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1. INTRODUCTION

The so-called Lavrentiev phenomenon is related to the question of whether the
infimum of a functional on the class of absolutely continuous functions is strictly
lower than the infimum of the same functional on a dense subspace of this
class. This phenomenon was first introduced by M. A. Lavrentiev [16] in 1926.
B. Mania [18, 1934] later produced a simpler example than Lavrentiev's.

Since that time there has been additional work on various aspects of this
phenomenon. Ball & Mizel [4,5, 1984-5] (see also Davie [10, 1988]) came up
with the first fully regular integrands in one dimension for which the Lavrentiev
phenomenon occurs. Loewen [17, 1987] reexamined Mania's example and ex-
tended Angell's [2, 1979] results (see also Cesari [7, 1983]). His work has given
conditions which are sufficient to preclude the Lavrentiev phenomenon. Clarke
& Vinter [9, 1985] (see also Ambrosio, Ascenzi & Buttazzo [1, 1989]) show, in
particular, that even for Rn-valued u the Lavrentiev phenomenon cannot occur
when the variational integrand / = / (x , it, f) is coercive and independent of x.
Heinricher & Mizel [11,12,21, 1986-7] provided examples of stochastic control
problems which exhibit the Lavrentiev phenomenon. They also [13,14, 1988]
discuss the deterministic Lavrentiev phenomenon in one dimension, showing
that integrands endowed with a certain homogeneity property are in a sense
the borderline between integrands exhibiting the Lavrentiev phenomenon and
those for which this phenomenon is absent. Ball & Knowles [3,15, 1987] (see
also [20,24, 1990,1992]) have succeeded in the development of numerical approx-
imation schemes which detect the low-energy singular minimizers. It appears



[22,23,8, 1989-1993] that for elastic materials the occurrence of the Lavrentiev
phenomenon may signal the beginning of a fracture in the material. Recently,
Buttazzo & Mizel [6, 1992] interpret the phenomenon as a relaxation effect.

The present article clarifies the result presented in [9] (see also [1,6]) ensuring
the non-existence of a Lavrentiev gap in the case of autonomous first order
integrands on Revalued u. We present theorems and related examples showing
that for certain autonomous second order integrands a Lavrentiev gap will occur
for a dense subclass W2'Po(0,l) of the function space W2fl(0,l) if we focus
on nonnegative functions (u > 0). On the other hand, it typically fails to
take place for smooth integrands over the full function space (i.e., if we allow
functions possessing mixed sign). For more results on first order and second
order integrands exhibiting the Lavrentiev phenomenon we refer to [8], where
conditions for the occurrence of the Lavrentiev phenomenon for general types
of both first order integrands and second order integrands have been presented;
in addition the results developed there have been applied to certain models in
nonlinear elasticity.

We consider the problem of minimizing a functional of the calculus of vari-
ations of the form

W= f f f{u{x),u\x),u'\x))dx.
Jo

For given /?, f5' > 0, / : R3 -+ R+, where / = /(«, £, 0) is assumed to satisfy the
normalization condition

we discuss the occurrence of a Lavrentiev gap between the following two prob-
lems: (1 < p < oo)

(Px) Inf I(u); (Pp) Inf J(u),

where for a prescribed subset 5 of W2>1(0,1)

d^ u(0) = 0,ti'(0) = 0;u(l) = /3,u'(l)

Thus the question is whether mi < mp, where mq := infU£A,{S) I(U)- We
denote this gap phenomenon by LP(l,p). Hereafter minimizers of (V\) will be
referred to as absolute minimizers, minimizers of (Vp) will be referred to as
pseudominimizers. Of course, mi < mp.

