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1. Introduction

A principal goal of continuum mechanics is to describe how a continuous body will deform
under prescribed applied forces. An essential initial step towards this goal is that of choosing a
class of deformations for the continuum. For the description of many continua, some generally
accepted requirements on the chosen class of deformations have emerged: deformations should
be invertible, differentiable mappings with differentiable inverses, and compositions of two
deformations in the class should again be in the class. However, such classical deformations are
not adequate for the description of all continua, and in many cases alternative choices must be
made. One type of choice involves the introduction of supplementary kinematical variables
such as the director fields of a polar continuum. Another choice involves the introduction of
supplementary fields that, although related to deformation, have the status of internal
variables. For example, in theories of plasticity, the plastic deformation tensor is governed by
an evolution law included in the constitutive equations of the continuum.

Our goal in this paper is to provide a methodology for both the construction of classes of
deformations appropriate for continua with supplementary kinematical variables and for the
- construction of classes of deformations appropriate for continua with internal variables. Our
initial goal was narrower: we attempted to describe deformations appropriate for continua with
fractures by removing the requirement of continuity made on classical deformations. Thus, we
started from a class of deformations that can exhibit jumps of limited magnitude over surfaces
with prescribed regularity. The main difficulty we encountered was in the choice of a class of
regions to serve as the domains of deformations, i.e., a class of regions in space that the
continuum with fractures can occupy. In order to allow the continuum to have unopened
cracks, we had to generalize the notion of a fit region, introduced by NOLL & VIRGA [17], to
that of a piecewise fit region. This concept permitted us to define a class of deformations,
called simple deformations, rich enough to describe the formation and opening of cracks of a

fairly general nature and to describe the smooth deformations, also called transplacements, of

regions away from the crack sites.



In order to extend the scope of our description of fractufe, we found it natural to consider
limits of sequences of simple deformations. Among a variety of possible notions of limits, we
chose one in which the crack site for the limit deformation is the limit inferior of the sequence
of crack sites. This embodies the idea that a point of the continuum is in the crack site for the
limit if, from some term on, it belongs to the crack site of every term in the sequence of simple
deformations. In addition, our choice of limit requires that the sequence of transplacements for
the simple deformations converge in the sense of L® to a mapping called the transplacement
for the limit, and that the sequence of gradients of transplacements converge in L®. Our
choice of this particular notion of limit was dictated mainly for reasons of simplicity, and
different choices are necessary for the inclusion of some types of deformations not covered by
our choice.

The limits of sequences of simple deformations defined in this manner form a class of
deformations that we denote by LimSid. A surprising feature of LimSid that emerges from our
analysis is that the fractures associated with the terms of a sequence of simple deformations can
diffuse throughout the continuum and yet the crack site of the limit can be the empty set.
Moreover, the manner in which the fractures diffuse leads to limit deformations that may or
may not be free from the effects of fractures. Mathematically, the difference between the
presence and absence of the effects of fractures in the limit is reflected by the difference
between G, the L°—limit of the sequence n ~— vf of the gradients, and vg, the gradient
of the L — limit of the sequence of transplacements n +—— fn‘ Indeed, this difference reveals
a difference between the deformation due to smooth changes away from crack sites, measured
by G, and the local deformation at the macroscopic level, measured by vg. This observation
has led us far beyond our initial goal: not only does the class LimSid describe complicated
processes of fracture at the macroscopic level, but also it permits us to identify processes of
microfracture that describe a continuum with structure.

The limit procedure leading to the class LimSid turns out to yield some limits that
correspond to the shrinking of portions of a body to single points and to other types of



deformation that have no ready interpretation in most of the applications that we consider in
this paper. Moreover, that procedure does not yield a natural way of composing limits of
simple deformations. For these reasons, we identify another class Std whose elements we call
structured deformations. Structured deformations are defined, without reference to a limit
process, as triples (x,g,G) in which & is the crack site and g the transplacement associated
with a simple deformation, and in which G is a tensor field having regularity properties
similar to those of vg. We define a notion of composition of structured deformations for which
the composition of two structured deformations is again a structured deformation. The main
mathematical result of this paper, the Approximation Theorem (Theorem 5.8), shows that
every structured deformation is a limit of simple deformations, i.e., Std is a subset of LimSid.
Along with this result, we have the following relations between classes of deformations
introduced in this paper:

LimSid

U

Std
C N
Inv Std Sid
N2
InvSid

U

Cld

where Cld denotes our choice for the set of classical deformations, Sid is the set of simple
deformations, and InvSid and InvStd are the sets of those elements of Sid and Std, respectively,
that have an inverse in a sense that we make precise.

After a study of the mathematical properties of Std, we describe classes of deformations

appropriate to specific types of continua. In this description, we do not treat concepts, such as



motions, that are linked to time; nor do we discuss the notion of stress and constitutive
relations. There is a useful organization of the classes of deformations considered here that is
based on decompositions of structured deformations established at various points in the paper

and summarized here in the relation:

(1.1) (x,8,G) = (9,8.v8) o (8,i,U) o (8,i, 1/3 I) o (,i,1).

This decomposition involves (in the order from right to left) a fracture without any
displacement, a purely microscopic deformation that creates voids without distortion, a purely
microscopic deformation that distorts without creating voids, and a simple deformation without
fracture. The first three factors, taken individually and then combined with a simplé
deformation without fracture, define deformations appropriate to continua with macrofracture,
continua with voids, and continua with purely microscopic distortions, respectively. The last
class includes the Cosserat continua.

In the last section we describe the application of structured deformations to some specific
continua. We use measures of local deformation due to microfracture and local deformation
without fracture to give precise kinematical meaning to the concepts of elastic and plastic
deformation in plasticity, to the notions of director field and degree of orientation in liquid
crystals, and to the continuous distributions of defects and lattice bases in theories of defective
crystals. In addition, we attempt to describe deformations of mixtures within a collection of
limits of simple deformations somewhat larger than the collection of structured deformations.

We conclude this introduction with some remarks on notation. We denote by & a
Euclidean point space whose dimension in different circumstances will vary from one to three.
The associated inner product space is denoted by ¥, and Lin 7 denotes the set of all linear

mappings of ¥ into itself. Both » and Lin » are made into normed spaces with the norms

(1.2) laly = (e e)lf?,



.where the subscripts ¥, Lin ¥ will be omitted for simplicity. If the dimension of & is one,
then &, % and Lin ¥ will be all identified with the real liﬁe R. The empty set will be
~denoted by @. If £ is a subset of &, then by int, clo, bdy we denote the interior, the closure
and the boundary of ¢, respectively, and by vol £ the volume (the Lebesgue measure) of
6. 2(x,6) denotes the open ball centered at x with radius 6. The identity mappingsin &
and Lin 7 are denoted by i and I, respectively, i A denotes the restriction of i to £,
and I g+~ — Lin¥ denotes the mapping I J‘(x) =1, x € . With some abuse of
notation, we use the symbol I in place of I P

For mappings f,: f — & and f,:f; () — &, we define
(1.3) (£, o f)) (x) = L,(f;(x)), forall x € £,
and, if f1 is injective, we define

(1.4) 1) = x,  forall x € 4.

To within evident changes in domains and codomains of mappings, f2 of; is the composition

of f2 and fl, and fil is the inverse of fl‘



2. Classical deformations

Classically, a deformation of a continuous body is a mapping whose domain is the region in
space initially occupied by the body. To each point in this region, the mapping assigns the
point occupied after the deformation has occurred. An example of a collection of deformations
is the class of all restrictions to open sets of C™ — diffeomorphisms between Euclidean
spaces [13]. However, as discussed in more detail in the article [14], the choice of open sets as
domains for deformations has some disadvantages. Indeed, not all open sets enjoy properties
which render their boundaries surface-like, namely, the property of having an exterior normal
defined at almost every point of the boundary and the property of satisfying even a generalized
version of the Gauss—Green formula. Nevertheless, imposing specific regularity requirements
on the boundary leads, in general, to the loss of some fundamental algebraic properties. For
instance, the set of all open sets with piecewise continuously differentiable boundaries is not
closed under finite intersection [17).

A collection of open sets having surface—like boundaries and yet enjoying nice algebraic
properties has been identified by NOLL & VIRGA [17]. According to their definition, a subset
6 of the Euclidean space & is a fit region if (i) € is bounded, (ii) ¢ is regularly open,
i.e., Jfcoincides with the interior of its closure, (iii) £ has finite perimeter, and (iv) the
boundary of £ has zero volume. Among the properties of fit regions, several are relevant
here: (F1) the intersection of finitely many fit regions is a fit region;

(F2) cl- diffeomorphisms of & map fit regions into fit regions;

(F3) for almost every line L parallel to a given direction, to within a set of
one—dimensional measure zero, the intersection L N £ consists of finitely many
pairwise disjoint closed intervals.

(F1) and (F2) are proved in the article [17], and (F3) expresses a known property of sets of
finite perimeter (see e.g. [19], Sect. 4.2.2). It is worth noting that fit regions are not necessarily
connected. Indeed, when & is one—dimensional, every fit region is a finite union of bounded

open intervals whose closures are pairwise disjoint. When dim & is greater than one, examples



provided in the paper [17] show that there are fit regions having infinitely many connected
components.
As a starting point for our study we introduce a class of deformations which we call

classical and which are appropriate for many branches of continuum mechanics.

2.1 Definition: Let £ be a fit region of &. A classical deformation from £ is a mapping f
from £ into & satisfying:

(Cld 1) f can be extended to a cl- diffeomorphism of &;

(Cld 2) { is orientation preserving, i.e.,

(2.1) det vi(x) > 0 forall x € 4.

The set of all classical deformation from .6 will be denoted by Cld(.£), and Cld will denote
the set

Cld := {f € Cld(#) | £ is a fit region in &}.
This set has the following properties:

(D1) each fe Cld is injective;
(D2) if f, € Cld(«f) andf, € Cld(f;(f)), then f,0f, € Cld(£);
(D3) if f € Cld(.£), then £ belongs to Cld(f(.£)).

Indeed, (D1) follows from (Cld 1), and (D2) and (D3) are consequences of the following facts:
(i) by the property (F,) of the class of fit regions, the image of a fit region under a

cl- diffeomorphism of & is a fit region, (ii) the composition of two cl- diffeomorphisms of
& and the inverse of a C! — diffeomorphism of & are cl- diffeomorphisms of & We remark

explicitly that (i) implies that the image of a fit region under a classical deformation is a fit

region.



