/2(‘/j+1 )+ hzl/f] + B8R Y v+ 0(h®).
3=0 j=1lodd
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(lz] denotes the greatest integer less than or equal to z.) The equation for v reveals
that

M-1 M-1

> [aj+1/2(Vj+l -’ + hzlﬂ = apr-172(vm = vm—r)vm — BR? D vj,

=0 j=1lodd
giving

Ey = |M/2)R[F(a - B)+k*B%/2]+ [(M +1)/2]hF(a + 8) + F'(a £ B)huny
1 1 M-1
(3) +§haM_1 12(vm = vm—1)var + §ﬂh3 Y. v+ Ok
7=1o0dd

Note that the last term is an approximation to the integral of v,

1 3 = 1 2 Mh 3
SO Y uj=zﬂh/0 v+ O(h?).
j=1o0dd

In summary, given a specific right hand boundary condition, the energy can be esti-
mated if the integral of v and the flux at the right hand end can be estimated. This
will be done by solving the continuous problem which v approximates.

4.2. Young’s Problem. In this section we explicitly calculate the asymptotic
solution for Young’s problem, where F is given as in (2), and show that it is in
agreement with the computed results.

For Young’s problem, the equation F'(a + ) = F'(a — ) gives either 8 = 0 or
B =+V1-3a?

and by symmetry, it suffices to consider the positive root 8 > 0. The coeflicients of
the equation for » and 7 then become

ajs1/2 = F'(a+ (=17 B8) = 2(1 - 30) + 6(~1)'af = 28(8 + 3(~1)’a).
In order for these coefficients to be positive, it is necessary that
a’<1/12 or |a] <0.289...

Finally, note that v consists of a small oscillating part plus a “smooth” part. To
illustrate this, observe that the right hand side of the equation for » may be written
as

Jj even

1 1 ; 0
_284 2(=1)8 =
58+ 5(=1)8 { 8} odd
We then write v = v(!) 4 v(3) where v(?) is of the form 1/,&” = (=1)’c and satisfies
1 ,
a5-17207 = vi21) = i palvih — o) + W = W (-1)7B.
The constant ¢ can be explicitly evaluated to give

@=__ B qyipe
(4) v 2(8[32+h2)( 1) h*.
This portion of the solution is very small, O(h?); also, its derivative is small, O(h).
The calculation of (1) is vastly simplified if f and hence « is zero, so we consider this
case separately.



4.2.1. Homogeneous Problem. When a = 0, we immediately get 8 =1, v =
v 4 @ where

S (217 -1y
16 + 2h? i
and aj;/2 = 2, so that
—u 1 _ 0 2, _ _1;0
1) +2v; —J+1+2h Zh'
Clearly this is a discretization of
1
"oy — =
w + ¥ L

which has solution
w(z)=—= + A cosh(z/v/2) + Bsinh(z//2),

where A and B are constants chosen to satisfy boundary conditions. Standard results
show that 1/( )is an O(h?) approximation to w(jhk), and the derivatives ( (1) (1) 1)/h
apprommate w'(jh) to O(h). We will approximate v(!) by w, and since thls mtroduces

errors similar in size to the magnitude of v we simply consider w as an approxima-
tion to v.

When N is even, the boundary conditions become w(0) = w(1) = 0 so that

w(z) = % (cosh(z/\/i) - 1) - c;szilh/(\lf/f\)/i—)l sinh(z/v/2),

and when N is odd the right hand boundary condition becomes w(1) = —f = —1, so

w(z) = (cosh(z/\/-) ) - cc;s:lgllh/(\l//i\)/;)l sinh(z/v/2).