As a simple example of the above second order problem in which the Lavren-
tiev phenomenon arises, consider first the integrand / defined by



with u(0) = 0, «'(0) = 0, «(1) = P > 0, and tt'(l) = ff > 0. We have,
by Jensen's inequality and the chain rule for absolutely continuous functions
(cf. e.g., [19]),

£ [„'(«)]• [«"(x)]8 dx = J* (|«'(s)|3/V(*))8 dx

4
In particular it follows that I(u) > (4/7)* p'14 > 0.

Next consider the curve

and introduce a weight function b = b(u,£) into the variational integrand /
which vanishes along To and is positive everywhere else. Denoting the modified
integrand by / , we have

If we take the drastic case

{ 0 if (u ,0€T 0 ;

1 if( i»,O€{(tt ,e) |«,f > 0 } \ r 0 ;

oo otherwise,

it is not hard to see that LP(1,2) occurs for this modified integrand / if we
take S to be W2*1^, 1). Indeed if the boundary data /?, /?' satisfy p = (2/3)3/2,
P' = (2/3)1/2 then there is a trajectory u* = u*(x) in A\(S) which attains zero
cost. We define u* by _ _

u*'(x) = y/2x~/3.

This trajectory u* is an element of W2iP(0,1) for 1 < p < 2. However if we
restrict attention to the smaller class A2{S) then the absolute minimizer u* is no
longer admissible. It then follows from the previous estimate (1.1) that we have
the Lavrentiev phenomenon LP(1,2) even if we consider W2t2(0,1) trajectories
which coincide with u* for all x € [y, 1] for some y > 0. The result also holds for
other /?, pf values, as will follow from Theorem 3.2 in Section 3. The definition
of the function 6 is crucial to the occurrence of the above gap phenomenon, since
for example if we take 6 given by (cf. [13,6])

otherwise,



it will follow from Theorem 3.3 in Section 3 that the above gap phenomenon
disappears. In the analogous first order problem where / = /(t*,£), ti(0) = 0,
u(l) = P > 0, and (N) / (u,0) = 0, it is easily seen that a minimizer u* of
I is necessarily monotone, so that in particular u* > 0 on [0,1]. What we
have seen here is that the gap phenomenon LP(1,2) for the above second order
problem will hold if we take S = {u e W2>l(0,1) | u > 0 } (Actually, it follows
from the proof of Theorem 3.2 that the gap persists for all P and p' satisfying
0 < PfZ < P < P1 - /? /3/2). The degenerate integrand / described above is not
interesting in itself but it does provide insight into the mechanism behind the
Lavrentiev phenomenon for autonomous second order integrands. If we take for
instance / to be the polynomial integrand

/(«,*,*) =(«-€') V,
corresponding to b(u,£) = (u£~z — I)2 , then it will follow from the main theo-
rems of this article that the gap phenomenon LP(1,2) is again present among
nonnegative functions 5 = { « | u > 0 } , but the gap phenomenon disappears
when we take S = W2)1(0,1). For the first class of problems which we discuss
in this paper the integrand has the form /(t*,£,0) = a(u,£)|0| and retains the
following key properties of the initial example:

• There are zero-cost curves on the first quadrant of the (ti, £) plane, curves
which correspond to functions in W2)P(0,1) only for 1 < p < po- The ab-
solute minimizers follow these zero-cost curves and they are not admissible
when the trajectories are restricted to W2fPo(0,1).

• The function a = a(u, f) has the following homogeneity property:

a(uA^,CA7-1)=A°a(u,0 VA > 0,

for some 7 6 (1,2) and a > 0.

This article is organized as follows. In Section 2 two main propositions are
presented to demonstrate that there is a certain region in the first quadrant
of the (u,£) plane over which every trajectory in the dense subclass APo(S)
for«S = { u | t t > 0 } must cross, while such crossing can be avoided for the
trajectories corresponding to the nonnegative absolute minimizers in the full
space A\ (S). Section 3 is devoted to the analysis of the problem for certain types
of autonomous second order integrands, by verifying that there is a minimal
penalty for the above crossing by every nonnegative trajectory, but that this
penalty can be avoided by some functions of mixed sign. In Section 4 we discuss
perturbations of the original problem. By considering additive perturbations,
we can easily obtain a class of fully regular problems exhibiting the Lavrentiev
gap. In the last section some examples are given which follow from our results.