The fact that each f € Cld is the restriction to a bounded set of a
cl- diffeomorphism of & and the condition (2.1) imply that the determinant of vf is
bounded below by a positive number m. By (D3), the determinant of vf ! is bounded below
by a positive number ML, Because the determinant of vf~ 1(f(x)) is the reciprocal of the

determinant of vf(x), we are led to the following statement.

2.2 Proposition: Let £ be a fit region of & Forevery f € Cld(.£) it is possible to find
two positive numbefs m, M such that

(2.2) m < detvi(x) < M forallx € 6.

The set Cld(.£#) can be made into a metric space using, for example, the metric

23) )= [ 150-5@ P+ | ] e@ -t 1 ax] !/
g g

associated with the norm of the Sobolev space HI(V ). The resulting metric space is not

complete. For example, if & is one—dimensional and £ = (—1,1), the function f defined by

2x for 0<x<1,
(2.4) f(x) :=

x for-1<x¢<0,

does not belong to Cld(.£), because it is not continuously differentiable, but it can be
obtained as the limit in Hl( %) of a Cauchy sequence in Cld(.£). This circumstance is very
useful when one is interested in defining "generalized deformations" to be used, for example, as
weak solutions for boundary value problems. However, not all limit elements of Cauchy

sequences are of interest. For example, the sequence n — f11 defined by

f(x)=x/n, -1<x<1,



10

is a Cauchy sequence whose limit is a constant function. Constant functions do not represent
desirable deformations, because they map .6 into a single point. This suggests that a
desirable set of generalized deformations should be a proper subset of some completion of
Cld(.£); we shall develop this idea in Sections 4 and 5 in the more general context of

deformations allowing for fractures in the body.
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3. Simple deformations

The main concept that we introduce in this section, that of a simple deformation, describes
the geometrical changes associated with the formation and growth of cracks in a continuous
body. Namely, we wish to describe the formation of cracks in an initially uncracked body, as
well as the growth and the opening of the existing cracks in an initially cracked body. Fit
regions are not adequate for this purpose. Indeed, property (ii) of fit regions (a fit region is
regularly open) excludes regions representing a body containing unopened cracks. Moreover,
functions that extend to C — diffeomorphisms of & are not adequate for describing the
discontinuities in displacement associated with the opening of a crack. For these reasons, we
relax the regularity requirements on deformations made in the preceding section. The following
definition provides a generalization of the notion of a fit region that includes the possibility of

unopened cracks.

3.1 Definition: A subset £ of & is a piecewise fit region if it is a finite union of fit regions.

For example, the open set

(3.1) A= ((FL1) x ((LI)\{(x0) € B | —F¢x<5)

is not a fit region in R% because it is not regularly open. Indeed,

int clo £ = (-1,1) = (-1,1) # €. However, . is the union of the two fit regions

IA

(3:2) £y =A\{(xy) e R |-5 ¢ x < g -1 <y <o),
(3:3) Ay =A\{(xy) € R |-§<x <5 0¢y <),

and, therefore, is piecewise fit. Properties (F1) — (F3) of fit regions have the following

counterparts for piecewise fit regions:
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(PF1) intersections and unions of finitely many piecewise fit regions are piecewise fit;

(PF2) cl- diffeomorphisms of & map piecewise fit regions into piecewise fit regions;

(PF3) for almost every line L parallel to a given direction, to within a set of one
—dimensional measure zero, the intersection L n £ consists of finitely many

pairwise disjoint closed intervals.

Properties (PF1) and (PF2) are direct consequences of Definition 3.1, and (PF3) will be proved
as a part of the proof of Theorem 3.8. In comparing (PF1) with (F1) we see that the class of
piecewise fit regions is closed both under finite unions and finite intersections, whereas fit
regions are closed only under finite intersections. Let us also recall that, when we speak of a
finite union of fit regions, one or more of the fit regions may consist of infinitely many
connected components. However, when & is one—dimensional, every piecewise fit region is a
finite union of bounded open intervals.

We interpret the region £ in (3.1) as a two—dimensional body with an unopened crack.
Moreover, we interpret the replacement of the region (-1,1) x (~1,1) by £ as the creation of

the unopened crack
K= (("'1:1) x (_131)) \ ..

More generally, when describing the deformation of a fractured continuum, one must prescribe
two elements: the crack created in the deformation, and the position occupied after the
deformation by each point of the body which is not on the crack. To this end, we make the

following definition.

3.2 Definition: Let £ be a piecewise fit region in &. A simple deformation from £ is a

pair (x, f), where « is a subset of .6 and f is a mapping from £ \ « into &, with the
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following properties:
(Sid1) vol & = 0;
(Sid 2) f is injective;
(Sid 3) £\ « is the union of finitely many fit regions such that the restriction of f to

each of the fit regions is a classical deformation.

A finite collection A := {4 f | j € {1,..}} of fit regions satisfying (Sid 3) for a simple
deformation (x,f) from ¢ will be called admissible for (x,f). We may think of f asa
"piecewise classical deformation" in which each .£ f undergoes the classical deformation

(3.4) fj =1] .
J

Notice that not only .6 but also £ \ x is a piecewise fit region, as is clear from (Sid 3).
Moreover, (Sid 3) combined with the property (F3) of fit regions ensures that the image of

-6 \ & under f is piecewise fit. Indeed, by (F3), the image of 6. under fj is a fit region, so

J
that the set

Y f
U (A

J
U f(A£) =
=1 J j=1

f(dc\u)=f(tJJ £) =
=19

is piecewise fit. Although f need not extend to a cl- diffeomorphism of &, nevertheless,
(Sid 2) and (Sid 3) imply that f is a cl- diffeomorphism. It is also an easy consequence of
(Sid 3) and Proposition 2.2 that for any simple deformation (x,f) from ¢ there are positive

numbers m, M such that

(3.5) m < detvi(x) <M, m¢< |vf(x)|] <M, forall x e .£\x.
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Because £ is piecewise fit, it can describe a body with unopened cracks. When « # 9, £\
x describes a body in which new cracks have been added to the pre—existing ones.
We denote by Sid (.£) the collection of all simple deformations from ¢ and by Sid the

set
(3.6) Sid := {(x,f) € Sid (.#) | # is piecewise fit}.

Clearly, for each classical deformation f, the pair (8,f) obeys (Sid 1) — (Sid 3). Therefore we
can regard each element of Cld as an element of Sid, and thereby identify Cld with a subset
of Sid.

An important subclass of Sid is provided by piecewise affine simple deformations. These
are defined to be the simple deformations for which there exists an admissible collection A
such that each restriction fj in (3.4) is affine. When & = R and £ is an interval of the
real line, for a piecewise affine deformation (x,f), x consists of a finite number of points

x.; k € {1.K}, in £, and the restriction fy of f toeachinterval (x;,x, +1) is of the

form:

fk(x) =a + bkx, x <x< X410

with 2 bk constants chosen in such a way that f is injective and orientation preserving.
The intervals (x,, x, +1) then form an admissible collection for (x, f). Indeed, each interval
is a fit region; moreover, each of the restrictions fk can be extended to the affine function
x ~— a;, + by x which is an orientation preserving cl- diffeomorphism of R. As a first

example of a piecewise affine deformation, take .6 to be the interval (0,1), take & to be the

set

(3.7 0, = {% | b e {1.2,.n-1} },
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and take f to be the broken ramp function

— k k k+1 _
(3.8) s, (x)=x+3, § <x<=5=, ke{01,..n1}
with n a given positive integer. A related three—dimensional example which we will use later

is that of the deck of cards, in which we take £ to be the unit cube (0,1) x (0,1) x (0,1), and
& to be the set

(3.9 7p = (0,1) x (0,1) x o,

with ¢ given by (3.7). This corresponds to slicing the cube with equidistant planes
perpendicular to the Xq = direction. Finally, we take f to be the function

(3.10) t(xps X5 X3) = (x; + 8 (x3) — x5, X, X3),

with s given by (3.8), which assigns to the KB slice a rigid translation of amount k/n in
the direction.

An example of a deformation with fracture which is not a simple deformation is supplied by
cavitation. For & = IR2, let £ be the unit disc, let x be the singleton consisting of the
center of the disc, and let f be the mapping which maps the point with polar coordinates (r,y)

into the point with polar coordinates

(3.11) f(r,p) = (h(r) + ¢, ¢),

where ¢ is a positive constant and h is a continuously differentiable mapping of (0,1) into
the reals that is monotone increasing and has right—hand limit h(0+) > —c. If we compute

the @y — component of the gradient we find



16

I

(3.12) (¥, = h(r)+c

Thus, (vi) op tends to +was r-0. If (x,f) were a simple deformation, then by (Sid 3) there
would be an admissible collection A of fit regions £ f such that the restriction fj of f to
each .£. is a classical deformation. Since A is finite, the center of .£ belongs to the closure

J
of at least one of the .£.. For the corresponding fj, the gradient is unbounded by (3.12), and

therefore there is no ext:nsion of fj toa Cl— diffeormorphism of RZ. Thus, (Sid 3) is
violated and («,f) is not a simple deformation.

We wish now to establish for simple deformations counterparts of properties (D1) — (D3) of
classical deformations. A counterpart of (D1) is supplied by (Sid 2). The properties (D2), (D3)
concerning the composition and the inverse require the definition of the corresponding

operations in the class of simple deformations. Let us begin with the definition of composition.

3.3 Definition: Let £ be a piecewise fit region of &, let (, f) be a simple deformation from
6 and let (g, h) be a simple deformation from f(.£ \ x). Then the composition of (4,h) and
(%, f) is the pair

(3.13) (b B) 0 (5, ) i= (£ U (8), Bof | gy (0 L)

In this definition we have used the fact that, in a simple deformation (&, f), the image of
6 \ £ under { is a piecewise fit region. We are now in position to prove a counterpart of

_property (D2) for simple deformations.

3.4 Proposition: Let ¢, (x,f) and (4, h) be as in Definition 3.3. Then the composition
defined in (3.13) is a simple deformation from .£.