We can now calculate the energy for this problem. Note that F(ax8) = F'(a£8) =0
when a = 0, § = 1, so that many of the terms in (3) vanish. When there is a single
“packet” as in figures 2a (N = 64) and (2b) (N = 127), we obtain

E = §LN/2J h*p% + EhaN—l/2(VN — UN-1)UN + §ﬁh3 . > v+ O(R?)
Jj=1lodd
1
- %hz + R0 (1)w(1) + +%h2/ w(z)dz + O(h%)
0
When N is even
Bo (L coshQ/v2)-1Y,, O(h3) ~ 0.2450395425h
~ \8 ' 2v2sinh(1/v?2) - ’

and when N is odd

_ (1 cosh(1/v/2) + 1
E‘( +2\/§sinh(1/\/§)

) h% + O(h®) ~ 1.1663273527h2.
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No. Nodes | Numerical Energy | Asymptotic Energy
64 5.98215 E-5 5.98241 E-5
127 7.22980 E-5 7.23124 E-5
128 2.54123 E-4 2.54308 E-4

Fi1G. 5. Comparison of asymptotic and numerical energies.

The final example shown in figure 2 is for N = 128. The computed solution for
this problem broke into two distinct “packets”, each representative of the asymptotic
solution with N odd (M; = 63 and M, = 65). The energy can be estimated to O(h3)
by E = FEg3+ Fg5 ~ 2FEg4 provided we use the boundary conditions appropriate to an
odd number of grid points i.e. w(0) =0 and w(1/2) = -1, giving

1 COSh(l/\/g) +1 2 3 2
E=|1 h2 4 O(h?) ~ 4.166580118A2.
(s * asimn1/ve) ) TR

These calculations enable us to explicitly compare the asymptotic predictions with the
numerical results. In figure 4 we plot the computed solution with the leading order
term in our expansion subtracted out. Observation of the scale on the y—axis shows
that the difference is certainly a factor of h smaller. Figure 5 compares the predicted
energy with that calculated; again, there is remarkably close agreement.

These calculations show that, provided our algorithm continues to produce this class
of solutions, that the energy will converge to zero. Moreover, the sequence of solutions
will also generate the correct Young measure, (1/2)6_; 4 (1/2)841, since uy; = 1 +
O(h) and uy;,; = =1+ O(h). Note, however, that the correct oscillations are easily
accommodated on the mesh. Our next example, f(z) = 0.2z (o = 0.2), has a Young
measure of (2/5)6_1 + (3/5)é+1, and representation of the corresponding oscillations
would require at least 5 grid points. In this situation, the solutions given by our
algorithm do not have energies going to zero, and the oscillations do not have slopes
+1.

4.2.2. Non—-Homogeneous Problem. When a # 0 we have v = v 4 ()
where v(?) is given in (4) and v(") satisfies

1
05120 = v = @i - ) + D = —h228, vV =0, v = -8,

where a1/, = a + (—l)jb, a = 23% b= 6aB, B =V1-3a? Note that all of the
numerical examples had oscillation packets consisting of an odd number of nodes, so
we consider the corresponding right hand boundary condition.

The equation for v(1) resembles the discretization of a continuous problem having a
highly oscillatory coefficient. Homogenization theory [4] shows that the solution of
such problems can be approximated by the solution of a suitably averaged equation.
Discretization of these problems has been considered in [1]; however, for this particular
problem direct computations can be used to verify that if w is the solution of

1
a(w; — wj_l) —a(wj4r — w;) + hzwj = _h2§ﬁ, wo =0, wp =-p,

10



then w approximates v(1) when

1 1 ( 1 + 1 ) __a 1 1

a 2\a+bd a-b) a2-b2 2(1-12a2)
In particular ”’w—l/(l)“[oo < C/M, and if the fluxes are defined by V; /3 = aj+1/2(l/§i)l -
u}l))/h, and W /2 = @(w;41 — w;)/h, then ||W — V]|e < C/M. The problem for w
is clearly a second order discretization of

_&w”-*- w = —ﬁ/Q, w(O) =0, w(Mh) = _'ﬁ7

so that »(1) and hence v can be approximated to O(1/M) by the solution of the
continuous problem

_ _ﬁ_cosh(Mh/\/E) +1
2  sinh(Mh/Va)

w(z) = g (cosh(z/\/c:z) - 1) sinh(z/Va).