2. MAIN PROPOSITIONS

Proposition 2.1. Let 7 € (1,2) and p0 = 1/(2 - 7)- Suppose tiat u = u(x) €
W2'P°{0,l) satisfies tie conditions t»(x0) = 0 and u'(x0) = 0. Define Y0(x) =
u(x)|x - xo|"7 and Yi(x) = u'(x)|x - xol1"7- Tien

and yi(x) = o(l) asxix0.

PROOF. Let q0 € (l,oo) satisfy l/p0 + l/?o = 1. For i = 0 or 1 we have, withq0

K0(t) = / j o «"(«) ds and Kx(t) = «"(*),

|X — X Q |
- 7

(1-0!
(by Fubini's theorem if t = 0)

as x= o(l)

The next to last inequality holds because of Holder's inequality. •
Proposition 2.2. Let 7 G (1,2) andpo = 1/(2 — 7). Suppose that u = tt(x) 6
W2'P0(0, l ) n { « | u > 0 } satisfies the boundary conditions ti(0) = 0, u'(0) = 0,
and tt(l) = /? > 0. Define

xo = max{ x € [0,1) | u(x) = «'(x) = 0 },

Y(x) = w(x)|x-xo|"7, andQ(x) = ti/(x)|x-x0|
1""7. LetC, c3 be two arbitrary

constants satisfying 0 < C3 < C7 < /J7. Tien for every constant c\ and c^
satisfying 0 < c\ < c^ < caC^1"7^7, tnere exist x0 < x\ = xi(cx) < X2 =
^2(̂ 2) < 1 such that the following condition holds.

• 0 < Y(x) < C, 0 < Q(x) < c3, ci < ti/(x)[n(x)](1"7)/7 < c2 for all
x e [x1,x2], tt'(xx) = d [u(xa)](7"1)/7, and u'(x2) = c2 [tt(x2)](7"1)/7.

PROOF. Define G4(x) = F(x) - C Since by Proposition 2.1 Y(x) is o(l) as
^ i xo, G4(x0) < 0. On the other hand, we have G4(l) > (i - C > 0. By the
Intermediate Value Theorem applied to the continuous function G4(x), there
exists x € (xo, 1) such that G4(x) = 0. Define

x4 = min{x € Y(x) = C).

Thus we have 0 < Y(x) < C for all x € [xo,x4] and Y(x4) = C. It is now easy
by differentiation of u(x)|x — xo|~7 at x4 to see that this implies Q(x4) > C7.



Next, define G3(x) = Q(x) - c3. Since by Proposition 2.1 Q(x) is o(l) as
x i x0, we have G3(x0) < 0. On the other hand, we have G3(x4) = Q(x4) -C>
C7 - c3 > 0. By the Intermediate Value Theorem applied to the continuous
function G3(x), there exists x € (xo ,x4) such that G3(x) = 0. By letting

x3 = min{ x € (xo ,x4) | Q(x) = c3 } ,

we obtain 0 < Y(x) < C, Q(x) < c3 for all x € [xo ,x3], and Q(x3) = c3.

Finally, we define Gi(x) = Q(x) - cx [F(x)] ( 7 " 1 ) / 7 and G2(x) = Q(x) -

c2[F(x)] (7""1) /7. If there exists i € (xo ,x3) such that Q(t) < 0 then Gi{i) < 0
by the definition of xo, otherwise we have w(x),ti'(x) > 0 for x € (xo,x3). In
this latter case, we shall show that liminft_0 Q(t) [F (0 ] ( 1 " 7 ) / 7 = 0. Otherwise,
for some k > 0 there exists at*G (xo ,x3) such that ti;(x)[u(x)] 1 ~ 7 > k for
all x € (xo,t*]. This implies that, for x € (x0,**],