. : 1 .
Proof: We have to prove that the pair (x Uf (s),hof | A\( fo_l( ”))) has the properties
(Sid 1) —(Sid 3). (Sid 1) is satisfied, because by assumption & has zero volume, and because
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i l(p) has zero volume as it is the image of a region with zero volume under a mapping 1

. . . . . . . . h f 1 .
which satisfies (3.5),. To prove (Sid 2), it is sufficient to remark that ho | A\(RUT () I8
a composition of two injective mappings. To prove (Sid 3), take collections Al’ A2 of fit
regions "‘lj’ je{1,..,3}, "‘2p’ p € {1,..,P}, admissible for (6 \ x,f) and (f(.£ \ x)\g, h)
respectively. The collection

A= { ./{IJ n f_i (./‘2p) I JE {11---"]}) pE {1""aP}}

then is admissible for (£ \ (s UL 1(/;)), hof| .,{\(,«cuf‘l( ”))). Indeed, A is finite and is
made up of fit regions, because £ 1 '8 } (£ 2P) are fit, and the intersection of fit regions is
fit. Moreover, since f ; and hp are classical deformations, so are their restrictions to the fit

. 1 . s
regions "‘lj n{ j (.z{zp) and fj (f£ lj) n “2p’ respectively. Hence, the restriction

(hof) 1 =h of 1
"‘1j“f-'(“‘2p) fj(“‘u)““‘zp .Aljnf'j(./:

J 2p)

of hof toeachelement of A is the composition of two classical deformations and, therefore,

is a classical deformation. g

The definition of composition of simple deformations permits us to state the following

decomposition theorem for simple deformations.
3.5 Proposition: Every simple deformation (&, f) from £ admits the decomposition

(3.14) (x, ) = (8,9) o (x, j‘\ )-

K
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Moreover, the pairs (9, f) and (n,i\ ) are simple deformations from £\x and ¢,
S\K

respectively.

Proof: If (8,f) and (x, i \ ) are simple deformations, then (3.14) follows from the definition
J\K

(3.13). Thus, we have only to prove that (9, f) and (x, ./l{ \ ) are simple deformations.
K

(x,1i \ ) is a simple deformation from 6 because x satisfies (Sid 1) by assumption and the
S\K

identity mapping satisfies (Sid 2) and (Sid 3). (8,f) is a simple deformation from £\
because £ \ « is piecewise fit, the empty set has volume zero, and f satisfies (Sid 2) and

(Sid 3) by assumption. g

Because the simple deformation (k, i ) describes the creation of a new crack site &
VAV

and leaves every point of the body fixed, we call it a pure cracking. In contrast, (9, f) isa
simple deformation which does not involve the creation of a crack, and we call it a
deformation without cracking. It is not difficult to see that, for a deformation without
cracking (0, f), the mapping f is a classical deformation from £ \ x only if the domain
/£ \ « is a fit region. Using the terminology just introduced, the decomposition in (3.14) can
be expressed as follows: every simple deformation is the composition of a pure cracking and a
deformation without cracking. There is only one simple deformation from £ whichis both a
pure cracking and a deformation without cracking, and this is the identity deformation
9,1 ).

If (x,f) is a simple deformation from £, it is natural to define right and left inverses of
(x, f) as pairs which, when composed with (x, f) according to (3.13), result in the identity

deformation:

(A, &) o (s, 1) = (9, i‘,‘) )

(3.15) {
(IC, f) ° (P, l') = (0, i f (d‘\&))
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The question of the existence and uniqueness of right and left inverses for a simple deformation

is answered by the following proposition.

3.6 Proposition: Let (x,f) be a simple deformation from .¢. A right inverse (p,r) and a
left inverse (A, £) exist if and only if & = @. In this case,

(b)) = (1,8 = (0,

Proof: If x =0, then by composing the pair (8,{ 1) with (0,f) we conclude that (@, 1) is
both a right and a left inverse for (@, f). Conversely, assume that a left inverse (A, £) of
(x, f) exists. Then from (3.13) and (3.15) it follows that

kU ) =9,

and this implies x =@ and { 1(A) = @. On the other hand, because A is a subset of
(%), f_l(A) = @ implies A = §. Because A = £ = @, we obtain again from (3.13) and
(3.15)

l0f=i.‘,

ie, £ =1 1 Following the same lines it can be proved that, if a right inverse (p, r) exists,

thens=p=0andr=f’1..

With this proposition we have proved that right and left inverses exist only for simple
deformations without cracking. If they exist, they are unique and coincide, and we can speak
simply of the inverse of a deformation without cracking. It is natural to refer to simple
deformations without cracking as invertible simple deformations and to write InvSid for the set

of invertible simple deformations.
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With reference to the decomposition (3.14), we see that only the factor (x, i £\ n) does
not have, in general, an inverse. This reflects the irreversibility attributed to the process of
formation of a crack. For simple deformations, the property (D3) of classical deformations is
replaced by: the inverse of a simple deformation, whenever exists, is a simple deformation.
This property is established in the following proposition.

3.7 Proposition: The inverse of an invertible simple deformation (@, f) from ¢ is a simple
deformation from f(.€).

Proof: (Sid 1) and (Sid 2) are verified trivially for (9, 1). To verify (Sid 3), we take an

admissible collection A for (8, f) and consider the collection
A= {4) | § € {101

Each (£ j) is a fit region. Moreover, because f| . is a classical deformation with range
J
(£ j), its inverse exists and is a classical deformation from f(.# j). Thus, A’ has the

properties required by (Sid 3). g

The last result in this section is a more technical one: we show that the fundamental

theorem of calculus applies to simple deformations.

3.8 Theorem: Let £ be a piecewise fit region of &, let (x,f) be a simple deformation from
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6, and let < be a unit vector in #. For almost every line L parallel to < there hold:
(i) to within a set of one—dimensional measure zero, L N .§\x consists of finitely many
pairwise disjoint closed intervals Iq, q € {1,..Q}

(ii) for every q € {1, ..., Q}, f|I ng \x extends to a piecewise continuously
q .

differentiable function € on I q;

(iii) forevery q € {1,..., Q}andevery x,y € I  with y=x+ |y—x| <, the

q
fundamental formula of calculus

ly—=x|
(3.16)  f(y-) —f(x+) = J Vix +te)edt+ I (f(z+) —f(z-))
0 z
holds, where z runs through the points of discontinuity of € in (x,y) and

f(w+) and f(w—) denote the right and left limits (with respect to <) of f at w,
respectively.

Before proving this theorem, we introduce a subdivision B of . \x which will be useful
in subsequent developments, and we prove some properties of B. Let {.¢ f |je {1,.,3}}
be an admissible collection for (x,f) € Sid (.¢). Then B is the collection
{3j | j € {1,...,J}} defined recursively by

.91 = ./{1,
(3.17) j—1
3 s = int(d‘j \ U

j .2p), j € {2,..3}.

p=1
3.9 Lemma: The subdivision B has the following properties for each j, k € {1,2,...,J}:
(i) ﬂjc./{j,and.?jn.ﬂk=01fj#k;
(ii) .2;] is a fit region;

J
(iii) v .2;] differs from € \ £ by a set of volume zero.
j=1
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Proof of the Lemma: Property (i) follows directly from the definition of B. To prove (i) we
proceed by induction, observing that & = v 4 1 is fit. Let j € {2, ...,J} begiven and
assume that 2 isfit forall p € {1,..,j1}. Then int(.£ j\ .2p) is fit because the interior

P
of the difference of fit regions is fit [17]. Moreover,

i—1 -1 =
2 = int (£ \(U &) =int n (A£,\2)=n int(A.\ 2)
= int (4\ (U &) =it 0 (45\ %) = n it (45\ G,
Therefore, .sj is fit because it is the finite intersection of fit regions. To prove (iii), we first

introduce the notation
(3.18) g 2

to mean that two subsets £, @ of & differ by a set of volume zero, and we proceed again by

induction. Clearly, 2, & .£; by (3.17). Welet j € {1,2,...,J-1} be given and assume

J J
that U @B & U _. Wenow can write
p=1 P p=1 p

e } a)us } s v \ b 2
= . = 1n . ~
p=1 P [p=1 p] I+ [p=1 p] [ 1 e p]
SRR \ ) @ AR, S
o~ . = . & .
[p=1 p] [ 1 p] [p=1 p] L pmy P

Here we have used the fact that int £ & £ whenever vol(bdy .£) = 0, as is the case for the

J J
sets A +1 \ [ pil .2p ] and [ pil .Qp ] U A4 +1 whose boundaries are subsets of the set
+1

U bdy #£ p having volume zero, due to the fact that each region ¢

is fit. ]
p=1 P

Proof of Theorem 3.8: Take an admissible collection A for (,f) and consider the subdivision
B defined in (3.17) in terms of A. Consider first the region B, of B; since 2, is fit, it
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follows from (F3) that, for almost every line L parallel to <,

1 9
(3.19) Lng, = U 1

1
with Iql’l »qy € {1, ..., Ql}’ closed pairwise disjoint intervals. Here % is the counterpart in

one dimension of the symbol # defined in (3.18). Among all lines satisfying (3.19), we select
those for which
1 %

(3.20) Lngy,=s U I

gy =1 %27°

with I , G € {1, ..., Q,}, closed and pairwise disjoint. Since &, and 2. are disjoint,
1y, 2 %2 2 1 2
the interior of each interval I a1 is disjoint from the interior of each interval I 00,2 Again
1 2
by (F3), almost every line L parallel to < satisfies simultaneously (3.19) and (3.20).

Proceeding recursively, we find that almost every L parallel to < satisfies
1 9

(3.21) Ln& & U I . forall je {1,.,3},
J =1 95

with I q. €{1,..., Qj}’ j €{1,...,J}, closed intervals with pairwise disjoint interiors.

Q) )
J
Denote by Iq, q € {1,...,Q} the connected components of the finite union
19
u U I .. It{ollows from (3.21) that
j=1q,=1 9
J
J 1 39 Q
(3.22) v (Ln.zj) & U U Iq.j = U Iq
=1 Flg;=1 7y q=1



24

In order to prove (i), it is sufficient to prove that

J 1
(3.23) U (Lng) » LnA\k

=1

for almost every line L parallel to <. To do this, we observe that, by the assertion (iii) of the

‘preceding lemma,

J
(3.24) vol [(4 \ %)\ (,-.3. % )] =0,

and that, by Fubini’s Theorem, almost every line parallel to a given direction intersects each
set of volume zero in a set of one—dimensional measure zero. Therefore, (3.23) holds for almost
every line to which (3.22) applies. This proves the first assertion.