The energy for an oscillation packet of M nodes becomes

Ey = % (M = 1)F(a—B)+ (M + 1)F(a + B)]h - F'(a+ 8)8h +

1

Lo — 1)gh—aw'(Mh)+ = [ w| gh? + O(h2/M
2 |3 - DBk —aw'Mh) + 5 [ w| Bh? + O(r2/a1)

_ % (M = 1)F(a—8)+ (M + 1)F(a + 8)]h — F'(a + 8)8h +

11 _cosh(Mh/v/a) + 1
4 [5Mh+ Va sinh(Mh//a) }ﬂzhz +O(k/M)

For the energy function F given in (2) this reduces to

cosh(Mh/\/@) + 1
sinh(Mh/V/a)

If the solution consists of packets of M oscillations, there will be 1/Mh of them, so
that the energy becomes

En = a2(1—2a2)Mh—2aﬁ3h+i [%Mh+\/(:z ]ﬁ2h2+0(h2/M)

3 11 — cosh(Mh/\a) + 1
E=o(1-20%) - 206°/M + 4 [5 tVa Mhsinh(Mh//a)

] B%h% + O(h/M?).

In computed examples, the oscillation packets varied slightly in size, so in principle one
should add up the energies corresponding to each of the different M’s encountered.
Since counting oscillations is tedious for the finer meshes, we simply counted the
number of wave packets (which did not seem to grow without bound) and set M =
1/K h into the above, where K is the number of packets. Figure 6 compares the energy
computed this way with that of the computed solution.

Again, the asymptotic energies agree with the computed values sufficiently closely to
verify the validity of our expansion. Moreover, it is clear that as h — 0 and M — oo
that the energy converges to E — o%(1 — 2a%) # 0 (0.0368 when a = 0.2), and
uy; — o+ f (1.1381), up, ., — a — B (—0.7381), giving v = (1/2)6a4p+ (1/2)6a—p #
(3/5)841 + (2/5)6-1.
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No. Nodes | No. Packets | Numerical Energy | Asymptotic Energy
64 6 0.0111796 0.0099009
127 9 0.0162671 0.0157068
128 6 0.0225006 0.0223360
256 12 0.0224935 0.0223293
512 12 0.0293334 0.0293127

FiG. 6. Comparison of asymptotic and numerical energies.

5. Multi Dimensional Problems. While it is clear that the one dimensional
examples with their undesirable behavior can be extended to two or more dimensions,
this was not our original goal. The original intent was to find algorithms that would
find “better” local minima than traditional descent methods. In particular, we wanted
algorithms that would develop the fine scale oscillations that must be present in any
minimizing sequence. Given that this was accomplished in one dimension with a
very simple move, it is natural to ask if similar moves exist for problems in multiple
dimensions. In this section we show that such moves can be defined; however, examples
will show that they are not as successful at producing fine scale oscillations as in one
dimension.

For definiteness, we consider the scalar problem in two dimensions from [5].

Iw)= [ FVw+fw,  wewd'(@),
where
F(Vu) = [Vu - wi]|Vu - wal?, flu) = %uz.

w; and wo € R? are the wells where F vanishes.

Analogous with the one dimensional problem we discretize this problem by considering
piecewise linear functions constructed on a triangulation 7, of {2 to get

In(w) = Y |TIF(Vulr)+ 3 14i1f (),

TeT, JEN

where A}, is the set of nodes in the triangulation, and A; is the (complementary) area
associated with node j.

The idea of the one dimensional problem was to change a nodal value, u; — ;, so that
the principle part of the energy did not change. The low order term then determines
if the move was accepted. Note that if we consider the principle part of the energy
for the two dimensional problem as a function of u; only (with all other nodal values
fixed),

p(u;) = Y |T|F(Vulr),

TeT,

then p is a polynomial of degree four. We may then seek #; such that p(@;) = p(u;).
Since p(#;) — p(u;)/(%; — u;) is a polynomial of degree three, it will always have a real
root, implying the existence of #; typically distinct from u;.