But this in turn implies (by the chain rule)

which is a contradiction to Proposition 2.1 that u(x) = o(l)|x — xo|7 as x [ XQ.
On the other hand, we have Gi(x3) > c3 - c i ^ 7 " 1 ^ 7 > 0. By the Inter-

mediate Value Theorem applied to the continuous function Gi(x), there exists
x* € (xo,x3) such that Gi(x*) = 0. Let

xj = m a x { x . € (xo ,x3) | Q(x.) = Cl [y(x . ) ] (

Similarly, we can define

x2 = min{x* € (x, ,x 3) | Q(x*) = c2 [F(x')] (

Therefore the proof of this proposition is complete. •

Remark. Proposition 2.2 is the key to the proof of the Lavrentiev phenomenon
for second order integrands: any positive APo trajectory must pay a penalty
bounded away from 0 for crossing the zone c\ < u/(x)u(xYl'"t^'r < c2, while
absolute minimizers can avoid this zone and hence avoid the penalty.

3. AUTONOMOUS INTEGRANDS



Lemma 3.1. Let a : R2 —* R+ U {00} be a function continuous at (0,0) which
satisfies the following homogeneity property,

a^A7 ,^"1) = A°a(u,0 VA > 0,

for some 7 > 1 and a > 0 € R. If there exists (u,£) ^ (0,0) such that
a(ft,£) < 00 then a(0,0) = 0. Moreover, if there exist u* ̂  0, £* ̂  0 such that
a(u*,£*) = 0 then forallu^O with sign(u) = sign(ti*), we have

where u = sign(C)\Z*\\u*\(l-f)h.

PROOF. The proof is left to the reader. D

Theorem 3.2. Let 5 = { u | u > 0 } and consider the integrand /(«,£,#) =
a(tt,f)|0|fc > 0 with k > 1. Assume that the function a is continuous and
satisfies the following homogeneity property,

7 ,f A7"1) = Aaa(n,0 VA > 0,

for some 7 € (1,2) and a > 0. Define the "free zone" F by

Assume that F ̂  0 is bounded and nowhere dense. Let (3^KX = max{ /?* | /?*
F}. Suppose that the boundary data j3 and /?' satisfy

Then
a - k(2 - 7) < - 1 => LP(l,p0) occurs,

where po = 1/(2-7) .

PROOF. We begin appraising / over APo(S), so let u = u(:r) € ^4Po(*S) be given
and suppose that a - k(2 - 7) < —1. By the homogeneity of a and setting
A = |f l1^1""7), we can express the function / as

Next, choose positive constants C, ci, C2 and cz satisfying 0 < c$ < C7 < ̂ 7,
0 < c\ < C2 < czC^1"^^7 such that the interval (01,02) contains no element
of the set F. By Proposition 2.2, for the above choice of constants there exists

C (0,1) such that

= c2



and

(l0 < u(x) < C, ci < u'(x)[u(x)](l y)h < c2 for all x € [xux2].

Hence from the fact that a is continuous, we conclude that for x € [xi, x2] there
exists a positive constant 6\ = #i(ci,C2) > 0 such that

Now, since u(x),ii'(x) > 0 for all x € [xi,x2], we have, setting r\ = a/(j — 1),

du'(x)
du

du

- * J C
duf(x)

U J

« I

du

d r ,

du

(111
[«'(*)] (fll.

Let // = (TJ -h 2fc - 1)(7 - l)/(k"f) > 0 and v = (i; + 2fc - l)/fc > 0. By Jensen's
inequality and use of the chain rule, we have

du

- W(i)]

tt2

Let

Then we have

A= l - ( - ) ( —

. (3.2)

The last inequality above holds because /i,i/ > 0, 1 -f fc(// — 1) < 0, and for
x € [xi,x2] we have ii(x),ii'(x) > 0 with u(x) < C, so 0 < u\ < u2 < C. Thus
we have proved that mPo > S > 0.