To prove (ii) it is sufficient to consider the restrictions of f to each £ i As we know
from (Sid 3), they are classical deformations, and therefore they extend to cl-

diffeomorphisms fj of the whole space &. It is sufficient to set

J(x) forxe int Iqj,.] for q; e {1, ,QJ},JE{I, J}
(3.25) f°(x) :=={ f(x) forxe(l_ nA\K)\UU int I .
q : q;,])
J Qj J
| x forxe I \(U UintI_ .U f\x)
q* q:J)
J Qj J
to get a piecewise continuously differentiable extension of f to Iq for each q € {1, ..., Q}.
Indeed, te(x) = fj(x) for each j € {1,...,J}, g e {1, .., Qj}' and x € int Iq.j°
J)
Moreover, I q is a finite union of intervals Iq P and each fj has a continuously differentiable

j)
extension to I i At this point, (iii) follows from the fundamental formula of calculus applied
J’
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toeach [w;, w, +1] = Iqj,j n [x,y):

| 1% 417
(3.26) £ (Wiyq) — 0w = j vl (w+ta)a d,
0

forall i € {1,..., Qj}’ and from the observation that, for every j € {1, ..., J}, fj is defined

in the whole space and that fj(x) = f(x) and. vfj(x) = vi(x) almost everywherein I "KL
J)
Therefore, vfj can be replaced by vf in (3.26). Moreover,

fj(Wi) = f(w;+), fj(wi+1) = f(w; 1)

so that the addition of (3.26) over all intervals I 0. forming I q leads to (3.16). g
. J’
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4. Limits of simple deformations

We have introduced simple deformations (x, f) in order tb describe the creation and
opening of cracks. This corresponds to the idea we have of macroscopic fracture: we think of
& as the site of new macroscopic fractures that are revealed through the discontinuities of {
across «.

Our purpose in this section is more general: we wish to describe deformations for which
fractures are allowed to diffuse throughout the body. This process of diffusion is obtained here

from a limiting procedure on sequences n H(xn, fn) of simple deformations.

4.1 Definition: Let £ be a piecewise fit region of &. By LimSid(.f#) we mean the set of all
triples (x,g,G), with xc .6, g € L®(4,5), G € L®(4,Lin ¥), for which thereis a

sequence n — (x ,f ) in Sid(.£) such that:

(i) & = lim inf £ ,
n -
(ii) 111:1: | g—1, IIL,,, 47 =0,
(i) pm G-, "L"’(./{,LinV) =0
We denote by LimSid the set
(4.1) LimSid := {(x,8,G) € LimSid(.#)| £ is piecewise fit}.

We call each element of LimSid a limit of simple deformations. If (x,5,G) € LimSid(.#)
and if nw (s ,f ) is a sequencein Sid(.€) satisfying (i) — (iii) in the above definition, then

we say that nw— (x f ) determines (x,g,G). In (i), by lim infx we mean the set
Do

1]
n «
1 n=p

(42) K =

p o

Il <8

This is the set of all points x of £ for which there exists a p such that x € Ky for all
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n > p. We recall that, by (Sid 3), each ¢ \ £ is the union of finitely many regions ¢ f
such that the restriction of fn to each £ f extends toa C1 —diffeomorphism of &. This
implies that both fn and vfn are bounded. Since Ky has volume zero by (Sid 1), it follows
that f and vf can be identified with elements of the Lebesgue spaces L”(.£,8) and
L®(#,Lin ¥'), respectively.

The space Sid imbeds naturally into the space LimSid. Indeed, to each (x,f) € Sid we
can associate the element (x,f,vf) of LimSid determined by the constant sequence
n — (x,f). The fact, made evident by the following examples, that there are elements
(%,8,G) of LimSid with vg # G shows that the imbedding of Sid in LimSid is not

surjective.

4.2 Example (the broken ramp sequence): Let & =R, .6 = (0,1) and, for each n € N, take
(s,f,) tobe the pair (s, ) defined by (3.7) and (3.8). It is easy to see that the sequence
n — (¢rn,sn) determines the triple (x,g,G), where & is the empty set and g and G are

given by

(4.3) g(x)=2, G(x)=1, 0<x<1l

4.3 Example (the dyadic broken ramp sequence): Consider the subsequence n v (& of n)
27 2

of the broken ramp sequence. Since each set x _ consists of dyadic rationals in (0,1) and

ol
since K  C £ for every n < m, theset x consists of all dyadic rationals in (0,1). On
2 2
the other hand, the L® —limits of n+s f , 3nd n o vf _ are the functions defined in (4.3).
2 2

We conclude that the dyadic broken ramp sequence determines the triple («,g,G), with & the
set of all dyadic rationals in (0,1) and g, G given by (4.3).

Three—dimensional counterparts of the above examples are given by sequences of "decks of
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cards" constructed using the sets 7 and the functions t defined in (3.9), (3.10). The last
example shows that .6 \ x is not, in general, a piecewise fit region; indeed, the complement
of the dyadic rationals is not an open subset of (0,1). The same example also illustrates the

following property of limits of simple deformations.

4.4 Proposition: If a sequence n»— (nn,fn) determines a triple (x,g,G) in Lim Sid, then
each subsequence determines a triple (x/,g’,G’) in LimSid with g’ =g, G’ =G and

k’ J K, theinclusion being strict, in general.

Of the next two examples, the first one shows that Lim Sid includes triples in which the
second entry may be a function as nasty as the Cantor function. The second one shows that, if
ne (s f ) determines (x,8,G) and if all the f are of bounded variation, then g need not

be of bounded variation.

4.5 Example (The Cantor fracture): Let & =R, .6 = (0,1), and let ¢ be any continuous
non—decreasing map of (0,1) onto itself. For each n € N consider the points

X, b€ {0,1,...,n}, defined by
— — i _h
(4.4) Xg =0, xp:=min{xe(0,1)]|px)=2}, h e {l,.n}

That there is at least one x such that ¢(x) =h / n is ensured by the fact that ¢ is

continuous and surjective. Define n + (s ,{ ) as follows:

Ky = {xl, ey Xp g }

h

f(x):=x+ a' X <X<x.., he {0,1,..., n-1}.

Each (xn,fn) is a piecewise affine simple deformation. Moreover, n ~+ (xn,fn) determines a
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triple (x,g,G) in LimSid (.6). Indeed, vf (x) =1 forall x € 6\ &, 60 that the L” —
limit of vf is the constant function x +— G(x) =1, and n + f has as L® —limit the

function f(x) = x + ¢(x). To see this, note that by (4.4)

f.(x)—x = ox)

for every x € (xh,xh +1) and h € {0,1, ..., n—1}, so that, in view of the monotonicity of ¢,

0=x+p(x;) —{,(x) <x+ p(x) ~f,(x) < x+ @(xy, 1) — LX) = Plx ;) — wx,) =3

It is now sufficient to observe that the Cantor function has all the properties assumed for ¢ to

conclude that (x,8,G) may have as second entry the identity plus the Cantor function.

46 Example: Let & = R, £ = (0,1) and let (xn,fn) be the piecewise affine

deformation:

111
gy = A 3omrh

f( ) {x—lli if EEITI < x < 215-, h € {1,...1n},
X) =
n x otherwise.

It can be verified that each f isinjective, and that n ~— f and n ~—— vi have L® —

limits that we denote by g and G. The total variation of fn is
T 1
V(fn) =142 hil g < to

and that of g is

V(g) = lim V() = +a.

-wo
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Therefore, each f is of bounded variation but g is not.

In Section 3 we showed that the function defined in (3.11) and representing cavitation is
not a simple deformation. The following example shows that such a function may represent the

second entry of an element of LimSid. For simplicity, we restrict ourselves to the special case

h(r) =1.

4.7 Example: Let £ be the unit disc of R without its center, and let n — (xn, fn) be
the sequence defined by

ko= {x 15 € (01, vix) = 22, b e {0101},

x+c (cos 228, gin 208y b o gy o 20BHD) oy o, n).

fn(x) : n o

Here c is a positive constant, and r(x) and ¢(x) are the polar coordinates of x. Each f (x)
represents the piecewise rigid deformation in which each sector 27h/n < ¢(x) < 2r(h+1)/n
experiences a translation of amount c in the radial direction ¢ = 2rh/n.

It is easy to verify that each (nn,fn) is a simple deformation from £ and that the L® —
- limit of n +— vf is the constant function G(x) = I. Moreover, the sequence

n — f convergesin L” to the function g given by

g(x) :== x + c (cos ¢(x), sin ¢(x)).

Indeed, by direct computation we find that

l1,(x) — gx)| = 2 [sing B2 — p(x))| < | 2B _ yx)| ¢ 2C

Our arguments prove that cavitation can indeed represent the second item of an element

(x,8,G) of LimSid. It is also interesting to remark that, in the present example, & turns out

to be the set

k= {xef|1(x) € (0,1), px) = 0}.
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In general, it is not possible to compose limits of simple deformations. However, it is
possible to compose a limit of simple deformations with a siinple deformation, and the result is

a limit of simple deformations.

48 Definition: Let (xf) € Sid(.£€), andlet (s,b,H) € LimSid (f(#\x)). Then the
composition of (u,h,H) with (x,f) is the triple

(45) (wh,H) o (x) =

= (U (), Bofl_gy ur )y Bl ur i) Tl eur L)

4.9 Proposition: Let (x,f) € Sid (.#) and (p,h,H) € LimSid (f(.£\«)). It follows that
(s,0,H) o (x,f) € LimSid(.#). Specifically, for each sequence n +— (s ,h ) € Sid(f(.£\x))

that determines (u,h,H), the sequence
B ((ighg) o (D) = = (RUT ), By o 81 g (i )

determines (p,h,H) o (x,1).
Proof: We have

lim inf (;:Uf—1 (v) = 3
Do =

n o (surley) =
n=p

p=1

® @ 1 1 @ [ 1] 1
=xU (VU n £ () = suf" (U n p)=suf"()
p=1 n=p p=1 n=p |

Moreover, there hold

lim | of—hof| = lim [[h —h| =0
1o L%A4,Y)  1oe L(f(4\K),7)
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and _
lim || (vh_of) vf — (Hof) vf || <
n-o I (7hgoD) (Hof) v L®(A4,Lin ¥)
< lim ||vh_—H | of || =0 g
n-o Ion, R L®(f(.#\«),Lin ¥) | L*(#,Lin ¥)

In the remainder of this section, we establish a variety of properties of the elements of

LimSid.

4,10 Theorem: Let (x,g,G) € LimSid (.£). Then: (i) « has volume zero; (ii) g and G

have representatives g, and G, which are continuous on S\E.