12



The results using this algorithm are mixed in the sense that sometimes it produces
fine scale oscillation and sometimes it doesn’t make any difference. Indeed it may
even slow down the convergence of the descent method to a local minimum. In all
of the examples below, we used the simple stepping algorithm presented in Section 3
alternated with the move above. We considered = (0,1)%, and triangular meshes
were made by dividing a uniform square mesh along the diagonals with slope —1. The
initial guess was always taken to be u(z,y) = sin(7z)sin(ry). Computations were
made with wy = (-1,-1), wy = (1,1) and wy = (-1,1), wg = (1,-1). The former
will produce oscillations whose contours are along a diagonal of slope —1 so are easily
represented on the mesh, the latter has oscillations with contours having slope +1,
so the mesh will not interpolate such oscillations well. All of the pictorial results are
shown using a gray scale, with one well colored white and the other black, and the
gray scale indicating how close the gradient is to one of the wells. The principle part
of the energy will then be small in the purely white or black regions, and gray will
indicate higher energy.

Figures 7a, and 8a show the solution obtained using the descent algorithm alone.
Clearly the solutions sort themselves into the coarse oscillations with period O(h'/?)
observed in [5]. Aside from interpolation limitations imposed by the mesh, the solu-
tions are very similar. Figures 7b and 8b show the solutions obtained when the move
above was alternated with the descent iterations. Alignment of the mesh with the
contours of the oscillations results in mesh scale oscillations with a few imperfections
where different microstructures meet. Moreover, the composite algorithm converged
much faster to the local minimum. When the mesh is not aligned with the contours
of the oscillations, there was no change in the solution; moreover, alternating with
the extra move slowed the convergence. These mesh dependent problems are a seri-
ous limitation of this approach (see also [11]). We also note that changing the initial
guess to u = 0 results in the almost perfect microstructure shown in figure 9 when the
contours are aligned with the mesh.

One problem that could be anticipated with above move is depicted in figure 10.
Suppose that the mesh was exactly aligned with the microstructure; however, at a
particular stage the oscillations are too coarse, as in figure 7a. Then raising or lowering
one node can not result in a finer band of oscillations, since a situation similar to that
shown in figure 10a will result, where some of the elements will have gradients distant
from both wells. This problem is not so predominant with the Crouzeix-Raviart non—
conforming elements that have recently been proposed for this class of problems [9, 12].
Recall that these are piecewise linear triangular elements that are continuous only at
the mid sides of the elements. Figure 10b shows that adjusting one nodal value of
these elements may simply increase the scale of oscillation.

Figures 11 and 12 are the analogue of figure 7 and 8 with non-conforming elements.
The qualitative behavior for the descent algorithm alone is similar to that of the
conforming elements. However, when the contours are aligned with the mesh, the
composite algorithm gives almost perfect mesh scale oscillations, while it results in a
garbled solution when the contours are not aligned with the mesh. One other problem
with this element is that it is difficult to determine from the plots in what direction
the oscillations are supposed to be aligned.
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Figure 7. Conforming Elements.
Black = (1,1) well, White = (-1,-1) well.



(a) Descent Algorithm, Energy = 2.6436.

075 ¢

050

028

0.00

025 0.50 0.75 1.00

(b) Composite Algorithm, Energy = 2.6436.

Figure 8. Conforming Elements.
Black = (1,-1) well, White = (-1,1) well.



P RS s, S L ey ol e

16 x 16 Mesh With Move, Initial Guess = 0, Energy = 0.66667

Figure 9. Conforming Elements with Zero Initial Guess.
Black = (1,1) well, White = (-1,-1) well.



(a) Conforming Mesh.

(b) Non-Conforming Mesh.

Figure 10. Adjusting Nodal Values of Different Basis Functions.
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