8



Next we appraise I over A\(S). Since /? and p satisfy (3.1), there exists
x*€ [0,1) such that

P 7 - 1 / P V (33)

We define a function u* = u*(x) by

O if 0 < * < * * ;

It is not hard to verify that u* € A\(S) is an absolute minimizer which attains
mi = 0, since on the subinterval where u*' = P'^u*" = 0, so the second factor
in / is zero, while on the subinterval where u*' = *yPm*x(x "~ x*)7"1? t n e first
factor in / is

= 0,

because /?max € F> and on the subinterval where u*' = 0, by Lemma 3.1 the first
factor in / is a(0,0) = 0. Thus we have mPo > 6 > mi = 0. Therefore LP(l,p0)
occurs. D

The positivity assumption 5 = {u \ u > 0 } on the admissible functions is
crucial in ensuring the occurrence of the Lavrentiev phenomenon for autonomous
second order integrands. The next theorem shows that under the assumptions
of the previous theorem the gap phenomenon will disappear if instead we take
S to be W2}1(0,1), so that we allow functions with mixed sign.

Theorem 3.3. Under the assumptions of Theorem 3.2, t ie Lavrentiev phe-
nomenon LP(1,po) disappears if we take S to be Wr2>1(0,1).

PROOF. Let the boundary data /? and /?' satisfy equation (3.1) and define x*
by equation (3.3). We separate the proof into two cases x* > 0 or x* = 0.
Cose 1: x* > 0 (i.e., 0 < p[l - 2=i(_g-.)V<7-i>])

In this case, we define an absolute minimizer by equation (3.4) and let e > 0
be given. We shall construct a function ue = ue(x) € W2|OO(0,1) satisfying
ue(0) = 0, u'e(0) = 0, ue(l) = /?, and u'e(l) = p' via a bifurcation of the
absolute minimizer u* at the point x* in such a way that ue can avoid the zone
c\ < tt;(x)[«(x)] /y < c2 as defined in Proposition 2.2 and hence avoid the
penalty 6 as defined by (3.2), i.e., I(ue) < e. Let p > 0 be sufficiently small (its
actual value will be determined later). On the part of the trajectory u* where
u*'{x) = 7)8max(:c "" x*)7"1 in the (x,u;) plane, we choose a point (t4,p) such



that C < **/4 where C := U - ** > 0. Of course we have C i 0 as p I 0. Now,
we choose three points 0 < h < t2 < h < x* such that t\ = C, t3 = x*/2 + <,
and t2 - *i = *3 - h = x*/4. Notice that we have tA - *3 = t3 - h = *V2-
Next, we define a function uc = ue(x) by

ue\x) =

u*'(x) if t4 < x < 1;

2p(x-tz)/x* ifh<x<t4;

4r(x - *3)/x* if f2 < x < tz; (3.5)

-4r(x - ti)/x* if ti < x < t2;

0 i f O < x < * i ,

where 0 < r < p is chosen such that uc(t4) = tt*(t4) and so ue(l) = ^, namely
(/?-r)x*/4 = / j ! ti*'(x) da:. It is easily seen that \ue"(x)\ < 4p/x\ \u€'(x)\ < p,
and |wc(^)| < px*/2 if x G [0,^]. Since the function a is continuous and
a(0,0) = 0, for an appropriate choice of p we have a(uff(x),u£r

/(x)) < 1 for
x€ (0,t4]. Therefore

(«.) = r a(n.(*)f u/(x)) |«/(x)|*
Jo

< fU\ut"(x)\k

Jo

)) | / ( ) | dx

dx

if p < el/kx*/4. Hence the gap phenomenon LP(l,po) does not occur.
Case 2:x' = 0 (i.e., /? = /J'[l - a=l(^_)i / ( ir- i)])

In this case, the construction of the bifurcation function uc as in the above
case for the function u* is no longer available since x* = 0. But nevertheless
we will still apply this technique to another function u = u(x) € AP(S) for
1 < p < Po which has the properties that I(u) < € and there is an 0 < x < 1,
corresponding to the role of x* for the function u*, such that u{x) = u'(x) = 0
for x € [0, x]. We shall have our analysis done on the first quadrant of the (u, £)
plane. By Lemma 3.1 and normalization condition (iV), we have a curve To of
zero cost (i.e., / = Oon this curve) on the first quadrant of the (u,£) plane,
namely