Before proving the theorem we state a lemma which shows that, in spite of the fact that
the domains of the transplacements fn depend upon n, a notion of uniform convergence can

be established for n fn’

411 Lemma: Let n ~— (x,f ) be a sequence determining (x,g,G) € LimSid (). Then
g and G have representatives goz.z{\x — & G : A \ £ — Lin ¥ such that n f
and n ~— vi converge uniformly to g, and G, inthe following sense: for every € > 0,

thereisan N ¢ € N such that

(4.6a) sup | f (x)-g(x)| < € foralln>N_,

« xef\(sus ) " o(*) | ¢

and

(4.60b) sup |vf (x) -G (x)] < € forall n>N._.
xe6\(sUx ) a() = Golx) | ¢

Proof: Let m,n € N. From the definition of the L® norm,

f —f = inf £ (£)— =
£, =1 |l L%(6.7) i {fz;gl | £,(6) —£ () | | # C&, vol # = 0}.
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From the continuity of f and f ~ on.€\(x U&_ ), it follows that

@n e -i | L43) > [ (x) - £ (x)| forall x € A\(s Un_).

By the definition (4.2) of &, for each x € .6\ & there is a subsequence n’ +— (x_,,f /),
n’ €N CW, such that x € £\« , forall n’. Thus, by (4.7) and by the fact that n’ +—
f . hasan

L®~limit g, we conclude that n’ w f , (x) has a limit, and we set

(4.8) g,(x) = ;im f.(x) forall x € 6\ «.

n'=wm

Let x bein £\ (xUx ). Thenby (4.7), with m restricted to W', in the limit for

m-o we have

(4.9) o G-sll > [ 1(x) — g (x) I.

(A£.7)
If we choose N_such that the L® norm of f —gislessthan ¢ forall n > N, then
(4.6a) follows from (4.9). Moreover,

I f,—gll I {, — 8, |l

L°(6,7) 2 L°(f,7)’

and, taking the limit as n -+ « in the last inequality we find that || g — & Il 0,

L%4,Y)
i.e., that & is a representative of g. A similar proof appliesto G. g

Proof of Theorem 4.10: By (4.2), & is a countable union of sets each of which has volume zero
by (Sid 1). Thus, s has volume zero. We wish to prove that the representative
g, of g defined in Lemma 4.11 is continuous. Let n ~— (rcn,fn) be a sequence in Sid(.%)

which determines (x,8,G). By the lemma, for any fixed ¢ > 0 we may choose N ¢ € N such
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that, foralln > Ne

€
(4.10) swp 14 () - g (O] < §
§eA\(sUx )
Let x € 6 \ s begiven. Choose n’ > N_ such that x € .;{\xn,; because f , is
continuous with open domain € \ & ,, we may choose § > 0 such that

2(x,6) ¢ A\, and, forall y € 2(x,6),

(4.11) 1£.() - £.(x) | < §

Let z € B(x,6) n(A\ &) begiven. Because Z(x,6) C £\« ,, wehave that both x
and z arein (.6 \(x ,U&)) N B(x,6) and, by (4.10) applied to both x and z and (4.11)

jvith y = z we obtain:
(412) | g (x) — 8,(2) | < | By(®) — £, (x) | + | £, () —1,(2) | + | §,,(2) — g, 0) | <e.

A similar proof appliesto G. g

4.12 Remark: As shown by Example 4.3, £ \ x in general is not an open set. Theorem 4.10
establishes the continuity of g, onits domain £ \ & but does not guarantee that &, has a
continuous extension to an open ball centered at a given point x in £ \ x. Nevertheless,
relation (4.12) does restrict the oscillation, and therefore the jumps, of g in

B(x,6) n (A \ k) to be no greater than 2e.

4.13 Remark: It is not true in general that g is Cl, or even differentiable, at the interior of
£ \ k. Indeed, referring to Example 4.5, choose the function ¢ to be

0 for 0 <x< 1/2,
(4.13) dx) =
2x-1 for 1/2 < x < 1.
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With this choice, & is the empty set and yet the function By:X = X+ ¢(x) is not
differentiable at x = 1/2. '

Some of the examples in this section show that, although the permanent crack site ¥ for a
limit of simple deformations (x,5,G) may be empty, the crack sites Ky for a determining
sequence n b ("n; fn) can diffuse throughout the region .£. We now wish to identify
precisely the region affected by such diffusion and to investigate the fact that, in the above
examples, vg # G at the points where such diffusion of fracture occurs. Consider a sequence

D= K in £ and define the set

® o
(4.14) Mp—s )= n do( U &),
p=1 n=p

where the closure is taken relative to €. This set is closed in £ because it is the intersection
of sets that are closed in £. It includes the set s defined in (4.2) and the inclusion is in
general strict. For example, for the sequence (3.7) « is the empty set and A is the whole
interval (0,1). If two sequences in Sid(.#) determine the same element of LimSid(Q{ ), the
two sets A need not coincide. For example, the identity (9, i P J‘) of LimSid (%) is
determined by the constant sequence n — (9, i J‘), as well as by the sequence

n o (o,i A\ ”n)’ with ¢ asin (3.7). In the first case A is the empty set, and in the

second case it coincides with .£. The intersection of the sets A(n+ £ ) taken over all
sequences which determine a given (x,g,G) € LimSid (.#¢) will be denoted by &(«,8,G).
This set is closed in 6 and includes x. The complement of ®(x,8,G) in £ will be denoted
by ¥(x,8,G). It is the set of all points x € 6 such that there is at least one sequence

n — (s ,f ) € Sid (#) which determines (x,g,G) and such that x belongs to the exterior

o
of U K, ¥ is an open set included in £ \ x and may be empty. ¥(x,8,G) and
n=1

&(x, g, G) will be called the unfractured zone and the fractured zone for (x,g,G), respectively.
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In the above example with (x,8,G) = (8,1 ,, I o), because there is a sequence determining
(x,g,G) for which A = ¢, we have &(x,g,G) = @ and therefore ¥(x,8,G) = 4.

4,14 Theorem: Let (x,g,G) € Lim Sid (.#). Then, at all points of the unfractured zone
¥(x,8,G), g, is continuously differentiable and vg, = G,

Proof: Let x € ¥(x,,G). Then there is a sequence n +~ (x_,{ ) in Sid («£€) which

@®
determines (x,g,G) and there is a neighborhood J(x) of x such that J(x) and U &
n=1

are disjoint. Consequently, each fn is of class c! at x and the sequence of the derivatives
vi converges uniformly to G in J (x). Under these conditions, a corollary of the mean
value theorem (see e.g. [2], Theorems 3.6.1, 3.6.2) ensures that g, is of class c! and that

its derivative at x is G (x). m

4.15 Theorem: Let (x,8,G) € Lim Sid (.¢), and suppose that det G (x) > 0 at each point
x in the unfractured zone ¥(,g,G). Then the restriction of g  to ¥(x,8,G) isa cl-
diffeomorphism.

Proof: We first observe that the positivity of det G o together with the continuity both of G o
and the mapping of an invertible linear mapping into its inverse ([15], p. 250) imply that G;l
is defined and continuous on ¥(«x,g,G). Therefore, for each x € ¥(x,g,G) and for each

6 > 0 such that clo Z(x,6) ¢ ¥(x,8,G), thereexists M = M(x,6) > 0 such that
(4.15) 0< |G (& | ¢M forall £ e cloB(x,f).

Let us prove now that g, restricted to ¥(x,g,G) is injective. Assume to the contrary that
there are two distinct points x,y in ¥(«,8,G) such that

(4.16) 8,(Y) = g,(x).
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Since x € ¥(x,8,G), thereis a sequence n+~ (s ,f ) in Sid (.#) which determines (x,8,G)
and a number § € (0, |y —x|) such that clo B(x, §) ¢ ¥(, g G) and clo B(x, §) and

U &, are disjoint. Because, for each n € N, fn isa cl — diffeomorphism of
n=1

do 2(x,6), B(x, 6) is mapped by f onto a neighborhood of f (x). Moreover, by (4.15)
and by the uniform convergence of n +— vf to G  in clo 2(x, 6), there exists N € N

such that n > N implies

v (€)1 ¢ 2M forall £ € cloB(x, ),

and therefore ([2], Prop. 3.3.1)

1 £(8) -1, | 2 @M g=x| forall ¢ eclo.B(x, 6).

Since a cl- diffeormorphism maps the interior of its domain onto the interior of its image
and the boundary of its domain onto the boundary of its image, we conclude that fn maps
(x, 6) onto an open neighborhood of f (x) which includes 2(f_ (x), (2M)"1 6). Consider
xnow the point y which, by assumption, belongs to ¥(x,g,G) and therefore to £ \ x. Thus,
there is a subsequence n’ — (s, fn,) of n — (Icn,fn) such that y belongs to all £ \
&y, In view of (4.16) and of the property (4.6) of uniform convergence of n — f to g, for

sufficiently large n’ we have

(417) 1£,,(5) =1, ()] € 1£3,(5) — B3| + 18,(¥) — g ()| + |8, (x) — £, ()] < (2M) e,

Thus, y does not belong to B(x,6), but, for sufficiently large n’, its image under £
belongs to Z(f ,(x), (2M)_16), and therefore to the image under { , of B(x,6). This
contradicts the injectivity of f ,. We conclude that (4.16) holds only if y = x, and this
proves that the restriction of g to ¥(x,g,G) is injective. By Theorem 4.14, g is of class
cl and vg, = G

o in ¥(x,g,G); moreover, the determinant of G0 is strictly positive by



38

These conditions ensure that g is a C —diffeomorphism of ¥(x,g,G), (see [2],
Corollary 4.2.2). g

4.16 Remark: That (4.15) does not imply that g is injectivein £ \ £ orevenin
 \ clo & is shown by the following example. Let & = R, . = (—1,1), and let

n — (xn,fn) be given by

— (b 0. 2en....— -
Ky = {E | he{1-n,2-n,...,-1,0,1,...,0-1}}
(4.18) 1 x+-§ for -§—<x< k;-i, ke {0,1,...,n1}
f (x):=
L x+1+ b'ﬁ—'u- for %—<x< k—;*xi, k € {-n,n+1,...,-1}

Each pair (xn,fn) is a piecewise affine deformation; in particular, fn is injective because the
image of (0,1) under f consists of the intervals (0, 1/n), (2/n, 3/n), (4/n, 5/n),.. and that
of (-1,0) consists of the intervals (1/n, 2/n), (3/n, 4/n),...which are all pairwise disjoint.
The sequence (4.18) determines the triple (x,8,G) with s = {0}, g  given by

2x in (0,1),
go(x) = { 2 0.1

and G (x) = 1. Therefore, (4.15) is satisfied, but g, is not injective.

2x+2  in (-1,0),

4.17 Theorem: Let (#,8,G) € Lim Sid (.£), andlet x € £ \ 5. Assume that thereis an
open neighborhood J(x) of x included in £ such that g o can be extended to an

orientation preserving cl- diffeomorphism ge on J(x). Then

(4.19) det G (x) < det vg%(x).
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Proof: Choose § > 0 such that the ball 2(x,6) is included in J(x). For each € > 0,

denote by g&(B(x,6))¢ the set

€ X € = e €).
g (2(x,6)) {e.s’l(Jx, 5 2(g (), €)

Since € < ¢’ implies g% B(x,6))¢ ¢ ge(.ﬂ(x,ﬁ))" and since the intersection of all
g%(B(x,6))¢ with € > 0 is the closure in & of g®(B(x,5)), we have that
(4.20) vol g8(B(x,6))¢ = vol g¥(B(x,6)) + 0(e).

Because ge is an orientation preserving cl- diffeomorphism, (4.20) can be written as

(4.21) vol g%(B(x,6))¢ = p J " det vg®(¢) d¢ + o(e).

X,

Choose a sequence n +» (s ,f ) in Sid (.€) which determines (x,g,G). Then there is an

Ne € N such that forall n > Ne

(4.22) i —gll + ||Ivf -G || < e
LT L.,y n L*(#£,Liny)

For each such n, by (4.22), by the definition of the set g®(B(x,6))¢, and by the fact that g°

is an extension of g,

£(2(x,8)\ x) ¢ g5(2(x,6))",

so that, by (4.21),

(4.23) vol £ (2(x,0)\ &) j det vg®(€) dé + O(e).
2(x,6)

Since fn is an orientation preserving C1 — diffeomorphism of the open set £ \ Ky and since

Ky has volume zero,

vol £ (B(x, 0\ £;) = I det vf, () d¢ = J det vf,(£) d€.
B(x,0)\s B(x,5)
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On the other hand, by (4.22), for the representative G, of G we have
vol £ (2(x,0)\ 5;) = j det G_(€) d¢ + 0(e),
2(x,6)
and, by (4.23),
f det G (€) d¢ < j det vgS(£) A6 + O(e).
2(x, 6) 2(x,6)
Because ¢ is arbitrary, we conclude that

J det G (£) d¢ < j det vg®(£) d¢.
2(x,6) 2(x, 6)

It is clear that § can be replaced by an arbitrary positive number §/ less than 4. Then, by

letting 6’ tend to zero and using the continuity of G, on .£\x, we obtain (4.19). g

418 Remark: If x belongs to the interior of £ \ &, Theorem 4.17 has the following
consequence: assume that g is of class Clina neighborhood of x and that

det vg (x) > 0. Then

(4.24) det Go(x) < det vg (x).

The last result in this section is an extension to LimSid of the fundamental formula of

calculus for simple deformations proved in Theorem 3.8.

4,19 Theorem: Let a piecewise fit region £, a triple (x,g,G) € LimSid (.£), and a unit
vector ¢ € ¥ be given. There hold:
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(i) For almost every line L parallelto <, L N £ \ « is, to within a
one—dimensional set of measure zero, a finite union of pairwise disjoint closed
intervals Iq, q € {1,..,Q}

(i) for each sequence n ~— (& ,f ) that determines (x,g,G) and for almost every line
L parallel to <, not only does (i) hold, but also, for each q € {1, ..., Q} and

N € N, :fn|an £\ K extends to a piecewise continuously differentiable function f;

on Iq, and the fundamental formula (3.16) applies to fn for every x,y in Iq with
y=x+|y-x| &

(iii) in addition, for almost every x,y € Iq\ k with y = x+ |y—x| <, the formula

|y-x|

(425) g (y) —g,(x) = J Gy (xtta)edt + Lim B (f(s+) ~fy(z;)
0 © 2y

is valid, where & and G0 are the representatives of g and G introduced in Theorem

4.10 and z runs through the points of discontinuity of f: in the interval (x,y).

Proof; Let n ~—— (x,f ) bea sequence that determines (x,g,G). By (Sid 1) in
Definition 3.2, each set & has volume zero, and by item (i) of Theorem 4.10 the set & also
has volume zero. Using the notation of (3.18) and (3.19), we have that £\x % £\x and,

therefore, for each n > 1 and for almost every line L parallel to <, there holds

1
(4.26) LnA\s, LN Ak

By item (i) of Theorem 3.8, for each integer n > 1 and for almost every line L satisfying

(4.26) there is a finite collection of pairwise disjoint closed intervals an,n » 4, € {1, ..., Qn}
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such that

1 Qn I
4.27 Ln £\« ® U .
( ) \ n qn =1 qn,n

For each n > 1, we define .z;l to be the set of lines parallel to < for which not only (4.26)
and (4.27) hold, but also (cf. items (ii), (iii) of Theorem 3.8)

N\« extends to a

n

(ii) foreach I_ |, q €{1,..,Q}, { |
n q,0’ °n n’’ ‘n an,n

piecewise continuously differentiable function ifl on I Q.0
n1

(iii)n for each q € {1, ..., Qn} and every x,y € an,n with

y = x+ |y —x| <, there holds
ly=x|
(428) £ (y-)—f (x+) = ! iy (x4 te)edt + 3 (fyleyt) (o))
n

By items (ii) and (iii) of Theorem 3.8 and the above arguments, % has full measure, i.e., &

differs from the collection of all lines parallel to < by a set of measure zero. It follows that

@®

N % has full measure and that both (4.26) and (4.27) hold for every n > 1 and for every
n=1

]

L € n_ £. Relation (4.26) implies that for every such n and L
n=1

[} 1 1
(4.29) Ln#\( U xy) s Lno\s, = LnA£\k
m=1
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®
Letaline L € n % begiven. By (4.26) and (4.27), for each n,m 2 1 there holds
n=1

Qn 1Qm
I £ U I

q=1 " g =1 Im™

Since each member of this relation is the union of a collection of pairwise disjoint, closed
intervals, this implies

(4.30) g ol o€l Qb = {5l ap € {1, Q)

Hence, if we put Q := Q, and if, for each q € {1, ..., Q}, we put Iq = Iq p» then (4.26)

and (4.27) yield
1

Q
Ln A\ = ul
q=1 4

which proves item (i). Item '(ii) is proved by observing that item (i), holds for the given line

L and forevery n > 1, and that, by (4.30), the intervals Iq p are now independent of n.
n1

Because item (iii)n holds for the given line L and for every n > 1, we can assert that (4.28)

holds for each interval Iq and for every x,y € I with y = x+ |y —x| <. In particular,

q
o
if for a given Iq we take x,y € £ N Iq\(m:1 Ky): then x,5 € £ an\»':n for every

n > 1. Since f is continuouson £ \ &, thelimits f (y-) and f (x+) in (4.28) can be
replaced by fn(y) and fn(x), respectively. Ifin that relation we let n tend to o, then by
(4.6) 1 (y) and f (x) convergeto g (y) and g (x), respectively. We wish now to show that
the integral in (4.28) tends to the integral in (4.25) as n tends to ». We first observe that, for
every n 2 1, vfn and G0 are defined on £ \ k, and £ \ %, respectively, and, therefore,
are defined almost everywhere on Iq. Moreover, (4.6b) tells us that for each ¢ > 0 there
exists an integer N ¢ such that

88852‘112 | vi, () — G,(§) | < ¢
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forall n > Ne' Consequently, foreach n > N ¢

ly—=x|
| j (viy(x+te) — G (x+te))edt | < € ly — x|

0
which yields the desired conclusion. The formula (4.25) then follows from (iii)  upon letting n
@®
tend to o. This establishes (4.25) for every x,y intheset £ NI a \ ( Ul &) which, by
m=

(4.27) and (4.29), differs from I a by a set of one—dimensional measure zero. g
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5. Structured deformations

The examples in Section 4 show on the one hand that an element of LimSid may contain
significant kinematical information not provided by any single term of a sequence defining it.
Thus, in Example 3.2, the limit of the broken ramp sequence describes a mapping of the
interval (0,1) onto the interval (0,2) in which the smaller interval can be viewed as being
fractured into infinitely many infinitesimally small pieces that are scattered uniformly
throughout the larger interval, a situation that cannot be described by any one term of the
sequence. On the other hand, an element of LimSid may lose the injectivity or some of the
regularity properties enjoyed by each term. In fact, Remark 4.16 provides an example of an
element (x,8,G) of LimSid (.¢) in which the continuous representative g, of g is not
injective, and in Remark 4.13 g is not differentiable at an interior point of £ \ k. Although
lack of injectivity is useful in some situations, for example, to describe mixtures of two
continua as we indicate in Section 7d, in many other situations it is natural to consider only
limits of simple deformations (x,8,G) in which g, is injective. Moreover, in order to be able
to define compositions of triples («,g,G) it is natural to require furiher that g, and G, have
smoothness properties stronger than the continuity guaranteed in Theorem 4.10, such as those
énjoyed by f and vf, respectively, in the case where f is the second entry of a simple
deformation (x, f). In this section we define and study a collection Std of triples meeting

these requirements.

5.1 Definition: Let a piecewise fit region £ be given. A structured deformation from £ isa
triple («,g,G) for which there hold:
(Std 1) (x,g) is a simple deformation from .f;
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(Std2) G: £\ & -Lin ¥ is continuous and is piecewise continuous on clo £ , i.e.,
there exists a finite collection of fit regions {7‘] j €{1,...,J}} whose union is

£ \ x such that, for each j € {1,..,7J}, G| ¥ has a continuous extension to
J

cdo ¥ j;
(Std 3) there exists m > 0 such that, forall x€ £\ s, m < det G(x) < det vg(x).

We emphasize that our definition of structured deformations makes no use of limits of simple
deformations, even though both notions of deformation are described by triples (x,g,G).
Nevertheless, in the Approximation Theorem, Theorem 5.8, we will prove that every structured
deformation is a limit of simple deformations. Of course, when we say that a given structured
deformation (x,g,G) is a limit of simple deformations, we mean that the set « and the

L®— mappings associated with the continuous functions g and G form a triple that satisfies
Definition 4.1.