To =

By our assumption x* = 0, it is not hard to see that the free curve To steers
from (/?,/?') at x = 1 to (0,0) at x = 0 when we take u = u(x) and £ = u;(x).
Notice that since To is concave d£/du is decreasing and for £ < /?' each tangent
line to the curve To lies above IV Let P = P(pi,p2) be a point on that part
of To which is not flat and let Q = Q(q\, q2) be the point of intersection of the

10



tangent line T at point P with the horizontal line H : £ = /?'. Next, we define
a curve 0 in the (ti, £) plane by

l H for q\ < u <

r0 for 0 < «

Since dx = du/u', it is easily seen that the curve 9 will steer (u,£) from (/?,/?')
at x = 1 to (0,0) at some x > 0 when we take u = u(x) and £ = u'(x). Now
define a function u = u(x) by

-// - / £ / ( x ) if « < a: < 1;
\ 0 if 0 < x < x.

Now it is not hard to see that for an appropriate choice of P close enough to
the horizontal line H in the (u,£) plane the function u satisfies u € AP(S) for
1 < P < Po and I(u) < e. Hence the corresponding bifurcation function u€

as defined by (3.5) for the function u will give that I(ue) < 2s. Therefore the
gap phenomenon LP(l,j?o) does not occur. D

4. PERTURBATIONS OF THE INTEGRAND

In this section we provide an analysis for additive perturbations of autonomous
second order integrands. In particular, it can be easily seen that the Lavrentiev
phenomenon can occur even in cases where the modified integrand / satisfies
the strict form of Tonelli's regularity and growth conditions:

fee{u,Z,e)>0 and f{u,Z,0)><p{9), where lim inf ^ = oo. (4.1)

Corollary 4.1. Let S = {u \ u > 0 } and suppose that f = f(u,^6) is a
function satisfying the hypotheses of Theorem 3.2. Let u* = u*(x) denote an
absolute minimizer as defined in the proof of Theorem 3.2 and consider

wiere € > 0 and e = e(uy£,0) is a nonnegative function satisfying e$e > 0,
e(u,£,0) > (p($) (with <p as in (4.1)) such that e(u*,u*\u*") is integrable on
x € (0,1). Then for sufficiently small e, the variational problem of minimizing

/(«)= f f(u(x),u'(x),u"(x))dx
Jo

exhibits LP(l,po)«

PROOF. Apply Theorem 3.2 directly by choosing an appropriate e > 0.

11



5. EXAMPLES

Example 5.1. Consider the integrand / ,

with u(0) = 0, «'(0) = 0, tt(l) = Q > 0, and tt'(l) = P' > 0. This integrand /
satisfies Theorem 3.2 with o ( « , 0 = (u - £3)2 , 7 = 3/2, a = 3, F = {(2/3)3 /2},
Pm*x = (2/3)3'2 , and p0 = 2. Let /?/S < / ? < / ? ' - /?'3/2 and fc > 8. Hence
LP(1,2) occurs among nonneyafive functions, but fails when S = W2 i l(0,1).

Example 5.2. Consider the integrand / ,

with u(0) = 0, u'(0) = 0, u(l) = p > 0, and u'(l) = ^' > 0. By Corollary 4.1,
this problem can be treated as an additive perturbation for the function /
defined by

f(u,w) = (\u\*/9-sf\e\k,
with the perturbation e(u,£,$) = |0|2. The function / satisfies Theorem 3.2
with 7 = 9/5, a = 72/5, F = {(5/9)9 /5}, and p0 = 5. The function e(ti*,£ V )
~ x""2/s is indeed integrable on x € (0,1). Hence for sufficiently small e > 0, if
P'*/4 <P<P'~ (4/? /9/4/5) then LP(1,5) occurs among nonnegative functions
if k > 77.
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