It is helpful to re—examine the examples of limits of simple deformations in Section 4 to
determine those (x,g,G) € LimSid that also are structured deformations, in the sense that the
triple («,g 0,G o)’ with & and Go the continuous mappings constructed in Theorem 4.10,
satisfies Definition 5.1. The broken-ramp sequence (Example 4.2) determines the limit of
simple deformations (#,g,G), with g and G given by (4.3), which also is a structured
deformation. However, the dyadic broken ramp sequence (Example 4.3) determines the limit of
simple deformations (x,8,G), with g and G again given by (4.3), but with & the set of
dyadic rationals in (0,1). Hence, .§ \ ¥ = (0,1) \ # is not open and, therefore, not piecewise
fit; consequently, (x,8,G) is not a structured deformation from (0,1). These two examples
illustrate the role that the set & can play in distinguishing structured deformations from
general limits of simple deformations. The remaining examples in Section 4 include more

pathological situations that may not lead to structured deformations. In Example 4.5, choosing
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@ to be the Cantor function provides us with an element (x,g,G) of LimSid (0,1) in which g o
is not differentiable, and, hence, (x,8,G) is not a structured deformation. The limit of simple
deformations («,g,G) in Example 4.6 is not a structured deformation, because the set £ \ «,
with x = { ili | ne W\ {0,1}}, is not a piecewise fit region. The two—dimensional cavitation
(9,8,G) in Example 4.7 is a limit of simple deformations but not a structured deformation,
because our discussion in Section 3 showed that (#,g) is not a simple deformation. Finally,
the "one—dimensional kink" described in Remark 4.13 is not a structured deformation, because
g, is not differentiable on £ \ x.

We shall denote by Std(.#) the set of structured deformations from a given piecewise fit
region £ and by Std the set of all structured deformations:

(5.1) Std := { (x,8,G) € Std (£) | £ is piecewise fit}.

It is easy to see from (Sid 1) — (Sid 3) that for each (x,g) € Sid(.£), the triple («,g,vg)
satisfies (Std 1) — (Std 3); therefore, we may identify Sid with a subset of Std.
The appearance of a simple deformation (x,g) in the triple (x,8,G) denoting a structured

:deformation makes it easy to define the composition of structured deformations.

5.2 Definition: Let a piecewise fit region .6 and structured deformations

(.8,G) € Std (£), (u,h,H) € Std (g(£ \ x)) be given. The composition (u,h,H)o(,g,G) is
defined to be the triple

(5.2) (sugl(w), hog] , ((Hog)G) | ).

AT A\(x0g (W)

5.3 Proposition: A composition of structured deformations is a structured deformation.
Proof: The reader will notice that the first two components of the triple in (5.2) describe the
simple deformation (p,h) o (x,g) defined in (3.13). By Proposition 3.4,
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(#,h) o (x,g) € Sid (£), so that (u,h,H) o (x,g,G) obeys (Std 1). Moreover, we can write

(5.3) det ((Hog)G) = det (Hog) det G < det (vhog) det vg =

= det ((vhog) vg) = det (v(hog)),

where we have dropped explicit indication of restrictions and have used (Std 3) for (,h,H) and
for (x,g,G) along with the chain rule. Relation (5.3) shows that the triple (5.2) also satisfies
the second inequality in (Std 3). The remaining inequality in (Std 3) follows from the first
equality in (5.3) and the fact that each factor in the second member in (5.3) is bounded below
by a positive number. We wish finally to show that this triple also satisfies (Std 2). To this
end, we choose finite collections of fit regions {%, | k € {1,....K}} in £\« and |

{#, | te{1,.,L}} in g(f \ x)\s satisfying (Std 2) for G and for H, respectively, as well
as an admissible collection { j | j€{1,...,0}} asin (Sid 3) for the simple deformation («,g)
from €. Because for each j € {1, ..., J} the restriction 8; of g to A [ is a classical
deformation, its inverse g}l is a classical deformation from the fit region g j(./{ j)' Because for
each L€ {l,.,L} o, isa fit region, the set ¥ ¢ N 8; (A j) is a fit region and, therefore,
50 is g}l (¥ P 8; (f j))' Consequently, for every j, k, and £ as above, the set

-1
is a fit region; we have
-1 -1 -
(5.5) g (% N g{(A) = 87 (#n &(4) = £ (#) n 4,
so that

= -1 = -1 =
e = 86 ) 00 )= (4T ) 0 W) 0 (Y )

= g (g(A\ K\ p) N (A\K) N (A)5K),
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and, since the range of g_l is included in £\ &,

L, e = AN = A W)

Thus, the sets £ ke form a collection of fit regions whose union is £ \ (x U g_l(p)).
Because ./ij ¢ ¢ Yo by (Std 2), G has a continuous extension to clo £ ke because, by
(5.4), (5.5) and the injectivity of g,

8(£pp) = B (FPnANF) = 0 g( ) ngF) ¢ ¥

(Std 2) implies that H has a continuous extension to clo g (£ ik l)' Moreover, g hasa
continuous extension to clo .6 f J clo £ k¢ and, thus, Hog has a continuous extension to
clo £ ke We conclude that (Hog) G has a continuous extension to clo ke and that

(Std 2) is satisfied by the triple in (5.2). g

It is natural to consider the triple (9, i e J‘) as the identity element in Std (.£).
Indeed, we observe that not only is (9, i o1 J‘) € Std (.£), but also that

(5'6) ("1g:G) ° (0) i'/‘, IJ‘) = (6, lg(.‘\m)) Ig('/‘\,c)) ° ("»g:G) = (”,S)G)l

for all (x,g,G) € Std (.#). The next proposition concerns the existence of a left inverse for a

structured deformation and is a natural counterpart of Proposition 3.6 for simple deformations.

5.4 Proposition: Let (x,g,G) € Std (.6) be given. There exists (1,{,L) € Std (g(£ \ %))
satisfying

(5.7) (ML) o (xgG) = (8 o1 )

if and only if

(5.8) k=9 and detG = detvg.
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In this case, we have the relations

(5.9) A=9 (= g—l, and L = G—lo g_l,

as well as the relation

(5.10) (rgG) o (LEL) = 0,1y ) Ly(0)-

Proof: Suppose that (5.7) holds for some structured deformation (1,{,L) from g(.¢ \ &).
The definition of composition (5.2) then yields for the simple deformations (A,£) and («,g)

(A8) o (s8) = (8,1 ),
and Proposition 3.6 implies
(5.11) J=k=0 ad (=g"
Furthermore, (5.2) tells us that (Log) G = 1 ¢ Sothat Log = g! and, thus,
(5.12) L=Glogl

Because (A,f,L) € Std(g (£ \ «)), theinequality (Std 3), (5.11), (5.12) and the Inverse
Function Theorem tell us that

(@etG) L og! = det (G ogl) = detL ¢ detvs = det (v(g™L),

ie.,

(5.13) (det G)™ ¢ det (W(g 1) o g) = (det vg) L.

It is immediate from (5.13) and (Std 3) that the relation det G = det vg in (5.8) holds.
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Conversely, suppose that (5.8) holdsand put A = 8, ¢ = g_l, and L = G 1o g—l.
It is then clear that (5.7) and (5.10) hold, and it only remains to show that

(9, g_l, G‘log—l) € Std (g(.6)). Because (9,g) € Sid (.#), Proposition 3.7 tells us that
(0,5_1) € Sid (g(£)), so that (Std 1) is satisfied for (9, g—l, G"log—l). To verify (Std 3)

we note that

(5.14) det(Glog )= (det G Hog! = (det G) Fog?

and the second relation in (5.8) yields

(5.15) (det G) Log™ = (detvg) Log ™! = (det (vg) L)og!

= det ((v) Mo g ) = det(v(6™)),
which verifies with equality the second relation in (Std 3) for (9, g_l, G 1o g’l). Moreover,
this equality, relation (3.5), and the fact that (0, g"l) € Sid (g(.£ \ x)) provide a positive
lower bound for det (G"1 ° g_l) on g(.6 \ k). Thus, (Std 3) is satisfied. To verify (Std 2)
for (9, g—l, Glo g—l), we choose an admissible collection {6, | k € {1,..., K}} for (8, g)
and fit regions %, ..., ¥ satisfying (Std 2) for (0,g,G) and note that, for each j, G—llfj

bhas a continuous extension H.i to clo y i Put

(5.16) ij = gy (./{knfj) c g(Af)

and observe that each set J i is a fit region, as it is the image of £ kN¥ f under the
classical deformation g,. Choosing an extension g]e{ toall of & thatisa

cl- diffeormorphism, we can write

do sy = clo(gf (4 N %)) = gf (o (AN g),
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and we note that foreach y € int cloJ & = Ja,

H (7)) = B;( () = (6 o) ()

Moreover, H. o g_l has the extension H. o (gi)—l | that is continuous.
Tk J cloJ i

Thus, ¢ Lo g"l is piecewise continuous on clo .6, and (Std 2) is satified. g
Proposition 5.4 has the following immediate corollary.

5.5 Proposition: Let (x,g,G) € Std be given. Then (x,g,G) has an inverse (1,£,L) € Std if
and only if x =@ and det G = det vg, in which case

(5.17) MLL) = (0,67, G g ™).

Propositions 5.4 and 5.5 tell us that the existence of an inverse in Std is equivalent to the

‘existence of a left inverse which, in turn, is equivalent to the relations (5.8). We use the

-notation

(5.18) 08G) "= (0,6, G og Y

for the inverse of (0,8,G), and we write InvStd for the set of invertible structured

deformations:

(5.19) InvStd := {(x,8,G)€Std | x=0 and det G = det vg}.

We recall that, from Proposition 3.6, the condition & = @ is both necessary and sufficient in
order that the simple deformation (x,g) be invertible. Thus, the conditions det G = det vg
and x =@ play the corresponding role in determining which structured deformations are

invertible. From the imbedding g+ (9,g,vg) of Cld into Std we conclude that each
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invertible simple deformation and, in pa.rticﬁlax, each classical deformation, when regarded as a
structured deformation, is an invertible structured deformation.

A principal goal in the remainder of this section is to show that Std can be identified with
a subset of LimSid. In order to do so, it is helpful to record a simple consequence of the
definition of composition of structured deformations that gives a counterpart of the

decomposition (3.14) for simple deformations.

5.6 Proposition: Each structured deformation (x,g,G) is a composition of the simple

deformation («,g,vg) and of a structured deformation of the form (9,i,H):

(5.20) (k8:6) = [0, ig g\c) (Gog )G og™) ] o (rgve).

The next result, the Approximation Lemma, is central to the Approximation Theorem
which asserts that every structured deformation is a limit of simple deformations. The lemma
shows that a structured deformation of the form (@,i,H) can be approximated to any desired
accuracy by a simple deformation (A,h). Before stating the Approximation Lemma, we let a
piecewise fit region £ be given and choose a Cartesian coordinate system for & with origin

O in such a way that clo ¢ is included in the coordinate cube (% ) %)3 :

(5.21) dok ¢ (3.3°.

(For definiteness and simplicity, we here consider the case where & is three—dimensional.)
For each prime p € N and subset Z of the integers I, we define a family II(p,Z) of

coordinate planes:

(5.22) N(p,Z2) := {rc & | 7 is a coordinate plane whose distance from O is m/p for

some m € Z}.
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In particular, II(p,Z) is the set of all coordinate planes obtained from any one of the three
coordinate planes through O by a translation of amount an integral multiple of p_l.

In stating the Approximation Lemma for a given (8,i,H) € Std (), we also refer to sets
occurring in (Std 2) of Definition 5.1 as well as sets constructed from them. Specifically, we
choose fit regions Jfl, - J{J whose union is £ and such that, for each je€ {1,...,J},

H | X. has a continuous extension H i clo J{j -+ Lin ¥. Consider the subdivision B of £
J

into mutually disjoint fit regions .Z’j, j€{1,...,J}, constructed using the procedure in (3.17)
with ¢ f there replaced by % i We now define

J
(5.23) I'(B) := U ((bdy .2j) n J£),
j=1
i.e.,, I'(B) is the set of points in £ that are in the boundary of at least one of the subdividing

regions 2 7 and for each ¢ > 0 we define

(5.24) I'(B), = {xeI(B) | dist (x, bdy ) < €}.

5.7 Approximation Lemma: Let a piecewise fit region .6 be given and choose a Cartesian

coordinate system for & satisfying (5.21). Let (9,i,H) € Std (.£) be given,
choose sets {J{j |j€ {1,...,0}} asin (Std 2), and consider the subdivision B asin (3.17),
with £ f there replaced by o¥.. Foreach € > 0 and each prime p € N, there exist a

piecewise affine simple deformation (A,h) from £ and primes Py, Py greater than p such
that

(i) A is covered by the set I'(B) ¢ defined in (5.24) together with the planes
v € Ii(p, {1, .., p,—1}) with £ €{1,2};
@) lh-il < €;

(iii) |lvh—H]|

Moreover, (A, h), p;, and p, can be chosen so that, if we put
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(5.25) g = int{x € A | H(x) =1}

Proof: Let € > 0 and a prime p be given. Because for each j€ {1,..J} the extension
moreover, by (Std 3),

H.:cloX j 2Lin¥ ofH is continuous, H f is uniformly continuous;

there exists m > 0 such that

(5.26) m < detHj < 1,

and we may choose g >0 gatisfying

€/2

x€A

The uniform continuity of the finitely many functions Hl,...,H 3 tells us that we may choose

§> 0 such that, for each je {1,---J}

€

(x,yecloéifj and |x-y| <8 = |Hj(x)-Hj(y)| < —.
2J

(5.28)

Choosé a prime Py such that

(5.29) p, > max {p+1, lE&’ 2£‘;;—M-} ,
with

(5.30) M = max{;té& |fEX)-1], 1 },
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and put

k, k,+1 ky ko+1 k, k,+1
,_ 3., _afxtt T, 37

ky, ky, kg € {1,2, ..., p;~2}}

ie, C(p;) is the set of all closed cubes € in (0,1)3 whose parallel faces are included in
consecutive planes in II (pl’ {1, 2, .., pl—l}). The condition (5.21) télls us that clo £ is
covered by C (pl)’ and the relation (5.29) implies that the diagonal 3 /p1 of each cube is
less than both ¢/2M and 6. Consequently, we may write foreach ¥ € C (pl)

(5.32) x,y € ¥ = |x—y| < min{¢/2M, 6}

and for each je€ {1,...,J}, by (5.28),

€
(5.33) xye( ndok) = |EE-EE <L

"In order to define the set A C £ and the mapping h : £\ 1 — &, we need to consider
three cases for the cubes € € C (pl), one of which, namely when € and .£ are disjoint, so
that the domain of h does not intersect %, is a trivial case and we need not mention it
further. We now treat the remaining two cases: ¥ isincluded in ¢, or ¥ is neither
included in nor disjoint from .£.

It is convenient here to put
(5.34) D, = {%¢e C(p,) | 6 A}
To treat the first case, let a cube & € D, be given. Because ¢ C .6, H is continuous on

¥, and, because ¥ is closed, H is uniformly continuous on % Moreover, because the fit

regions ij, j€{1,..,3}, cover £, they cover € Foreach x,y in the convex set ¥, we
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construct a list of points in the segment [x,y] C ¢ as follows. Choose j; € {1,...,J} such

that x € % , and choose w, € clo &%. such that
Bl B

|w;—y| = min{|z—y| |zeclo Jijln[x,y] }.

Note that [wl,y] n o'b; = @, so that [wl,y] is covered by the remaining J-1 sets J{j.
1
Choosing j, € {1,...,3} \ {jl} such that w, € J{] , we obtain by the same procedure a list
2

of points W Wis Wo, ooy Wy, 00 [x,y] with J’ <J, Wo=X, Wy, =7, and satisfying: for
each ke {1,..,J'}, wy_; and wp both are in the set clo J?jk. This list permits us to use

(5.33) and the triangle inequality to write

3 ,

B -B@)| < T |8, ) -Bw)| < £ < £,
and to conclude that
{5.35) x,ye ¢ = |H(x)-H(y)| < ;—

Now, we choose a point ¢ @ in the cube ¥ we define the affine map 2y &— &by
(5.36) ¢6,(x) =Cg + f H(c 8) [x— g]’ X€ &,

and we note that <, satisfies

(5.37) V46,(x) = B H(c 6’) forall x € ¥#.

By (5.27) and (Std 3) we also have for all x € €:

(5.38) det vey(x) ¢ F° < 1,
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and, by (5.27), (5.35), and (5.37),

(539)  [vay(x)—HE)I| < Bl Beg)-BE) | +(1-F) |BE®) | < §+ 5 =«
The last relation shows that, on ¢, the requirement (iii) of the lemma is satisfied by 2y

The requirement (ii) is satisfied on ¥ as well. In fact, for each x € € by
(5.36), (5.32) and (5.30), we have

(5.40) | 2g(x) =i (x) | = | ¢y BH(c ) e ] = x|
< |BH(c ) -1] Ix<yl < | BB(ey) =1l f ¢ €

However, if we define h restricted to the interior of each cube ¥ € Dl to be

fll int ® ‘= % lint > Wefind that h need not be injective, because the images 2, (int €)
of the cubes ¢ in Dl need not be disjoint. To remedy this situation we compose each affine
mapping <, with a piecewise rigid mapping r o that fractures as,( ¥) into smaller,
mutually congruent parallelepipeds, and then moves the smaller parallelepipeds into €

without interpenetration. To this end, we let a prime p’ > p be given and note that the set
(5.41) 43’(11(13'» I)) = {dg(f) | = € T(p’, I)}

is a collection of planes in space, each of which is parallel to one of the faces of the
parallelepiped <. (#). Two consecutive planes in < (II(p’, T)) parallel to a given face of
dif( ¥) have distances 7 / p’ from one another, with 7 a positive number depending only
on Ve, and the normal to the face. Therefore, the collection (II(p’, T)) subdivides &
into infinitely many mutually congruent closed parallelepipeds, and we denote by P(p’) this

‘collection of parallelepipeds. We consider now two finite subsets of P(p’):

(5.42) 'P_(p')dg ={2eB@) | 20 24(¥) + 0}
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and
(5.43) RP(p')y={2€ B(p’) | #cCint €}

thus, the elements of P (p’) , form a cover of 2 (€ ) by mutually congruent
€

Tnon-overlapping parallelepipeds, and the elements of P (p')g are mutually congruent
non—overlapping parallelepipeds in the interior of # We observe from (5.37), (5.38), and
(5.26) that

(5.44) vol 2,(¥) = ﬂ3 det H(c ) vol € < vol #.

Now, by (5.37), for each # € P(p’) there holds
(5.45) v(p') = vol 2 = fdet Hc ) (p/)7,

because each 2 is the image of a cube of volume (p')—3 under 2., and this tells us that

(5.46) lim v(p’) = 0.

p’-o

Using (5.42), (5.43) and the fact that vol bdy € = vol bdy ,(¥) = 0, we conclude that

(5.47) limvol UR(p’) , = vol 2,(¥)

’ p'-o €

and

(5.48) lim vol UR(p’) o = vol €.
P

Relations (5.44), (5.47) and (5.48) imply that we can choose a prime p , > p such that
volUP(p’) , < volUP(p’) forallp’ > p.. Since all parallelepipeds in P(p’) have
€
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" the same volume v(p’), we conclude that the set P (p’)ag of non—overlapping

parallelepipeds covering 2. (¥) has fewer elements than the set P (p’) g of
non—overlapping parallelepipeds contained in int ¥ whenever p’ > p 2 Consequently,
since all the parallelepipeds in both collections are congruent, we can choose an injective,

‘piecewise rigid mapping I : 2 () \ 2, (N(p’, I)) — int ¢; using (5.21) we may put
(5.49) lg = {xernint €| rel(p’, {1, ...,p’-1}H},
and define the mapping h ., : (int €)\ A, — int € by

(5.50) hy(x) = 1 (ay(x), x €(int€)\),.

Because the range of r . is included in ¥ and # has diagonal v3/p’ lessthan ¢, h @
satisfies item (ii) in the statement of the lemma on its domain, and, because vr g =L we

have

(5.51) Vhey = Ve,

Relations (5.51) and (5.39) then tell us that h . satisfies (iii) on its domain. Finally, relation
(5.49) tells us that 2 « i8 consistent with (i). To summarize, we have shown that our
construction yields a piecewise affine simple deformation () @ h 6’) from int ¥ that satisfies
(i) — (iii) and whose range is included in int € when ¥ isin D, and when p’ is a prime
greater than or equal to p &

Let nowacube # € C(p;) begivensuchthat ¥n £# # and ¥\ .6 ¢ §, and note
that

(5.52) €N bdy £ ¢ 0.
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